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1. Introduction

Along with the rapid development of mobile communication and Internet, as well as the rise of 5G
network, the importance of information security is becoming more and more prominent. Due to its high
nonlinearity, sensitivity to initial value and unpredictability of trajectory, chaotic system is especially
suitable for constructing information encryption scheme with high security [1–5]. The realization of
chaotic synchronization is the premise of the chaotic secure information transmission, therefore, it is of
great significance to explore the chaotic synchronization scheme and synchronization control technique
in depth [6–11].
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For the chaotic secure communication, the level of security is mainly determined by the complexity
level of the carrier signal which is generated by the drive system. However, the drive system in most
chaotic secure communication schemes is a single chaotic system. If the drive system is composed of
multiple systems, the carrier signal will become more complex and more unpredictable for decryption.
Inspired by the above discussion, R. Luo presented a new type of synchronization scheme-combined
synchronization, in which the drive system was a linear combination of two different chaotic systems
with the same dimension [12]. However, since only linear operations of vector were used, the nonlinear
characteristics of the combined drive system did not change essentially. Recently, Q. Li proposed the
compound synchronization, in which the multiplication operation of matrix was first applied in the
formation of the driving signal, so as to enhance the nonlinearity of the drive system [13]. However,
the above-mentioned compound synchronization only considered the multiplication of two matrices.
It is noted that the polynomial operation is a generalization of the multiplication operation. Therefore,
if the polynomial operation can be used to formulate the drive system, the complexity of the carrier
signal will be significantly improved. This inspires this work.

Notice the encrypted information will not be decoded until the synchronisation between the
drive system and the response system is achieved. Fast synchronization is desired to prevent the
loss of information during the initial phase of the secure communication. Therefore, finite-time
chaotic synchronization emerged and a series of valuable research results have been obtained [14–20].
However, the synchronization time in finite-time chaotic synchronization has a strong dependence
on the initial conditions. Recently, the concept called fixed-time chaotic synchronization has been
developed to solve this problem, in which the synchronization time is uniformly bounded with
respect to the initial conditions. Nevertheless, since the relationship between the control gains
and the synchronization time is unclear, the synchronization time in fixed-time synchronization can
not be accurately calculated [21–24]. With the continuous improvement of communication quality
requirements, the designer would prefer to recover the encoded information within a predefined time
according to the task requirements. Therefore, it is urgent to develop a novel concept of chaotic
synchronization, in which the synchronization time can be predesigned off-line without being affected
by the initial conditions or other system control gains [25–31]. This is anther goal for this work.

According to the above analysis, this article is dedicated to the design of a novel predefined-time
vector-polynomial-based synchronization among multiple chaotic systems and its application in secure
information transmission. The rest of this work is arranged as follows. In Section 2, a novel chaotic
synchronization scheme is defined in virtue of the vector polynomial. After that, a novel concept named
predefined-time vector-polynomial-based synchronization is proposed. In Section 3, a predefined-
time synchronization control algorithm is designed to realize the above synchronization. In Section
4, a numerical simulation is presented to illustrate the validity of the above synchronization control
algorithm. In Section 5, the proposed chaotic synchronisation scheme is applied in the information
secure transmission to demonstrate its feasibility and superiority. Finally, Section 6 concludes this
article.

The proposed approach includes two main contributions:
• Firstly, based on the concept of vector polynomial, the vector-polynomial-based synchronization

scheme is presented, in which, the drive system is a compound chaotic system which is composed
of several chaotic systems by linear operation and polynomial operation. Compared with other
chaotic synchronization schemes, the compound drive system in this scheme has more complex
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topology and less predictable chaotic path, which means that it has stronger anti-attack capability
in secure information transmission. Moreover, the complexity of the compound drive system in
this synchronization scheme can be changed by adjusting the coefficient or the degree of the vector
polynomial.
• Secondly, the synchronization time can be set off-line by the designer in advance without

estimation, which is of more practical value.

2. Problem description and preliminaries

In this section, some important concepts of chaotic synchronization will be described in details, and
the relevant preliminaries will be listed.

2.1. Vector-polynomial-based synchronization

Consider the nonlinear chaotic synchronization problem among M drive systems and one response
system. The dynamics of the j-th basic drive system is described by

ξ̇ j,1(t) = Q j,1(ξ j(t))ϕ j + q j,1(ξ j(t)),
ξ̇ j,2(t) = Q j,2(ξ j(t))ϕ j + q j,2(ξ j(t)),
...

ξ̇ j,n(t) = Q j,n(ξ j(t))ϕ j + q j,1(ξ j(t)),
j = 1, 2, · · · ,M. (2.1)

Correspondingly, the response system is of the form
ẇ1(t) = R1(w(t))ψ + r1(w(t)) + u1(t),
ẇ2(t) = R2(w(t))ψ + r2(w(t)) + u2(t),
...

ẇn(t) = Rn(w(t))ψ + rn(w(t)) + un(t),

(2.2)

where ξ j = (ξ j,1, ξ j,2, · · · , ξ j,n)T and w = (w1,w2, · · · ,wn)T ∈ Rn denote the state vectors for the j-th
basic drive system and the response system, respectively, Q j,i(ξ j(t)) and Ri(w(t)) denote the i-th rows
of the linear functional matrices Q j(ξ j(t)) and R(w(t)) ∈ Rn×n, respectively, q j,i(ξ j(t)) and ri(w(t)) are
continuous nonlinear functions, ϕ j = (ϕ j,1, ϕ j,2, · · · , ϕ j,n)T and ψ = (ψ1, ψ2, · · · , ψn)T ∈ Rn refer to
system parameter vectors, the vector u = (u1, u2, · · · , un)T ∈ Rn is the control input.

Definition 1. For vector υ = (υ1, υ2, · · · , υn)T ∈ Rn and constant l ∈ Z+, a novel l−th power of υ is
defined as

υ<l> = (υl
1, υ

l
2, · · · , υ

l
n)T , (2.3)

based on which, a novel vector polynomial with degree N ∈ Z+ is defined as

PN(υ) =

N∑
l=1

Dlυ
<l>, (2.4)

where Dl = diag{dl,1, · · · , dl,n} ∈ Rn×n denotes the coefficient matrix.
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Definition 2. (Vector-polynomial-based synchronization) The set of chaotic systems (2.1)–(2.2) are
said to be vector-polynomial-based synchronization, if

lim
t→∞
‖

N∑
l=1

Dl(
M∑
j=1

A jξ j(t))<l> − Λ(t)w(t)‖ = 0, (2.5)

where A j and Dl ∈ Rn×n refer to the coefficient matrices, Λ(t) = diag{λ1(t), · · · , λn(t)} denotes the
scaling matrix, whose elements are bounded and continuously differentiable non-zero functions.

Denote

χ(ξ1, · · · , ξM) =

M∑
j=1

A jξ j(t),

PN(χ) =

N∑
l=1

Dlχ
<l>(ξ1, · · · , ξM),

then, (2.5) is reduced to

lim
t→∞
‖PN(χ) − Λ(t)w(t)‖ = 0. (2.6)

If this is the case, PN(χ) is called a compound drive system.
In order to facilitate the reader to understand, we take the case of M = 3 as an example for detailed

analysis. In this case, the three basic drive systems are specifically described as
ẋ1(t) = F1(x(t))θ + f1(x(t)),
ẋ2(t) = F2(x(t))θ + f2(x(t)),
...

ẋn(t) = Fn(x(t))θ + fn(x(t)),

(2.7)


ẏ1(t) = G1(y(t))φ + g1(y(t))
ẏ2(t) = G2(y(t))φ + g2(y(t))
...

ẏn(t) = Gn(y(t))φ + gn(y(t))

(2.8)


ż1(t) = H1(z(t))η + h1(z(t)),
ż2(t) = H2(z(t))η + h2(z(t)),
...

żn(t) = Hn(z(t))η + hn(z(t)).

(2.9)

Then, Definition 2 can be rewritten as
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Definition 3. The set of chaotic systems (2.7)–(2.9) and (2.2) are said to be vector-polynomial-based
synchronization, if

lim
t→∞
‖

N∑
l=1

Dl(Ax(t) + By(t) + Cz(t))<l> − Λ(t)w(t)‖ = 0. (2.10)

Denote

χ(x, y, z) = Ax(t) + By(t) + Cz(t), (2.11)

PN(χ) =

N∑
l=1

Dlχ
<l>(x, y, z), (2.12)

then, (2.10) is reduced to

lim
t→∞
‖PN(χ) − Λ(t)w(t)‖ = 0. (2.13)

Remark 4. As shown in Table 1, the vector-polynomial-based synchronization covers most of the
existing chaotic synchronization schemes. The proposed synchronization scheme will be transformed
into different specific ones as different parameters are selected. In Table 1, Λ = diag {λ1, · · · , λn} ∈ n×n
refers to a constant diagonal matrix, and I ∈ n × n denotes a unit matrix.

Table 1. Comparison among the vector-polynomial-based synchronization and other existing
ones.

Parameter setting Name of synchronization scheme Definition of synchronization error

Vector-polynomial-based e(t) =
N∑

l=1
Dl(

M∑
j=1

A jξ j(t))<l> − Λ(t)w(t)

synchronization

Case 1 M=3 Vector-polynomial-based e(t) =
N∑

l=1
Dl(Ax(t) + By(t) + Cz(t))<l>

synchronization with M = 3 −Λ(t)w(t)
Case 2 M = 3,N = 1,D = I,C = 0,Λ(t) = Λ Combined synchronization e(t) = Ax(t) + By(t) − Λw(t)
Case 3 M = 3,N = 1, A = D = I, B = C = 0 Modified function projective e(t) = x(t) − Λ(t)w(t)

synchronization
Case 4 M = 3,N = 1, A = D = I, B = C = 0,Λ(t) = Λ Projective synchronization e(t) = x(t) − Λw(t)
Case 5 M = 3,N = 1, B = C = 0, A = D = Λ(t) = I Complete synchronization e(t) = x(t) − w(t)
Case 6 M = 3,N = 1, B = C = 0, A = D = −Λ(t) = I Anti-synchronization e(t) = x(t) + w(t)

Remark 5. In chaotic secure communication, the more complex the carrier signal is, the stronger
the attack resistance of the secure communication scheme is. Definition 3 shows that, x(t), y(t) and
z(t) generate a new vector χ = Ax(t) + By(t) + Cz(t) by linear operation, and then χ(t) generates

another vector PN(χ) =
N∑

l=1
Dlχ

<l> by polynomial operation. Therefore, the compound vector PN(χ)

has more complex nonlinear features. From the theoretical perspective, the geometric path of the
vector-polynomial-based compound drive system PN(χ((x, y, z))) is more difficult to predict. Moreover,
the complexity of PN(χ((x, y, z))) can be improved by increasing the degree N. Furthermore, different
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compound drive systems can be obtained by selecting different coefficient matrices Dl for the fixed
χ(x, y, z) and N, which indicates the synchronization scheme (2.10) is more flexible.

For instance, when we select the following three sets of different coefficient matrices for the basic
drive systems (2.7)–(2.9), the corresponding 3D projections of the vector-polynomial-based compound
drive system PN(χ((x, y, z))) are shown in Figure 2(a),(b) and (c), respectively.

Case a:

D1 = 10−5 · diag{−20,−6, 3},
D2 = 10−5 · diag{−5, 9, 10},
D3 = 10−5 · diag{3, 0.5,−8},

Case b:

D1 = 10−5 · diag{−5, 12, 6},
D2 = 10−5 · diag{−4, 2, 2},
D3 = 10−5 · diag{10,−3, 1},

Case c:

D1 = 10−5 · diag{5, 1,−10},
D2 = 10−5 · diag{16,−6, 5},
D3 = 10−5 · diag{4,−8, 2}.

The comparison of Figures 1 and 2 shows that, the chaotic topology of the compound system is more
complex than that of the three basic drive systems.
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Figure 1. 3D projections of the four chaotic systems involved in the simulations of this work.
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Figure 2. 3D projections of the vector-polynomial-based compound drive system with
different coefficient matrices.

Denote the synchronization error among the set of chaotic systems (2.7)–(2.9) and (2.2) as below:

e(t) = PN(χ) − Λ(t)w(t),

or

ei(t) = PN,i(χ) − λi(t)wi(t) =

N∑
l=1

dl,iχ
l
i − λi(t)wi(t)

where
χi = Aix(t) + Biy(t) + Ciz(t),

Ai, Bi,and Ci denote the ith row of the matrixes A, B and C, respectively. i = 1, 2, · · · , n.
Since

χ̇i = Ai ẋ(t) + Biẏ(t) + Ciż(t)
= Ai(F(x)θ + f (x)) + Bi(G(y)φ + g(y)) + Ci(H(z)η + h(z)),

it follows that

ṖN,i(χ) =

N∑
l=1

ldl,iχ
l−1
i χ̇i =

N∑
l=1

ldl,iχ
l−1
i (Ai ẋ(t) + Biẏ(t) + Ciż(t)).

Then, the error dynamic system among the chaotic systems (2.7)-(2.9) and (2.2) is obtained as
below

ėi(t) = ṖN,i(χ) − λ̇iwi(t) − λiẇi(t), (2.14)

that is

ėi(t) =

N∑
l=1

ldl,iχ
l−1
i (Ai(F(x)θ + f (x)) + Bi(G(y)φ + g(y)) + Ci(H(z)η + h(z)))

− λ̇iwi(t) − λi(Ri(w)ψ + ri(w)) − λiui(t). (2.15)
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2.2. Predefined-time vector-polynomial-based synchronization

Before defining the concept of predefined-time synchronization, let us review some related concepts
and properties.

Consider the nonlinear dynamical system

ξ̇(t) = ϑ(t, ξ;ϕ), t ∈ [0,+∞) (2.16)

in which χ ∈ Rn represents the system state, ϕ ∈ Rm denotes the system parameter. The origin 0 ∈ Rn

is assumed to be an equilibrium point for the system (2.16), i.e., ϑ(0, ξ0;ϕ) = 0. The initial condition
is represented as ξ0 = ξ(0).

Definition 6. (Predefined-time stability) [26]. For a predefined constant T ∗ > 0, the origin of (2.16)
is said to be globally predefined-time stable, if it holds for all the initial states ξ0 that lim

t→T ∗−
ξ(t, ξ0) = 0, t ∈ [0,T ∗)

ξ(t, ξ0) ≡ 0, t ∈ [T ∗,+∞)
(2.17)

If this is the case, T ∗ is called a predefined time.

Remark 7. As shown in Table 2, for the four stabilities involved, the accuracy of the settling-time
is gradually enhanced in turn, and the predefined-time stability can be regarded as a upgrade of the
other three. Furthermore, the settling-time T ∗ for predefined-time stability can be pre-specified without
being affected by the initial condition ξ0 or other system parameter ϕ, thus it can be set freely and has
more practical value.

Table 2. Comparison among the predefined-time stability and other existing ones.
Concept Definition Characteristic
Asymptotically stability The origin of system (2.16) complies with The length of the stabilization time is

lim
t→∞

ξ(t, ξ0) = 0. unknown and may be infinite.

Finite-time stability [17] The origin of system (2.16) is globally asymptotically The stabilization time T (ξ0) is finite, but
stable and there exists a finite time T (ξ0) ≥ 0 satisfying is dependent on ξ0 and the upper bound lim

t→T (ξ0)−
ξ(t, ξ0) = 0, t ∈ [0,T (ξ0))

ξ(t, ξ0) ≡ 0, t ∈ [T (ξ0),+∞)
cannot be estimated.

Fixed-time stability [23] The origin of system (2.16) is finite-time stable and the T f is independent of ξ0, however, it still
settling-time function T (ξ0) is bounded, i.e., there exists depends on the control gains.
a finite positive constant T f such that

T (ξ0) ≤ T f ,∀ξ0 ∈ Rn.
Predefined-time stability The origin of system (2.16) is fixed-time stable and for T ∗ can be predefined and not affected
proposed in this work an predefined time T ∗ ≥ 0, it holds that by ξ0 or other control gains. lim

t→T ∗−
ξ(t, ξ0) = 0, t ∈ [0,T ∗)

ξ(t, ξ0) ≡ 0, t ∈ [T ∗,+∞)
,∀ξ0 ∈ Rn.

Lemma 8. [24] For the dynamic system (2.16), if there exists a radially unbounded Lyapunov function
V : Rn → R that complies to

V̇ ≤ −(µ1Vε1 + µ2Vε2), ξ ∈ Rn \ 0

where µ1 ∈ (0,+∞), µ2 ∈ (0,+∞), ε1 ∈ (1,+∞) and ε2 ∈ [0, 1) are given constants.
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Then, the origin of system (2.16) is fixed-time stable and an upper bound of settling-time function
T (ξ0) is estimated as

T f =
1

µ1(ε1 − 1)
+

1
µ2(1 − ε2)

,∀ξ0 ∈ Rn \ 0. (2.18)

Remark 9. From Lemma 8 one can see that, for the fixed-time stability, the the upper bound T f of the
setting-time function T (ξ0) does not depend on the initial condition. Nevertheless, the relationship
between T f and the control gains is unclear. For several engineering application, such as chaos
synchronization, it is required that the synchronization time can be set independently as a user-defined
parameter.

Lemma 10. [27] Let T ∗ > 0 be a predefined constant. If there exists a radially unbounded Lyapunov
function V : Rn → R for the system (2.16), such that

V̇ ≤ −
1
αT ∗

exp(Vα)V1−α, α ∈ (0, 1],

for any ξ ∈ Rn \ 0.
Then, the origin of system (2.16) is predefined-time stable with T ∗ as the predefined time.

Combining the concepts of predefined-time stability and vector-polynomial-based synchronization,
now we propose the following important definition.

Definition 11. (Predefined-time vector-polynomial-based synchronization) The set of chaotic
systems (2.7)–(2.9) and (2.2) are said to be predefined-time vector-polynomial-based synchronization,
if the origin of the synchronization error system (2.15) is predefined-time stable with T ∗ > 0 as the
predefined time, i.e.,  lim

t→T ∗−
ei(t) = 0, t ∈ [0,T ∗)

ei(t) ≡ 0, t ∈ [T ∗,+∞)
(2.19)

where i = 1, 2, · · · , n.
In this case, T ∗ is called the predefined synchronization time.

3. Design of the predefined-time synchronization controller

To realize the predefined-time vector-polynomial-based synchronization among the set of chaotic
systems (2.7)–(2.9) and (2.2), the following synchronization controller is designed,

ui(t) =
1
λi(t)

(
1

21−ααT ∗
exp(

ei(t)2α

2α
)sign(ei(t))|ei|

1−2α + Ωi)

i = 1, 2, · · · , n. (3.1)

in which, T ∗ is the tunable predefined synchronization time, α ∈ (0, 0.5)∪(0.5, 1] is a control parameter,

Ωi =

N∑
l=1

ldl,iχ
l−1
i (Ai(F(x)θ + f (t)) + Bi(G(y)φ + g(y)) + Ci(H(z)η + h(z)))

− λi(t)(Ri(w)ψ + ri(w)) − λ̇i(t)wi(t). (3.2)
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Theorem 12. If the synchronization controller (3.1) is adopted, then the predefined-time vector-
polynomial-based synchronization among the set of chaotic systems (2.7)–(2.9) and (2.2) will be
achieved with T ∗ > 0 as the predefined synchronization time.

Proof. Choose the following Lyapunov function

Vi(t) =
1
2

e2
i (t), i = 1, 2, · · · , n. (3.3)

According to the definition of Ωi, the synchronization error dynamic system (2.15) can be simplified
as

ėi(t) = Ωi − λi(t)ui(t). (3.4)

Taking the derivative of Vi(t) along (2.15) , it can be derived that

V̇i(t) = ei(t)ėi(t)
= ei(t)(Ωi − λi(t)ui(t))

= ei(t)(Ωi −
1

21−ααT ∗
exp(

e2α
i

2α
)sign(ei(t))|ei(t)|1−2α

−Ωi)

= −
1

21−ααT ∗
exp(

ei(t)2α

2α
)|ei(t)|2−2α

= −
1
αT ∗

exp(Vα
i )V1−α

i . (3.5)

Hence, it follows from Lemma 10 that each element ei(t) of the synchronization error vector e(t) will
converge to zero before the predefined time T ∗, which means the predefined-time vector-polynomial-
based synchronization among the chaotic systems (2.7)–(2.9) and (2.2) will be achieved with T ∗ as the
predefined synchronization time. �

Similarly, if we define the synchronization error among the M + 1 chaotic systems (2.1) and (2.2)
as

e(t) = PN(χ) − Λ(t)w(t) =

N∑
l=1

Dlχ
<l>(x1, · · · , xM) − Λ(t)w(t), (3.6)

in which, χ(x1, · · · , xM) =
M∑
j=1

A jx j(t).

Then the result of Theorem 12 can be generalized as below.

Theorem 13. For a predefined time T ∗ > 0, if the following synchronization controller is adopted

ui(t) =
1
λi(t)

(
1

21−ααT ∗
exp(

ei(t)2α

2α
)sign(ei(t))|ei(t)|1−2α + Ωi), α ∈ (0, 0.5) ∪ (0.5, 1]

i = 1, 2, · · · , n, (3.7)

in which

Ωi =

N∑
l=1

ldl,iχ
l−1
i (

M∑
j=1

(A j,i(F j(x j)θ j + f j(t))) − λ̇i(t)wi(t) − λi(t)(Ri(w)ψ + ri(w)), (3.8)
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χi and ei(t) refer to the i-th elements of vectors χ(x1, · · · , xM) and e(t), respectively, A j,i represents the
i-th row of the matrix A j.

Then, the predefined-predefined vector-polynomial-based synchronization among the M + 1 chaotic
systems (2.1) and (2.2) will be achieved with T ∗ as the predefined synchronization time.

Proof. The proof process is similar to that of Theorem 12 and is omitted here. �

4. Numerical simulation

In this section, an illustrative numerical example is given to highlight the properties of the chaotic
synchronization scheme and synchronization control technology. The chaotic systems involved in this
example are given as below.

The first basic drive system (Lorenze system)
ẋ1

ẋ2

ẋ3

 =


x2 − x1

3x1

0

0
x2

0

0
0
x3

︸                   ︷︷                   ︸
F(x(t))


10
−1
−8/3

︸     ︷︷     ︸
θ

+


0
−x1x3

x1x2

︸      ︷︷      ︸
f (x(t))

, (4.1)

The second basic drive system (Rössler system)
ẏ1

ẏ2

ẏ3

 =


−y2 − y3

y1

0

0
y2

0

0
0
−y3

︸                       ︷︷                       ︸
G(y(t))


1

0.2
5.7

︸  ︷︷  ︸
φ

+


0
0

y1y3 + 0.2

︸           ︷︷           ︸
g(y(t))

, (4.2)

The third basic drive system (Liu system)
ż1

ż2

ż3

 =


z2 − z1

0
0

0
z1

0

0
0
−z3

︸                    ︷︷                    ︸
H(z(t))


10
40
2.5

︸  ︷︷  ︸
η

+


0
−z1z3

4z2
1

︸     ︷︷     ︸
h(z(t))

, (4.3)

The response system (Lü system)
ẇ1

ẇ2

ẇ3

 =


w2 − w1

0
0

0
w2

0

0
0
−w3

︸                       ︷︷                       ︸
R(w(t))


36
20
3

︸ ︷︷ ︸
ψ

+


0

−w1w3

w1w2

︸       ︷︷       ︸
r(w(t))

. (4.4)

When the initial states are set as x(0) = (0.1, 0.1, 0.1)T , y(0) = (−1, 1,−2)T , z(0) = (2, 0.5,−1)T and
w(0) = (−1.2, 2, 4)T , the project curves of the above four chaotic systems are shown in Figure 1.

According to Definition 11, the predefined-time synchronization objective in this simulation can be
described as  lim

t→T ∗−
‖e(t)‖ = lim

t→T ∗−
‖PN(χ) − Λ(t)w(t)‖ , if t < T ∗

‖e(t)‖ = ‖PN(χ) − Λ(t)w(t)‖ ≡ 0, if t ≥ T ∗
(4.5)
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where T ∗ > 0 denotes the predefined synchronization time, χ = Ax(t) + By(t) + Cz(t) refers to a
combined chaotic system generated by the three basic drive systems with the following combined
coefficients,

A =


1 2 3
2 −1 −2
3 0 −2

 ,
B =


−2 0.2 1
0 3 1
4 1 3

 ,
C =


2 3 0

0.2 0.5 1.5
1 −2.5 2

 .
Meanwhile, the coefficient matrices in PN(χ) and the synchronization scaling matrix are taken as

D1 = diag{−8,−8,−8},
D2 = diag{0.2, 0.2, 0.2},
D3 = diag{2 × 10−5, 2 × 10−5, 2 × 10−5},

Λ(t) = diag{2 − 0.5 cos t, 1 − 0.4 sin 2t,−2 + cos 3t}.

When the simulation time is taken as 400 seconds, the phase portraits of the combined chaotic
signal Ax + By + Cz and the compound chaotic signal PN(Ax + By + Cz) are displayed in Figure 3.
Comparing Figure 3 with Figure 1, it is appreciable that, the trajectory of the compound chaotic signal
PN(Ax + By + Cz) is more complex.

Now we appoint the predefined synchronization time as T ∗ = 0.1, and carry out the chaotic
synchronization simulation under the predefined-time synchronization controller (3.1) with α = 0.2.
The simulation result displayed by Figure 4 implies that, the synchronization error ei(t) converges
to zero before the predefined time T ∗ = 0.1, which shows the effectiveness of the proposed
synchronization control technique.

Subsequently, we reset the predefined synchronization time T ∗ to 0.01 and carry out the predefined-
time synchronization simulation again. As shown in Figure 5, the synchronization among the chaotic
systems (4.1)–(4.4) is still achieved successfully before the predefined time T ∗ = 0.01, which verifies
the flexibility of the proposed predefined-time synchronization controller.

Next, we replace the predefined-time controller (3.1) in the above chaotic synchronization
simulation with the following fixed-time controller presented in [24],

ūi(t) =
1
λi(t)

(Ωi +
µ1sign(ei(t))|ei(t)|2ε1−1

2ε1
+
µ2sign(ei(t))|ei(t)|2ε2−1

2ε2
), i = 1, 2, · · · , n (4.6)

where ε1 = 1.1, ε2 = 0.9, µ1 = 2, µ2 = 3, and Ωi is defined by (3.2).
Constructing the following Lyapunov function

V̄i(t) =
1
2

ei
2(t),
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it can be derived

˙̄Vi ≤ −(µ1(V̄i)ε1 + µ2(V̄i)ε2).

By virtue of Lemma 8, the synchronization among chaotic systems (4.1)–(4.4) can be achieved. The
corresponding simulation result is shown in Figure 6. Comparing Figure 6 with Figures 4 and 5, one
can see that, the synchronization accuracy and synchronization rate under the fixed-time controller (4.6)
are obviously inferior to that under the predefined-time controller. This further verifies the superiority
of the proposed predefined-time synchronization control technique.
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0 200
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Ax + By + Cz PN (Ax + By + Cz)

Figure 3. 3D phase portraits of the vector-polynomial-function-based drive system.
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Figure 4. Trajectory of the synchronization error via predefined-time control technique with
T ∗ = 0.1.
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Figure 5. Trajectory of the synchronization error via predefined-time control technique with
T ∗ = 0.01.
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Figure 6. Trajectory of the synchronization error via fixed-time control technique.

5. Applied experiments in chaotic secure communication based on the proposed
synchronization scheme

In this section, several chaotic secure communication experiments will be carried out to illustrate
the feasibility of the proposed synchronization scheme.

The chaotic systems, synchronization schemes, synchronization control techniques and related
parameters involved in the following experiments are the same as those given in Section 4. Meanwhile,
the predefined synchronization time is set to T ∗ = 0.01.

5.1. Application in chaotic secure transmission of dynamic signal

The framework of chaotic secure transmission of dynamic signal is depicted by Figure 7, while the
corresponding communication principle is explained as follows:
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At the sender end, chaotic signals x(t), y(t) and z(t) generate a new chaotic signal PN(χ(x, y, z))
as the carrier signal by means of algebraic polynomial operation. Subsequently, according to the
specified encryption scheme, the carrier signal PN(χ(x, y, z)) and the original signal s(t) are modulated
into another nonlinear signal m(t), which will be transmitted through the transmission channel. At
the receiver end, the receiver realizes the predefined-time synchronization among the response and the
drive systems via the controller u(t) and further reverses the carrier signal as P̂N(χ(x, y, z)). Finally, the
original signal is recovered as ŝ(t) via the decryption scheme.

Figure 7. Framework of the chaotic secure transmission of dynamic signal.

The original dynamic signal in this simulation experiment is given as

s(t) =

{
0, t ∈ [2(k − 1), 2k − 1)
5, t ∈ [2k − 1, 2k)

, k = 1, 2, · · · .

During the encryption process, the signal modulation scheme is designed as

m(t) = s(t) + κPN(χ(x, y, z)), (5.1)

where κ = (0.1, 0.2,−0.1)T .
As shown in Figure 8, the encrypted signal m(t) based on the signal modulation scheme (5.1) is

more complex and more difficult to predict than the original signal s(t), which indicates that the original
signal can be well hidden during the transmission process.

During the decryption process, the following decrypted signal is obtained by using the secret keys
including the signal modulation scheme (5.1) and the chaotic synchronization scheme (4.5)

ŝ(t) = m(t) − κP̂N(χ(x, y, z)), (5.2)

where P̂N(χ(x, y, z) = Λ(t)w(t).
As shown in Figure 9, the decrypted dynamic signal ŝ(t) can restore the original dynamic signal s(t)

accurately as t ≥ T ∗ = 0.01.
Meanwhile, comparing Figure 9 with the simulation result (shown in Figure 10) based on the

fixed-time synchronization controller (4.6), one can see that, the decoding time under the proposed
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predefined-time synchronization scheme is much shorter. Moreover, the decoding time via the
proposed predefined-time synchronization control scheme can be set in advance according to the user’s
requirements, so it is more flexible.
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200
Original signal Encrypted signal Decrypted signal

Figure 8. Comparison among the original, encrypted and decrypted signal via predefined-
time control technique with T ∗ = 0.01.
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Figure 9. State trajectories of the original signal s(t) and the decrypted signal ŝ(t) via
predefined-time control technique with T ∗ = 0.01.
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Figure 10. State trajectories of the original signal s(t) and the decrypted signal ŝ(t) via
fixed-time control technique.

5.2. Application in chaotic secure image transmission

The framework of chaotic secure image transmission based on the proposed chaotic synchronization
scheme is shown in Figure 11. The corresponding image encryption algorithms for the black-white
image and the color image are described by Algorithm 1 and Algorithm 2, respectively. In the process
of the chaotic secure image transmission, the discrete chaotic sequences applied in Algorithm 1 and
Algorithm 2 are coded by

a1(i) = |P1((1000 + i)h)|,
a2(i) = |P1((1200 + i)h)|,
b1(i) = |P2((1000 + i)h)|,
b2(i) = |P2((1200 + i)h)|,

and

c1(i) = |P1((500 + i)h)|,
c2(i) = |P1((1000 + i)h)|,
d1(i) = |P2((500 + i)h)|,
d2(i) = |P2((1000 + i)h)|,

in which, h = 0.001 is the sampling interval, P1(t) = κPNχ(x(t), y(t), z(t)), P2(t) = κΛ(t)w(t), κ =

(0.1, 0.2,−0.1)T , and i = 1, 2, · · · ,M · N.
During the secure image transmission process, the black-white image (Figure12(a)) and the color

image (Figure12(a)) of the famous image named Lena are selected as the original images, respectively.
The simulation results are shown in Figures 12–14, from which one can see that, high precision image
security transmission is realized between the generator and the receiver via the proposed predefined-
time chaotic synchronization scheme.

As shown in Figures 15 and 16, when the predefined-time controller (3.1) applied in the above
image transmission scheme is replaced by the fixed-time controller (4.6), the encrypted image can not
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be successfully recovered. This further proves the validity and superiority of the proposed predefined-
time chaotic synchronization control technique.

Figure 11. Framework of the chaotic secure image transmission.
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Figure 12. Original image, encrypted image, decrypted image and their histograms of the
black-white image with T ∗ = 0.01.
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(a) Original image (b) Encrypted image (c) Decrypted image

Figure 13. Original image, encrypted image, and decrypted image of the colour image with
T ∗ = 0.01.
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Figure 14. Histograms of original image, encrypted image, and decrypted image of the
colour image via fixed-time control technology.

(a) Original image (b) Encrypted image (c) Decrypted image

Based on fixed-time control technology proposed in [24]

Figure 15. Original image, encrypted image, decrypted image and their histograms of the
black-white image via fixed-time control technology.
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(a) Original image (b) Encrypted image (c) Decrypted image

Based on fixed-time control technology proposed in [24]

Figure 16. Original image, encrypted image, and decrypted image of the colour image via
fixed-time control technology.

6. Conclusions

In this work, a novel predefined-time vector-polynomial-based synchronization scheme for multiple
chaotic systems has been proposed and applied in the secure communication of digital signal and
image. Both the theoretical and experimental results indicated that, the proposed synchronization
scheme can improve the anti-decoding ability of the chaotic secure communication significantly,
meanwhile the designed synchronization control technique can improve the decoding speed of
the secure transmission effectively. Reliable control and sample-date control are two novel and
effective control techniques [19, 20]. Therefore, in our future works, we will consider combining
the above control methods with the predefined-time control technique to design two new control
techniques “predefined-time reliable control” and “predefined-time sample-date control”, which will
be meaningful. In addition, it will be also interesting to extend the results in this work to the fractional-
order chaotic systems.
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Algorithm 1 Black-white image encryption algorithm based on the proposed chaotic synchronization
scheme.
1: A=imread(’lena2.png’);
2: [M,N,L]=size(A);
3: imshow(A);
4: A0=A;
5: % Encryption process:
6: Rm = randsample(M,M)’;
7: Mchange = [1:1:M;Rm];
8: Rn = randsample(N,N)’;
9: Nchange = [1:1:N;Rn];

10: A (Mchange(1,:),:) = A (Mchange(2,:),:);
11: A (:,Nchange(1,:)) = A (:,Nchange(2,:));
12: h=0.001;
13: for i = 1 : 1 : M ∗ N do
14: a1(i) = abs(P1((1000 + i) ∗ h));
15: a2(i) = abs(P1((1200 + i) ∗ h));
16: b1(i) = abs(P2((1000 + i) ∗ h));
17: b2(i) = abs(P2((1200 + i) ∗ h));
18: end for
19: n=1;A1=A;
20: for i = 1 : 1 : M do
21: for j = 1 : 1 : N do
22: if mod(n, 2) == 0 then
23: k(n) = mod (floor(a1(n) ∗ 104), 256);
24: else
25: k(n) = mod (floor(a2(n) ∗ 104), 256)
26: end if
27: A1(i, j) = bitxor(A(i, j), k(n));
28: n=n+1;
29: end for
30: end for
31: A2 (:,Nchange(2,:)) = A2 (:,Nchange(1,:));
32: A2 (Mchange(2,:),:) = A2 (Mchange(1,:),:);
33: imshow(A1);
34: % Decryption process:
35: n=1;A2=A1;
36: for i = 1 : 1 : M do
37: for j = 1 : 1 : N do
38: if mod(n, 2) == 0 then
39: k1(n) = mod (floor(b1(n) ∗ 104), 256);
40: else
41: k1(n) = mod (floor(b2(n) ∗ 104), 256)
42: end if
43: A2(i, j) = bitxor(A1(i, j), k1(n));
44: n=n+1;
45: end for
46: end for
47: imshow(A2);
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Algorithm 2 Color image encryption algorithm based on the proposed chaotic synchronization
scheme.
1: A=imread(’lena1.png’);
2: [M,N]=size(A);
3: imshow(A);
4: A0=A;
5: % Encryption process:
6: Rm = randsample(M,M)’;
7: Mchange = [1:1:M;Rm];
8: Rn = randsample(N,N)’;
9: Nchange = [1:1:N;Rn];

10: A (Mchange(1,:),:,:) = A (Mchange(2,:),:,:);
11: A (:,Nchange(1,:),:) = A (:,Nchange(2,:),:);
12: h=0.001;
13: for i = 1 : 1 : M ∗ N do
14: c1(i) = abs((P1((500 + i) ∗ h));
15: c2(i) = abs(P1((1000 + i) ∗ h));
16: d1(i) = abs(P2((500 + i) ∗ h));
17: d2(i) = abs(P2((1000 + i) ∗ h));
18: end for
19: n=1; A1=A;
20: for i = 1 : 1 : M do
21: for j = 1 : 1 : N do
22: if mod(n, 2) == 0 then
23: k(n) = mod (floor(c1(n) ∗ 104.5), 256);
24: else
25: k(n) = mod (floor(c2(n) ∗ 104.5), 256)
26: end if
27: A1(i, j, 1) = bitxor(A(i, j, 1), k(n));
28: A1(i, j, 2) = bitxor(A(i, j, 2), k(n));
29: A1(i, j, 3) = bitxor(A(i, j, 3), k(n));
30: n=n+1;
31: end for
32: end for
33: imshow(A1);
34: % Decryption process:
35: n=1;A2=A1;
36: for i = 1 : 1 : M do
37: for j = 1 : 1 : N do
38: if mod(n, 2) == 0 then
39: k1(n) = mod (floor(d1(n) ∗ 104.5), 256);
40: else
41: k1(n) = mod (floor(d2(n) ∗ 104.5), 256)
42: end if
43: A2(i, j, 1) = bitxor(A1(i, j, 1), k1(n));
44: A2(i, j, 2) = bitxor(A1(i, j, 2), k1(n));
45: A2(i, j, 3) = bitxor(A1(i, j, 3), k1(n));
46: n=n+1;
47: end for
48: end for
49: A2 (:,Nchange(2,:),:) = A2 (:,Nchange(1,:),:);
50: A2 (Mchange(2,:),:,:) = A2 (Mchange(1,:),:,:);
51: imshow(A2);
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