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1. Introduction

Hermite [1] and Hadamard [2] derived the familiar inequality is known as Hermite-Hadamard
inequality (HH-inequality) and this inequality states that

u+v 1 v 9w+9(v)
0(*) == [V0(z)dz < 222 (1)
where Q:1 —» R is a convex function defined on a closed bounded interval I € R and u,v € I
with v > u. If Q is a concave function, then both inequality symbols in (1) are reversed. Sine
HH-inequalities are a useful technique for developing the qualitative and quantitative properties of
convexity and nonconvexity. Because of diverse applications of these inequalities in different fields,
there has been continuous growth of interest in such an area of research. Therefore many inequalities
have been introduced as applications of convex functions and generalized convex function, see [3—6].
It is very important to mention that, Fejér [7] considered the major generalization of HH-inequality
which is known as HH-Fejér inequality. It can be expressed as follows:

Let Q: T —» R be a convex function on an interval T = [u,v] and u,v € T with u < v. and let

2:T=[u,v] >R 2(z) =0, be a integrable and symmetric with respect to u;v, and

flr 0(z)dz > 0. Then, we have the following inequality.

Q(u+v) f Q(z)dz<f Q(z)!)(z)dz<g(u)+g(v) f N(z)dz. )

If Q is a concave function, then inequality (2) is reversed. If 2(z) = 1, then we obtain (1) from (2).
It is also worthy to mention that Sarikaya et al. [8] provided the fractional version of inequality (1)
and for convex function Q: ¥ = [u,v] — R, this inequality states that:

+ r(a+1) QW)+2(v)
0 (%) < o=t 75 0 FILQ(w)] < H2 3)
where Q assumed to be a positive function on [w,v], @ € Ly([u,v]) with u < v, and T+ and T3~
are the left sided and right sided Riemann-Liouville fractional of order 0 < a, and respectively are
defined as follows:

+0(2) = f (z — 1) 19(1)d(1)(z > w), (4)

I'a) u

78-0(8) = 15 /. (1 = 2)* Q@ d(D)(z < v). (5)

If a =1, then from (3), we obtain (2). We can easily say that inequality (3) is generalization of
inequality (2). Thereafter, many authors in the mathematical community have paid close attention in
the view of inequality (3) and obtained several inequalities for different classes of convex and
non-convex functions through various fractional integral; see [9—15].

On the other hand, it is well-known fact that interval-valued analysis was introduced as an
attempt to overcome interval uncertainty that occurs in the computer or mathematical models of
some deterministic real-word phenomena. A classic example of an interval closure is Archimedes’
technique which is associated with the computation of the circumference of a circle. In 1966,
Moore [16] given the concept of interval analysis in his book and discussed its applications in
computational Mathematics. After that several authors have developed a strong relationship
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between inequalities and IVFs by means of inclusion relation via different integral operators, as
one can see Costa [17], Costa and Roman-Flores [18], Roman-Flores et al. [19,20], and
Chalco-Cano et al. [21,22], but also to more general set-valued maps by Nikodem et al. [23], and
Matkowski and Nikodem [24]. In particular, Zhang et al. [25] derived the new version of Jensen’s
inequalities for set-valued and fuzzy set-valued functions by means of a pseudo order relation and
proved that these Jensen’s inequalities generalized form of Costa Jensen’s inequalities [17]. After that,
Budek [26] established fractional HH-inequality for convex-IVF through interval-valued fractional
Riemann-Liouville fractional.

Our goal is to use the generalization of classical Riemann integral operator which is known as
fuzzy Riemann-Liouville fractional integral operator. Recently, Allahviranloo et al. [27] introduced
the following fuzzy-interval Riemann-Liouville fractional integral operator:

Let « >0 and L([u,v],F,) be the collection of all Lebesgue measurable fuzzy-IVFs on[u, v].
Then, the fuzzy-interval left and right Riemann-Liouville fractional integral of § € L([u,v],F,)
withorder @ > 0 aredefined by

(z —0)* 00 d(D), (5> w), (6)

3+Q~(Z) r(a)f

and

78-0(8) = 15 /. (1= 2)* 0@ d(), (2 <), Y

respectively, where I'(z) = [ Ooo 27277 d(1) is the Euler gamma function. The fuzzy-interval left

and right Riemann-Liouville fractional integral z based on left and right endpoint functions can
be defined, that is

920G = 5 [ =00, )
F(a)f (z -0 M2 (t,Y), Q" (MA@, (z >w),  (8)
where
+0.(z,7) = ﬁf (z —0)*10.(r,y) d(v), (z > ), )
and
0 @) =15 @~ DT @) d@), (5> w). (10)

Similarly, we can define the right Riemann-Liouville fractional integral § of z based on left and
right endpoint functions.

Moreover, recently, Khan et al. [28] introduced the new class of convex fuzzy mappings is
known as (hy, h,)-convex fuzzy-IVFs by means fuzzy order relation and presented the following
new version of HH-type inequality for (hq, h,)-convex fuzzy-IVF involving fuzzy-interval Riemann
integrals:

Theorem 1.1. Let O:[u,v] - F, be a (hy, h,)-convex fuzzy-IVF with hy, h,:[0,1] > Rt and
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hl( )hz( ) # 0, whose y-levels define the family of IVFs Q,:[u,v] € R —» X are given by

9,(3) =[9.(3,7),9"(z,y)] for all z € [u,v] and for all ¥y €[0,1]. If 0 is fuzzy-interval
Riemann integrable (in sort, FR-integrable), then

1 u+v

TRETAOL (%) < = (FR) [ 0()dz < [ FEMW)] fy ha (D) hy(1 = D) dr. (1)
If hy(t) =7 and h,(t) = 1, then from inequality (11), we obtain the following inequality:

0 () < L (FR) [ 0(z)dz < L0F0) (12)
This inequality (12) is known as HH-inequality for convex fuzzy-IVF. We refer readers to [29-53]
and the references therein for further review of literature on the applications and properties of
fuzzy-interval, inequalities, and generalized convex fuzzy mappings.

Inspired by the ongoing research work, the new class of generalized convex fuzzy-IVFs is
introduced which is known as h-convex fuzzy-IVF. With the help of h-convex fuzzy-IVF and
fuzzy-interval Riemann fractional integral operator, we have introduced fuzzy fractional
Hermite-Hadamard type inequalities by means of fuzzy order relation. Moreover, we have shown
that our results include a wide class of new and known inequalities for h-convex fuzzy-IVFs and
their variant forms as special cases. Some useful examples are also presented to verify the validity of
our main results.

2. Preliminaries

Let R be the set of real numbers and K be the space of all closed and bounded intervals of
R and n € K, be defined by
n=Mm.nl={EeERn<z=<n} (.7 €ER). (13)

If n, =n", then n is said to be degenerate. In this article, all intervals will be non-degenerate
intervals. If n, =0, then [n,,n*] is called positive interval. The set of all positive interval is
denoted by K7 and defined as K& = {[n.,n*]: [n..,n*] € K, and n, = 0}.

Let T € R and 1 be defined by

[tn,, Tn*] if T > 0,
m =4 {0} ift=0 (14)
[tn*, ™.] ifT <O.

Then the Minkowski difference —7n , addition 71+ ¢ and n X { for n,{ € K are defined by

14

[ *]+[m, ] <. +m,c+n] (15)

*)

and

[¢., "] X [0, 17] = [min{{.n., ., 40", O}, max{d.n., ., 40", 0}l

The inclusion " € " means that
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¢ € n ifand only if, [{,,{*] € [n.,7n*],ifand only if n, < {,, {* <n*. (16)

[¢.,{*] <; [n.,m7] ifand only if {, <7, " <7, (17)

for all [{,, "], [n.n*] € K, it is an order relation. For given [{,,{*], [n.,n*] € K., we say that
[¢.,¢"] <; [n.,m7] ifand only if {, < 7., {" <7n".

For [(*,C 1, [n.n*] € K, the Hausdorff-Pompeiu distance between intervals [{,,{*] and
[n.,m"] is defined by

Remark 2.1. [29] The relation " <; " defined on K by

It is familiar fact that (K, d) is a complete metric space.

A fuzzy subset A of R is characterize by a mapping {: R — [0,1] called the membership
function, for each fuzzy set and if y € (0, 1], then y-level sets of { is denoted and defined as
follows {, = {ueR|{(u) =y}.If y =0, then supp({) = {z € R| {(z) > 0} is called support of
{. By [f ]O we define the closure of supp({).

Let F(R) be the family of all fuzzy sets and ¢ € F(R) be a fuzzy set. Then, we define the
following:

(1) { is said to be normal if there exists 2 € R and {(g) = 1;

(2) ¢ is said to be upper semi continuous on R if for given z € R, there exist £ > 0 there exist
5 > 0 suchthat {(z) —{(x) < e forall x € R with |z — x| < 6;

(3) ¢ is said to be fuzzy convex if ¢, is convex for every y € [0, 1];

(4) { is compactly supported if supp(¢) is compact.

A fuzzy set is called a fuzzy number or fuzzy-interval if it has properties (1)—(4). We denote by [,
the family of all interval.
From these definitions, we have

1] = 1200, 0],
where
7.(y) = inf{iz € RI{(2) = v}, {*(y) = sup{z € R| {(3) =y}

Proposition 2.2. [18] If {,7j € F,, then relation " < " defined on F, by

{ < ifand onlyif, [¢]” <, [, forall y € [0,1], (18)
this relation is known as partial order relation.

For {,7i € F, and T € R, the sum {F#, product { X7, scalar product 7.{ and sum with
scalar are defined by:

[¢F7]" = [C] + @), (19)
[Zx7]" =[¢] 171, (20)
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[r.q" == [T 1)
[ =+ [{]". (22)

for all y € [0,1]. For ) € F, such that { =¥y, then by this result we have existence of
Hukuhara difference of ¢ and 7, and we say that 1) is the H-difference of { and #, and denoted
by {=#. If H-difference exists, then

W M=C-m"W =) -1, @) =C-n.0) =340 —ny). (23)
A partition of [u, V] is any finite ordered subset P having the form
P={u=23; <3, <2%3<34<3%Zg .. <z =V}

The mesh of a partition P is the maximum length of the subintervals containing P that is,
mesh(P) = max{zj —3j-1:)=1,2,3,..... k}.

Let P(8,[u,v]) be the set of all partitions P of [u,v] such that mesh(P) < §. For each interval
[Z -1 3 j], where 1 < j < k, choose an arbitrary point ¢; and taking the sum

k
s@P8=) 06~ 5m1)

where Q:[u,v] - K. Wecall S(Q,P,5) aRiemann sum of Q corresponding to P € P (5, [u,Vv]).

Definition 2.3. [30] A function Q:[u,v] = K is called interval Riemann integrable (/R-integrable)
on [u,v] ifthere exists B € K such that, for each € > 0, there exists § > 0 such that

d(S(Q,P,8),B) <e,

for every Riemann sum of Q corresponding to P € P (8, [u,v]) and for arbitrary choice of ¢; €
[Zj_l, Zj] for 1 < j < k. Then, we say that B is the IR-integral of Q on [u,v] and is denote by
B =(R) [ 0(=)dz.

Moore [9] firstly proposed the concept of Riemann integral for IVF and it is defined as follow:

Theorem 2.4. [16] If Q:[u,v] € R - K is an IVF on such that Q(z) = [Q,,Q"], then Q is
Riemann integrable over [u,v] if and only if, Q, and Q* both are Riemann integrable over [u, V]
such that

(IR) [} 9(@)dz = [(R) [ 0.(2)dz, (R) [ 0" (2)dz]. (24)

Definition 2.5. [31] A fuzzy map Q: [u,v] = F, is called fuzzy-IVF. For each y € [0,1], whose
y-levels define the family of IVFs Q,: [u,v] = K are given by Q,(3) =[0.(z,¥),Q"(z,y)] for

all z €[u,v]. Here, for each y €[0,1], the left and right real valued functions
0.(2,7),9%(z,7): [u,v] = R are also called lower and upper functions of Q.

Remark 2.6. If 0:[u,v] € R — F, is a fuzzy-IVF, then Q(z) is called continuous function at z €
[u,v], if for each y € [0,1], both left and right real valued functions Q,(z,y) and Q*(z,y) are
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continuous at z € K.
The following conclusion can be drawn from the above literature review, see [17, 31].

Definition 2.7. Let Q:[u,v] € R - F, is called fuzzy-IVF. The fuzzy Riemann integral of Q over
[u,v], denoted by (FR) f; 0(z)dz, it is defined level by level

[(FR) [} 0(2)dz]" = (IR) [} 0, (2)dz = {[} 0(2,7)dz:Q(2,¥) € Ry}, (25)

for all y € [0,1], where Ry, contains the family of left and right functions of IVFs. 0 is
(FR)-integrable over [u,v] if (FR) f;Q(z)dz € F,. Note that, if left and right real valued

functions are Lebesgue-integrable, then Q is fuzzy Aumann-integrable over [u,v], denoted by
(FA) [ 0(z)dz, see [31].

Theorem 2.8. Let Q:[u,v] € R —» F, be a fuzzy-IVF, whose y-levels obtain the collection of IVFs
Qy:[u,v] € R - K are defined by Q,(3) =[9.(z,¥),2"(3,y)] for all z € [u,v] and for all
y € [0,1]. Then, Q is (FR)-integrable over [u,v] if and only if, Q.(z,¥) and Q*(z,y) both are
R-integrable over [u,Vv]. Moreover, if Q is (FR)-integrable over [u,v], then

[(FR) [ 0(2)dz]" = [(R) [} 0.(z.1)dz, (R) [ Q*(z,v)dz] = (IR) [ 0, (z)dz, (26)

forall y € [0,1].
Definition 2.9. A real valued function Q: [u,v] = R* is called convex function if
Q(rx + (1 -1)z) < 1Q(x) + (1 - 1)Q(2), 27)
forall x,3 € [u,v], T €[0,1]. If (27) is reversed, then Q is called concave.
Definition 2.10. [32] The fuzzy-IVF Q:[u,v] - F, is called convex fuzzy-IVF on [u, V] if
O(tx + (1 -1)z) S Q) F(1 - 1)0(2), (28)

for all x,z € [u,v], T € [0,1], where Q(2) = 0 for all z € [u,v]. If (28) is reversed, then Q is
called concave fuzzy-IVF on [u,v]. O is affine if and only if it is both convex and concave
fuzzy-IVF.

Remark 2.11. If Q,.(z,y) = @*(3,¥) and y = 1, then we obtain the inequality (1).

Definition 2.12. [28] Let hy, h,:[0,1] € [u,v] » RT such that hy,h, # 0. Then, fuzzy-IVF
Q:[u,v] = F, issaid to be (hy, h,)-convex fuzzy-IVF on [u,v] if

Q(x + (1 - 1)2) < hy (D) hy(1 = 7) Q(x)F hy (1 — D) h, (1) 0 (), (29)

for all x,z € [u,v],T € [0,1], where Q(x) > 0. If Q is (hy, hy)-concave on [u,v], then
inequality (29) is reversed.

Remark 2.13. [28] If h,(7) =1, then (hy, h,)-convex fuzzy-IVF becomes h-convex fuzzy-IVF,
that is

Ottx+(1-1)2) < h (@) 0®)Fh,(1-1)0(2),Yx,3 € [u,v],T € [0,1]. (30)
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If hy(t) =1,hy(t) =1, then (hq, hy)-convex fuzzy-IVF becomes convex fuzzy-IVF, that is
O(tx+ (1 -1)2) < 10(x)F(1 —1)0(2),V x,2 € [u,v], T € [0,1]. (31)

If hy(t) = hy(t) =1, then (hq, h,)-convex fuzzy-IVF becomes P-convex fuzzy-IVF, that is
O(tx+(1-1)2) S 0)¥0(3),V x,3 € [u,v],T € [0,1]. (32)

Theorem 2.14. Let h:[0,1] S [u,v] = R be anon-negative real valued function such that h Z 0
and let Q:[u,v] » F, be a fuzzy-IVF, whose y-levels define the family of IVFs Qy:[u,v] -
K.+ c K, are given by

9,(z) =[9.(3,v),2"(z,v)], (33)

for all z € [u,v] and for all y € [0, 1]. Then, 0 is h-convex fuzzy-IVF on [u,v], if and only if,
forall y € [0,1], 9.(3,y7) and Q*(z,y) are h-convex function.

Proof. The demonstration of proof of Theorem 2.14 is similar to the demonstration proof of
Theorem 6 in [28].

Example 2.15. We consider h(7) = 7, for 7 € [0,1] and the fuzzy-IVF Q:[0,4] - F, defined by

g

o o € [0,2¢%°]
e
1(2)(0) =4 4e? — ¢
0(2)(0) 0 e o e
e
0 otherwise,

then, for each y € [0,1], we have Q,(3) = [Zyezz,Z(Z —y)ezz]. Since end point functions
0.(z,7), Q'(z,¥) are h-convex functions for each y €[0,1]. Hence O(z) is h-convex
fuzzy-IVF.

3. Fuzzy-interval fractional Hermite-Hadamard type inequalities

In this section, we will prove some new Hermite-Hadamard type inequalities for

h-convex fuzzy-IVFs by means of fuzzy order relation via Riemann Liouville fractional
integral operator. In what follows, we denote by L([u,V],Fy) the family of Lebesgue measureable
fuzzy-IVFs.

Theorem 3.1. Let Q:[u,v] = F, be a h-convex fuzzy-IVF on [u,v], whose y-levels define the
family of IVFs Q,:[u,v] € R - K¢ are given by Q,(3) = [0.(3,¥),Q"(z,¥)] for all z € [u,V]
and for all y € [0,1]. If Q € L([u,v], F,), then

0 (3) < el 00)393-0a0] < L22 [1 2571 h(x) ~ h(1 - Dldr. (4)

If O(z) is concave fuzzy-IVF, then

ahl(l) 0 (") » 250 FI- 0] » L2 [ rein(r) — h(1 - D]dr. (35)

Proof. Let Q:[u,v] —» F, be a h-convex fuzzy-IVF. Then, by hypothesis, we have
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0 (1Y) < 0t + (- W FA(( - Du + ),
h(z)

Therefore, for every y € [0, 1], we have

h( ) (u+v,y) <Q.(u+ (A —-1v,y)+2.(1-Du+1v,7),

1

a3

Multiplying both sides by ©

we have
1 jl a1g <u+v >d
— | T . Y | dt
h(z)% ?

2
< fol %719, (tu + (1 — v, y)dr + fol r*71Q.((A = u +1v,7)dr,

1 1a u+
ket

< fol r“‘lg*(w + (1 — T)V, y)d’L' + fol Ta_IQ*((l — T)u + TV, )’)dT.

) *(u+ ,)/)SQ*(Tu+(1—T)V,]/)+Q*((1—T)u+rv,y).

@=1 and integrating the obtained result with respect to 7 over (0,1),

Let x=tu+ (1 —1)v and 3 = (1 — 7)u + tv. Then, we have

1 u+v
ah(%)Q*< )= u)af(”‘x) Teend o f(z W10, (2,7) dz
1 u+v
ah(%)g( ) S u)af(v‘> TN drt T f(z—u) 9" (z,7) dz,
S(V_(u))a[? +Q.v,1) + 350, (wy)]
r
= % [75:0* (v, ) + 720" (w,1)].
That is

ahl(%) [Q* (qurv‘y>'Q*<uJ2rv‘y>]
F(a)

<1 5o [[7 +0.(v,7) +7%0.(w )] [7%0* (v, y) +73‘—Q*(u,y)]],

thus,

1

an(;)

9, (%) <1 o2 [7840, () + 70, ()] (36)

=1 (v—uw)@
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In a similar way as above, we have

r@

O350, (v) + 50, )] <, [Q, () + W] [y =~ k(D) — h(1 = D)]dr. (37)

Combining (36) and (37), we have

1 r
) < 0,0 + 960, )

ah (%)QV< 2 ) T v—uwe

< [0, +9,M] [] ¥ [h(x) — h(1 - D]dx,

that is

1 _~/u+v I'(a) & RpNTag A . o~ 1a_1

” (1)9( - )< o [0 033 0)] < [Q@FIW) fo r%1[h(r) — h(1 — )]dr.
2

Hence, the required result.

Remark 3.2 From Theorem 3.1 we clearly see that:
If a =1, then Theorem 3.1 reduces to the result for h-convex fuzzy-IVF:

1 ~ fu+v 1 vV = ~ ~ = 1
el (%) < = (FR) [} 0(2)dz < [0)FOW)] [, h() dr. (38)
If h(t) = 1, then Theorem 3.1 reduces to the result for convex fuzzy-IVF:
0 (%) < 292 [52,00) Fa5-0(w)] < L2522 (39)

Let @« =1 and h(t) = t. Then, Theorem 3.1 reduces to the result for convex-IVF given in [28]:

0 (“) < L (FR) J O(e)dz < L2 (40)

If 9.(3,v) =Q"(z,y)and y = 1, then, from Theorem 3.1 we get following inequality given
in [12]:

172 (57) = Gme 00 +5-000] < [0G0) + QW1 ;7 h(®) — k(L = D)ldr. (41)

2

Let a=1=yand 9,(3,%) = Q*(3,7). Then, from Theorem 3.1 we obtain following inequality
given in [2]:

Hm2 (5) S 5 R 0@z < [0 + 0wl [ k@ d. (42)

Example 3.3. Let =% , h(r) =7, for all T €[0,1]and the fuzzy-IVF Q:[u,v] =[2,3] = F,,
defined by

AIMS Mathematics Volume 6, Issue 10, 10964—10988.
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( 7] 1
) 0 e [0, 2 — ZZ]
2—232
~ 1
0(2)(0) =12(2-27) - 6 X )
—, 0e@2-222(2-2)]
2—232
\ 0, otherwise.

1 1
Then, for each y € [0,1], we have Q,(z) = [y (2 - ZE), 2-v) (2 - ZE)]. Since left and right

1 1
end point functions Q,(z,y) =y (2 — ZE), Q'(=zy)=02-y) (2 — zE), are h-convex functions
for each y € [0,1], then Q(2) is h-convex fuzzy-IVF. We clearly see that 9 € L([u,v],F,) and

ahl(l)g* (u;v’y) =< (gy) =’/4_8\/E

2
ahl(%)g*(“;v,o:.q Cr)-a-n=220
9.(u, V) +9.(v,v) f1

% 1[h(7) — h(1 — D)]dt = y(4 - V2 —V3)

h(x) — h(1 = D]dzr = 2 —y)(4 — V2 = V3).

Q(uy)+Q(vy)f

Note that
I
(“) @D e g ) +980.007)]
r()1 7 !
2 =
== \/_ B-2)Z. y( )dz

F(i)lf(z—Z)Zy l>dz

7393 9501
L

10, 000 10,000
8447

20,000°

F()
(v -

=Y
————[1%.0*(v,¥) + I& Q" (w, V)]
1
]"_
(2) 1 f(3—z)2 (2 - y)( —z2>dz

1
+@%I(Z_z)%1_(z ~) (z—z%)dz
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~ ( )[ 7393 9501
=2 =" 110000 * 10,000
P 8447
= ¥750,000
Therefore
4 — \/_ 4 — \/_ [ 8447 @ 8447]
4 2 =) 11720000’ @ =) 20,000

< [v(4#-v2-V3),2-n(4-v2-3)],

and Theorem 3.1 is verified.
From Theorem 3.4 and Theorem 3.5, we obtain some fuzzy-interval fractional integral
inequalities related to fuzzy-interval fractional H H-inequalities

Theorem 3.4. Let 0,P :[u,v] > F, be h;-convex and h,-convex fuzzy-IVFs on [u,v],
respectively, ~whose y -levels Q,, P:[u,v] c R—> XS are defined by 0,(2)=
[9.(z,7),2"(3,7)] and P,(3) = [P.(3,7),P"(3,y)] for all 3 € [u,v] and for all y € [0,1]. If
0 XP € L([u,v],Fy), then

r (a)

— = [75H0(W) K P(W) + 75-0(uw) X P(w)]
(v

< Awv) f 1y (s (@) + hy (1 — Dhy(1 — D)]de

() f hy (Dha(1 = 7) + by (1 — Dhy(D)]de

Where A(u,v) =0Ww) XPW)FOW)XP(W), Vuv)=0w) XPW)FIo()XP(u), and
4,(u,v) = [A*((u, v),y),A*((u, v),y)] and V,(u,v) = [Z((u, v),y), V*((u, v),y)].

Proof. Since §,P both are h;-convex and h,-convex fuzzy-IVFs then, for each y € [0,1] we
have

Q.(tu+ (1 —1v,y) < h (D0 (w,y) + (1 —1)9,(v,¥)
Q'(tu+ (A -1v,y) < h (M (w,y) + hy(1 —D)Q* (v, ).

and

:P*(Tu + (1 - T)V, V) < hZ(T)?*(uﬂ V) + h2(1 - T)?*(V' V)
P(tu+ (1 —-1)v,y) < h,(©O)P*(w,y) + h,( 1 —D)P*(v, 7).

From the definition of h-convex fuzzy-IVFs it follows that 0 < O(z) and 0 < P(2), so
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Q.(tu+ (A1 —1v,y) XP(tu+ (1 —1)v,y)

< hi(Dh(D2.(w,y) X P(w,7) + b1 (1 — Dhy (1 — D). (v,y) X P.(v,¥)

+hy (7)) h(1 = 7) Q.(w,y) X Po(v,¥) + hi(1 — 7) hy(7) Q. (v,7) X P.(w,7) (43)
(tu+ A -1,y XP*(tu+ (1 —1)v,¥)

< hi(Dh(DQ (W, y) X P (w,y) + hy(1 = D)hy(1 = 0)Q*(v,y) X P*(v,7)

+h (Dh,(1 =17)Q"(w,y) X P*(v,y) + hiy(1 — Dhy(D)Q* (v, ¥) X P*(u, 7).

Analogously, we have

Q*((l —Du + v, y)P*((l —Du + v, y)
<hA-1)h,(1-7)09,(u,y) X P.(u,y) + hy(0)h,(1)Q,.(v,y) X P.(v,y)
+hi (1 = Dh (). (w, ¥) X P(v,y) + hi(Dh, (1 = Q. (v, ) X P(w,¥) (44)
Q*((l —TDu + v, y) X ?*((1 —Tu + v, y)
<Sh(1-1Dh,(1 -2 "(wy) X P"(w,y) + H(Dh(DQ*(v,y) X P*(v,7)
+h (1= Dh(0)Q" (W, y) X P*(v,7) + hy (D h (1 —D)Q* (v, ¥) X P*(w, ).

Adding (43) and (44), we have
Q.(tu+ (A —tv,y) XP.(tu+ (1 —1)v,y)
+Q*((1 —D)u + 1V, )/) X 33*((1 —Tu + 1v, y)
< [ (@hy () + A (1 = D)h (1 — D][Q.(w, ¥) X Pu(w,y) + Q.(v,7) X P.(v,7)]

+[h1(T)hZ(1 - T) + hl(l - T)hZ(T)] [Q*(V: V) X ?*(ur V) + Q*(u, V) X :P*(Vr V)] (45)
Q'(tu+ (A -1, y) xP (tu+ (1 —1)v,7)

+Q*((1 —Tu+ v, y) X ?*((1 —)u + 1V, y)
< [h(Dhe(7) + (1 —Dh (1 = D][Q"(w,y) X P (w,y) + (v, ¥) X P*(v,7)]
+[hi (DA (1 —7) + (1 — Dh,(D][Q" (v, ¥) X P*(w,y) + Q" (w, ) X P*(v,y)].

a-1

Taking multiplication of (45) with 7 and integrating the obtained result with respect to 7 over

(0,1), we have

fll_a’—lg*(fu +(A-7v,y) XP(tu+ (1 —-1)Vv,y)
0

+79710, (1 —Du+,7) X P((1 —Du + v,7)dr

< 8.(@) [ T @R + by (1= Dk (1~ D] de
0
+7,(@y) [ T @R = D) + by (1 - Dby @dr

1
f 7' (tu+ (1 —1v,y) xP*(tu + (1 — )v,y)
0

+7%710 (1 = Du+ ,y) X P ((1 —Du + v,7)dr

1
< 2 (wv),y) f 191y (D) (0) + hy (1 — Dhy (1 — T)]dr
0

1
+\7*((u, v),y)f % Hh (0)h,(1 — 1) + hy(1 — T)h,(7)]dx.
0
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It follows that,

I'(a)
(v —uw)®

1
< 4,(@wv),y) f PR, (Dhy(0) + by (1 = Dhy(1 — D]de

[9% 0.(v,¥) X P.(v,y) + 5% Q.(w,7) X P.(u,7)]

+7.((wv),y) f hy (@hs(1 = 1) + hy (1 = Dhy(2)]de

F(a)
(v—

< A*((u W,7) f PR (Dhy(0) + hy (1 = Dhy(1 — D]de

—[75 Q" (v, ¥) X P*(v,¥) + 3% Q*(u,¥) X P*(w,¥)]

+V* ((u V), y)j Hhy(D)h,(1 — 1) + hy(1 — T)h,(7)]dx.

It follows that
I'(a)
v —uw)*

[959.(v,y) X P.(v,y) + I%Q.(w,¥) X P.(w, ),
Qv Y) X P (v, ) + 99 (w,y) X P*(u,y)]
<, [4.(Guv).y), 4" (@ w), 7)) f @1k, (Dhy(2) + hy (1 — Dhy(1 — D]dr

+[7.((w,v),7), 7*((w,v), y)]f 7% h, (D)h,(1 — 1) + hy (1 — )R, (7)]dT,

that is
(VF_(O‘))Q 79,0, (v) X P,(v) + 70, (u) X P, W)
<, A, (u,v) j Uhy (Dhy (1) + hy (1 — Dha(1 — D)]dr
+7,(u,v) fo ey (Dhy (1 = 7) + Ay (1 — Dy (D] dx.
Thus,
o F(“) _[1%.0() X P(v) + TE0(w) X P(w)]

< A(u, v)f % hy(D)h, () + (1 — T)h,(1 — 7)]dT

1
+ V(u,v) f 19 (0)h,(1 — 1) + hy (1 — D)h,(7)]dr
0
and the theorem has been established.
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Theorem 3.5. Let §,P : [u,v] —» F, be two h;-convex and h,-convex fuzzy-IVFs, respectively,
whose y-levels define the family of IVFs Q,, P:[u,v] € R—> K& are given by 0,(z) =
[0.(2,7),0"(z,7)] and P,(2) = [P.(z,7),P"(3,7)] for all 3 € [u,v] and for all y € [0,1]. If

Q X P € L([u,v], Fy), then

I'(a)

v —we

o))

ahs () 3

1
[7%0(v) X P(V)FIEQ(w) X P(W)]FV (x, v)f [t 1+ (1 — )% h (D)h,(1
0

1
— Ddr FAwv) f [t + (1 — D)%k, (1 — Dhy(1 — 7)dr.
0

Where A(w,v) =0W) XPWw) Fo(v) X P(v),

Vu,v) =0 XPW)FOoW) X P(), and

4,(u,v) = [A*((u, v),y),A*((u, v),y)] and V,(u,v) = [Z((u, v),y), V*((u, v),y)].

Proof. Consider 9,P : [u,v] » F, are h;-convex and h,-convex fuzzy-IVFs. Then, by hypothesis,
for each y € [0, 1], we have

AIMS Mathematics

| =
N———

IA
| = o

=
=
N
N
SN—

+
=
[y

IA

N—

N| =

=
=
/N

| =

=
N
/N
SN————

N = N

=
N
/-~
SN——

N| =

=
N
/N
N———"

Q ©

N
<
| +
<

u+v
”/)X?*< 2 'V>

u+v
)< (=)
[ Q.(tu+ (1 —D)v,y) X P.(tu+ (1 —1)v,y)
[+0.(tu + (1 — v, y) X 73*((1 —Du + v, y)l
[ 0.(1—Du+m,y) xP(tu+ (1 —7)v,7)
+0.(1—Du+,7) x P(1 - Du+ 1V, )/)l

<
+
<

N

[ Q*(tu+ (A —D)v,y) X P*(tu+ (1 — D)v,y)
[+ (tu+ (1 — v, ¥) x P ((1 - Du + v, y)l

1 1 Q*((l —Du+ v, y) XP(tu+ (1 —1)Vv,y)
i (E) hy (E) +0"(A—Du+m,y)xP (1 -Du+,7)]
1 N 9. Gu+ (A —-Dv,y) XP(tu+ (A —-1)v,¥)
<h (E) h (E) +Q*((1 —Tu+ v, )/) X fP*((l —Du+ v, )/)

+
=

)

< (O
()

"

h(1
2\2

1
2

)

)

(1. ) + (1 - 2.(v, 1))

x (A -DP.wy) +TP.W.7))
+((1 -1)0,.(w,y) +19.(v, V))
X (tP.(wy) + 1 = DP.(v,7))

Q'(tu+ (A -1v,y) xP(tu+ (1 —1)v,7)
+0 (1 —Du+w,y) xP (L -Du+1V,7)
(10" (wy) + (1 = 12" (v, 1))

x (1 - DP*(wy) +P*W,7))
+HA -2 W) +19'w, ) |
X (P (wy)+ (1 -1)P (7))
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1 n| &Gu+@—-1v,y) xPu+ A -1v,y)
= 5) ha (5) l+Q*((1 —Du+w,y) xP(A1-1u+1v,7)
1 [ {h(@hy(1—1) + hy (1 — Dhy (DI ((w,v),7)

+ hy (5) h (5) +{hy (DR, () + hy (1 — DAy (1 — )34, ((w,v), 7) 16
B 1 n| Qtu+ A —-Dv,y) XxP(tu+ (1 —1)v,y) (46)
=M (E) ha (5) +0'(A-Du+,7) xP (1 -Du+1v,7)

1 1 {hi(Mh,(1—1) + hy (1 —1Dh, (‘L’)}V*((u, V)'V) l

. ) R G) | )+ 121 = 9t~ 23 ()]

Taking multiplication of (46) with 7%~ and integrating over (0,1), we get

1 u+v u+v
gt )

= (Vr_((i))a [7+0.(0) X P.(v) + 5-0.(w) x P.(w)]

+7.((w, v),y)f [t 1 + (1 — )% h ()h,(1 — T)dT
0

1
+4.(@wv),7) f (%1 + (1 = D)%y (1 — Dhy (1 — T)dr
0

1 L(utv L(utv
@ )

< [0 0) X P ) + 30" X P ()

+7*((u, v),y)f [t%71 + (1 — )% h ()h,(1 — T)dT
0

+4"((w,v),y) fl[r"“l + (1 -1)* 1A -1)h,(1 —1)d7,

It follows that
1 0 <u+v « P u+v
1 1\*Y\ 2 ) V( 2 )
ahi (3)h2 (3)

< @ [7%,0, () X P,(v) + 920, (u) X P, (w)]
=1 (v —u)® utxy 14 vTZy 14

+7,(u,v) fl[ra_l +(1-1)*1Nh (A -1)h,(1 —1)dT
0

+4,wv) [ [t + (1 = D)% hy (1 — Dhy(1 - D)dr,

that is
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1 ~(u+v ~/u+v
0 X P
a3
< I'(a)
(v —u)*®

1
+ (1 -0 (1 —1)h,(1 — 1)dTt FA(u, v)f [t 1+ (1 —-1)*1h (1
—1)h,(1 — 1)dr. ’

1
[9%,0(v) % P)FIEG(w) % P )] FF (w,v) j [ra-1
0

Hence, the required result.

The Theorem 3.6 and Theorem 3.7 are directly connected with right and left part of classical
HH-Fejér inequality, respectively. Now firstly, we obtain the right part of classical HH-Fejér
inequality through fuzzy Riemann Liouville fractional integral is known as second fuzzy fractional
HH-Fejér inequality.

Theorem 3.6. (Second fuzzy fractional HH-Fejér inequality) Let Q:[u,v] » F, be a h-convex
fuzzy-IVF with u < v, whose y-levels define the family of IVFs Q,:[u,v] € R —» K are given

by 9,(2) =[0.(3,¥),9*(z,¥)] for all z € [u,v] and for all y € [0,1]. If § € L([u,v],F,) and
0:[u,v] » R, 2(z) = 0, symmetric with respect to uzj’ then

r'(a)
(v-—uw)“

72,30 F7E-00(w)] < L9520 (A raifn(z) + h(1 - DIA((A - Du + 7v)dr.(47)

If Q is concave fuzzy-IVF, then inequality (47) is reversed.
Proof. Let Q be a h-convex fuzzy-IVF and 7 1Q(tu + (1 — 7)v) = 0. Then, for each y € [0, 1],

we have
10, (tu + (1 = v, )2 (tu + (1 — 1))
<1 H(h(D)Q.(w,¥) + h(1 — DQ.(v, 1)) (ru + (1 — )v)
10 (tu + (1 — v, )2 (tu + (1 — 1)v)
<t Hh@Q (wy) + h(1 —1)Q"(v,¥))2(tu + (1 — D)v), (48)
And

1710, (1 - Du+,7)2((1 —Du + ™v)
<t h(1-1)2.(wy) + h(1)2.(v,1))2((1 — Du + v)
10 (1 —Du+w,7)2((1 —Du + v)

< Ta—l(h(l -1)0*(u,y) + h()Q*(v, y))_()((l —Du+ TV). (49)
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After adding (48) and (49), and integrating over [0, 1], we get

f01 710, (tu+ (1 —)v,Y)2(u+ 1 —1)v)dr
+ fol 1710, (A - Du+,7)2(1 —Du+v)dr
- fl 4719, (u, y){h(r).()(ru +(1-7)v)+h(1l- T).Q((l —Du+ TV)}
0 419719, (v, y){h(l —D2(u+A—-1)v) + h(r).()((l —Du + Tv)}
= 0.(w,y) f, v '[h(x) + h(1 - DIQ(ru + (1 — D) dr
+0.(,7) f; 7% [h(@) + h(1 — D]Q((1 — Du + ) dx,

(50)
fol 10 (1 —Du+,y)2(1 —Du+wv)dr
+ fol 0% (tu+ (1 =, Y)NGu+ (1 —1t)v)dr
<[ 710" (u, N{R@2G@u+ (1 —)v) + h(1 = D)2((1 — Du + v)}
— 0 [+ (v, )/){h(l —D)2@u+ A -1)v) + h(T).Q((l —Du+ Tv)}
= 0'(wp) [ 1 [A(D) + h(1 — DIQGu + (1 — T)v) dr
+0*,7) [, t¢[h(@) + h(1 - D1Q((1 — Du + wv) d.
Taking right hand side of inequality (50), we have
[ 10, (ru+ (1 — v, (A - Du + ) de
+ fl 710.(1-Du+,7)2(1 —Du+v)dr
= oo e G~ WO v — 2,Y)0(z)dz
+ommi a6~ W0 (5,0 (2)dz
= a0 u)af v -w*Q.(z U~V - 2)dz
(51)

A MCED L NERTIELE:
= %[ %0,0(v) + 1% 0.0(w)],
fol 1719 (tu+ (1 =, (1 —Du + v) dr
+ fl Ta_lg*((l —Du+,y)2((1 —Du +1v)dr

=L@ 199, 9°0(v) + 1%-0°0(w)).

T (v

From (51), we have

(a) () + h(1 = D]2((1 = Du + v)

—[75:0.0(v) + 1-0.0W)] <

Q(uy)+Q(vy)f

F(a) [
vV—u)®

that is

Q" (u, )/)+Q(vy)f

“0"0(v) + 140" 0W)] < (@) +r(1-D]12(A - Du+ 1),
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I (o)
(v —w)* 1%

< Q*(H'V)ZQ*(V'Y),Q*(u'w;rg*(v’y)] fol % 1[h(t) + h(1 — T)].Q((l —Du+ ‘L'V)d‘[,

+0.0(W) +750.0(w), 750" 0(WV) + 10" (u)]

hence

@ ) —[75:00(WFI-00w)] <

M[ Uh(m) + (1 - D]12((1 — Du + v)dr.

(v

Now, we obtain the following result connected with left part of classical HH-Fejér inequality for
h-convex fuzzy-IVF through fuzzy order relation which is known as first fuzzy fractional HH-Fejér
inequality.

Theorem 3.7. (First fuzzy fractional HH-Fejér inequality) Let Q:[u,v] » F, be a h-convex
fuzzy-IVF with u < v, whose y-levels define the family of IVFs Q,:[u,v] € R —» X are given
by 0,(2) = [0.(3,7),9"(3,v)] forall z € [u,v] and for all y € [0,1]. If 0 € L([u,v],Fy) and

0:[u,v] » R, 2(z) = 0, symmetric with respect to uzj’ then

3 (M) 00 + 70 < [12000) +35-G0w)] 52

If Q is concave fuzzy-IVF, then inequality (52) is reversed.

Proof. Since Q is a h-convex fuzzy-IVF, then for y € [0,1], we have

2

Q" (ﬂ,y) <h G) (Q*(Tu +(1A-v,)+2 (1 -Du+1, y))

2

0. (5% 7) < h(5) (&Gt A=+ .(A—Du+ ) (53)

Since 2(tu + (1 —1)v) = 2((1 — ©)u + v), then by multiplying (53) by % 12((1 — Du + v)
and integrate it with respectto t over [0, 1], we obtain

0. (u+v )f % 10((1 - Du+v)dr
<h (1) ( 1970, (tu + (1 — D, (1 — Du + tv)de )
+ fol 12719, ((1 = Du +v,¥)2((1 — Du + wv)dr)’
Q" (uTW)/) fol 7 I0((1 - Du+v)dr
(1) ( fol 710" (tu+ (1 — v, (1 — Du + v)dr )
22\ + fol 19 (1—Du+,7)2((1 —Du+v)dr .

(34)

<h

Let z = (1 — 7)u + tv. Then, right hand side of inequality (54), we have
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fol 19719, (tu+ (1 = Dv, (1 —Du + v) dr
+ fl 1710.(A—-Du+,7)2(1 —Du+v)dr
= s u)zxf (z —w*10.(u—v—27y)2)dz
+ s u)af (z — W 0.(3,Y)2(z)dz
= s u)af v—w)*10.(z,1)02u~-v - 3)dz
(55)
t s u)af (z —wW*1Q.(3,1N(2)dz
= 1O [75 0.0 + 55-0.0)],
fol 719 (tu + (1 — 1), y).()((l —Du+ W) dt
+ flfa_lg*((l —Du+,y)2((1-Du+1v)dr
= ooz 75 070 + 50 W),

Then from (55), we have
@Q* (22.7) 1%00) + 3-0@)] < [150.0(0) + 7%0.0(w)]
Tl(%)Q (22.7) 1500) + 3-0@)] < [150°2() + 720" 0(w)],

from which, we have

Tl(l) 0. (57r). @ (55 7)| o) + 5-06)]
<[75:0.000) + 77-2.0w), 75:0°0() + 7-Q 0w)],

it follows that

Zh(z)Q (“*V) [1%.0(W) + 7%-0w)]|<,[7%0,2(v) + 7%0,0W)],

that is

1 o) T =~ ~ ~
1) 0 (u i v) [15 0 FIE0@W)] < [154000)FIE00 (W)

2h (7 2

This completes the proof.

Remark 3.8. If 2(z) = 1, then from Theorem 3.6 and Theorem 3.7, we get Theorem 3.1.
If h(t) = 7, then from Theorem 3.6 and Theorem 3.7, we get following factional HH-Fejér
inequality:

0 () [peom) + 75-0@)] < 15000 F1E-00a)] < L2 12,00 + 350w (56)

Let h(t) =7 and @ = 1. Then, from Theorem 3.6 and Theorem 3.7, we obtain following
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HH-Fejér inequality for convex fuzzy-IVF which is also new one.
~ (fu+v Q(u)+Q(V)
0(*5) < ama R @0 () dz < (57)

Let h(t) =7 and a = 1 = 2(3). Then, from Theorem 3.6 and Theorem 3.7, we obtain following
HH -inequality for convex fuzzy-IVF given in [28]:

0 (%) < (FR) [} 0(z)dz < 20220 (58)

2

If 9.(3,v) =Q"(z,y) and 1 =y and h(r) =7, then from Theorem 3.6 and Theorem 3.7,
following HH-Fejér inequality for classical function following inequality given in [9]:

0 () [p0@) + 78-0@)] < [1500() + 75-00(w)] < L2 3¢ 0(v) + 72 0w)]. (59)

If Q.(z,v) =Q%(3,y) anda =1 =y and h(r) = 7, then from Theorem 3.6 and Theorem 3.7,
we obtain the classical H H-Fejér inequality (2).

If 9.(3,v) =0%(3,y) and 2(z) =a =1 =7y and h(r) = 7, then from Theorem 3.6 and
Theorem 3.7, we get the classical H H -inequality (1).

Example 3.9. We consider the fuzzy-IVF 0:[0,2] - F, defined by,

o
{ m o€ [0, 2— \/E]
A =<2(2 _\/_ -
0(z)(0) i(z——f/)za o€ (2-vz.2(2 - V2)]
0, otherwise.

Then, for each y € [0,1], we have Q,(3) = [y(Z — \/E), (2 - y)(Z — \/Z)] Since end point
functions Q,(3,¥), Q*(3,¥) are h-convex functions for each y € [0,1], then Q(z) is h-convex
fuzzy-1VF. If

a( )_{ vz, o €[01],
= \z=z ce,2]

then 2(2 —z) = 2(z) =0, for all z € [0,2]. Since Q.(3,¥) =y(2—+vz) and Q*(z,y) = (2 —
(2 —+2).If h(r) =7 and a = %, then we compute the following:

MI “Ha(m) +h(1-D]((1 —Du+ ) = ﬂ’(4 f)

2 2

(60)
LUNGOD (L ret[p(r) + h(1 - D)Q((1 - Du +v) =22 -7) (£5),
r(a) @ 138, 0 0 FIL0.0(w)] = \/_y (27‘[ + 4-—8\/5)'
B (61)
(:(a') [:]a Q .Q(V)-}-f]aQ Q(u)] \/_(2—)/) (27‘[+4 jﬁ)
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From (61) and (62), we have

Zly (2r+222), @ - p) (2n + 228)] <, L[y (B8), @ - 1) (BE)] foreach v € [0,1].

Hence, Theorem 10 is verified.

For Theorem 11, we have
1+ Q.0(v) +37-0.0(w)
= 02 =270 (v2—V8)) dz + ;@7 0() (y(2 - V7)) dz

=g (259 + oy (= 3) = o (2n + 255

%0"0(W) + 30 0(w) (62)
==J - 2)70(z) (@-n(2-v7))dz + L IROEIE) (@-n(2-v7))ds
=—(2 V)(n+8 BW) %(Z—V)(n—g):—(z y)(z +2 B‘F)

Zhl(l) (u+v ) [7 +NW) + I35 Q(u)] \/E,
2 (63)

From (63) and (63), we have

Valy, (2 —y)] 1\/—[)/ (2 + 8\/—) 2- ]/)( 2)] for each y € [0, 1].

4. Conclusions

In this study, we used fuzzy-interval Riemann-Liouville fractional integrals to prove some new
Hermite-Hadamard inequalities for h-convex fuzzy [VFs. The results are consistent with those found
in [1,2,7,16,26,28]. Furthermore, these results could be expanded in the future for different types of
convexities and fractional integrals.
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