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fractional Hermite-Hadamard inequality (𝐻𝐻-inequality) for ℎ -convex fuzzy-interval-valued 
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Liouville fractional integral operator. It is also shown that our results include a wide class of new and 
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1. Introduction 

Hermite [1] and Hadamard [2] derived the familiar inequality is known as Hermite-Hadamard 
inequality (𝐻𝐻-inequality) and this inequality states that 

𝒬 𝒬 𝓏 𝑑𝓏 𝒬 𝒬
,       (1) 

where 𝒬: 𝐼 → ℝ is a convex function defined on a closed bounded interval 𝐼 ⊆ ℝ and 𝑢, 𝜈 ∈ 𝐼 
with 𝜈 𝑢. If 𝒬 is a concave function, then both inequality symbols in (1) are reversed. Sine 
𝐻𝐻-inequalities are a useful technique for developing the qualitative and quantitative properties of 
convexity and nonconvexity. Because of diverse applications of these inequalities in different fields, 
there has been continuous growth of interest in such an area of research. Therefore many inequalities 
have been introduced as applications of convex functions and generalized convex function, see [3–6]. 
It is very important to mention that, Fejér [7] considered the major generalization of 𝐻𝐻-inequality 
which is known as 𝐻𝐻-Fejér inequality. It can be expressed as follows: 
Let 𝒬: 𝔗 → ℝ be a convex function on an interval  𝔗 𝑢, 𝜈  and 𝑢, 𝜈 ∈ 𝔗 with 𝑢  𝜈 . and let 
𝛺: 𝔗 𝑢, 𝜈 → ℝ, 𝛺 𝓏 0,  be a integrable and symmetric with respect to ,  and 

𝛺 𝓏 𝑑𝓏 0. Then, we have the following inequality. 

𝒬 . 𝛺 𝓏 𝑑𝓏 𝒬 𝓏 𝛺 𝓏 𝑑𝓏 𝒬  𝒬 . 𝛺 𝓏 𝑑𝓏.  (2) 

If 𝒬 is a concave function, then inequality (2) is reversed. If 𝛺 𝓏 1, then we obtain (1) from (2). 
It is also worthy to mention that Sarikaya et al. [8] provided the fractional version of inequality (1) 
and for convex function 𝒬: 𝔗 𝑢, 𝜈 → ℝ, this inequality states that: 

𝒬 ℐ  𝒬 𝜈 ℐ 𝒬 𝑢 𝒬 𝒬
,     (3) 

where 𝒬 assumed to be a positive function on 𝑢, 𝜈 , 𝒬 ∈ 𝐿 𝑢, 𝜈  with 𝑢  𝜈, and ℐ  and ℐ  
are the left sided and right sided Riemann-Liouville fractional of order 0 𝛼, and respectively are 
defined as follows: 

ℐ 𝒬 𝓏 𝓏 𝜏 𝒬 𝜏
𝓏

𝑑 𝜏 𝓏 𝑢 ,      (4) 

ℐ 𝒬 𝓏 𝜏 𝓏 𝒬 𝜏𝓏 𝑑 𝜏 𝓏 𝜈 .      (5) 

If 𝛼 1, then from (3), we obtain (2). We can easily say that inequality (3) is generalization of 
inequality (2). Thereafter, many authors in the mathematical community have paid close attention in 
the view of inequality (3) and obtained several inequalities for different classes of convex and 
non-convex functions through various fractional integral; see [9–15]. 

On the other hand, it is well-known fact that interval-valued analysis was introduced as an 
attempt to overcome interval uncertainty that occurs in the computer or mathematical models of 
some deterministic real-word phenomena. A classic example of an interval closure is Archimedes’ 
technique which is associated with the computation of the circumference of a circle. In 1966, 
Moore [16] given the concept of interval analysis in his book and discussed its applications in 
computational Mathematics. After that several authors have developed a strong relationship 
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between inequalities and IVFs by means of inclusion relation via different integral operators, as 
one can see Costa [17], Costa and Roman-Flores [18], Roman-Flores et al. [19,20], and 
Chalco-Cano et al. [21,22], but also to more general set-valued maps by Nikodem et al. [23], and 
Matkowski and Nikodem [24]. In particular, Zhang et al. [25] derived the new version of Jensen’s 
inequalities for set-valued and fuzzy set-valued functions by means of a pseudo order relation and 
proved that these Jensen’s inequalities generalized form of Costa Jensen’s inequalities [17]. After that, 
Budek [26] established fractional 𝐻𝐻-inequality for convex-IVF through interval-valued fractional 
Riemann-Liouville fractional. 

Our goal is to use the generalization of classical Riemann integral operator which is known as 
fuzzy Riemann-Liouville fractional integral operator. Recently, Allahviranloo et al. [27] introduced 
the following fuzzy-interval Riemann-Liouville fractional integral operator: 
Let 𝛼 0 and 𝐿 𝑢, 𝜈 , 𝔽  be the collection of all Lebesgue measurable fuzzy-IVFs on 𝑢, 𝜈 . 
Then, the fuzzy-interval left and right Riemann-Liouville fractional integral of 𝒬 ∈ 𝐿 𝑢, 𝜈 , 𝔽  
with order 𝛼 0 are defined by 

ℐ 𝒬 𝓏 𝓏 𝜏 𝒬 𝜏
𝓏

𝑑 𝜏 , 𝓏 𝑢 ,      (6) 

and 

ℐ 𝒬 𝓏 𝜏 𝓏 𝒬 𝜏𝓏 𝑑 𝜏 , 𝓏 𝜈 ,      (7) 

respectively, where 𝛤 𝓏 𝜏𝓏 𝑢 𝑑 𝜏  is the Euler gamma function. The fuzzy-interval left 

and right Riemann-Liouville fractional integral 𝓏 based on left and right endpoint functions can 
be defined, that is 

ℐ 𝒬 𝓏
1

𝛤 𝛼
𝓏 𝜏 𝒬 𝜏

𝓏

𝑑 𝜏  

𝓏 𝜏 𝒬∗ 𝜏, 𝛾 , 𝒬∗ 𝜏, 𝛾
𝓏

𝑑 𝜏 , 𝓏 𝑢 ,  (8) 

where 

ℐ 𝒬∗ 𝓏, 𝛾 𝓏 𝜏 𝒬∗ 𝜏, 𝛾
𝓏

𝑑 𝜏 , 𝓏 𝑢 ,     (9) 

and 

ℐ 𝒬∗ 𝓏, 𝛾 𝓏 𝜏 𝒬∗ 𝜏, 𝛾
𝓏

𝑑 𝜏 , 𝓏 𝑢 .      (10) 

Similarly, we can define the right Riemann-Liouville fractional integral 𝒬 of 𝓏 based on left and 
right endpoint functions. 

Moreover, recently, Khan et al. [28] introduced the new class of convex fuzzy mappings is 
known as ℎ , ℎ -convex fuzzy-IVFs by means fuzzy order relation and presented the following 
new version of 𝐻𝐻-type inequality for ℎ , ℎ -convex fuzzy-IVF involving fuzzy-interval Riemann 
integrals: 

Theorem 1.1. Let 𝒬: 𝑢, 𝜈 → 𝔽  be a ℎ , ℎ -convex fuzzy-IVF with ℎ , ℎ : 0, 1 → ℝ  and 
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ℎ ℎ 0, whose 𝛾-levels define the family of IVFs 𝒬 : 𝑢, 𝜈 ⊂ ℝ → 𝒦  are given by 

𝒬 𝓏 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  for all 𝓏 ∈ 𝑢, 𝜈  and for all 𝛾 ∈ 0, 1 . If 𝒬  is fuzzy-interval 
Riemann integrable (in sort, 𝐹𝑅-integrable), then 

𝒬 ≼ 𝐹𝑅 𝒬 𝓏 𝑑𝓏 ≼ 𝒬 𝑢 𝒬 𝜈 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏. (11) 

If ℎ 𝜏 𝜏 and ℎ 𝜏 ≡ 1, then from inequality (11), we obtain the following inequality: 

𝒬 ≼ 𝐹𝑅 𝒬 𝓏 𝑑𝓏 ≼
 

𝒬 𝒬 .       (12)  

This inequality (12) is known as 𝐻𝐻-inequality for convex fuzzy-IVF. We refer readers to [29–53] 
and the references therein for further review of literature on the applications and properties of 
fuzzy-interval, inequalities, and generalized convex fuzzy mappings. 

Inspired by the ongoing research work, the new class of generalized convex fuzzy-IVFs is 
introduced which is known as ℎ-convex fuzzy-IVF. With the help of ℎ-convex fuzzy-IVF and 
fuzzy-interval Riemann fractional integral operator, we have introduced fuzzy fractional 
Hermite-Hadamard type inequalities by means of fuzzy order relation. Moreover, we have shown 
that our results include a wide class of new and known inequalities for ℎ-convex fuzzy-IVFs and 
their variant forms as special cases. Some useful examples are also presented to verify the validity of 
our main results. 

2. Preliminaries 

Let ℝ be the set of real numbers and 𝒦  be the space of all closed and bounded intervals of 
ℝ and 𝜂 ∈ 𝒦  be defined by 

𝜂 𝜂∗, 𝜂∗ 𝓏 ∈ ℝ| 𝜂∗ 𝓏 𝜂∗ , 𝜂∗, 𝜂∗ ∈ ℝ .     (13) 

If 𝜂∗ 𝜂∗, then 𝜂 is said to be degenerate. In this article, all intervals will be non-degenerate 
intervals. If 𝜂∗ 0, then 𝜂∗, 𝜂∗  is called positive interval. The set of all positive interval is 
denoted by 𝒦  and defined as 𝒦 𝜂∗, 𝜂∗ : 𝜂∗, 𝜂∗ ∈ 𝒦  and 𝜂∗ 0 . 

Let 𝜏 ∈ ℝ and 𝜏𝜂 be defined by 

𝜏𝜂

 
𝜏𝜂∗, 𝜏𝜂∗  if 𝜏 0,
0            if 𝜏 0

𝜏𝜂∗, 𝜏𝜂∗   if 𝜏 0.
         (14) 

Then the Minkowski difference 𝜂 , addition 𝜂 𝜁 and 𝜂 𝜁 for 𝜂, 𝜁 ∈ 𝒦  are defined by 

𝜁∗, 𝜁∗ 𝜂∗, 𝜂∗ 𝜁∗ 𝜂∗, 𝜁∗ 𝜂∗ ,
𝜁∗, 𝜁∗ 𝜂∗, 𝜂∗ 𝜁∗ 𝜂∗, 𝜁∗ 𝜂∗ ,

       (15) 

and 

𝜁∗, 𝜁∗ 𝜂∗, 𝜂∗ 𝑚𝑖𝑛 𝜁∗𝜂∗, 𝜁∗𝜂∗, 𝜁∗𝜂∗, 𝜁∗𝜂∗ , 𝑚𝑎𝓍 𝜁∗𝜂∗, 𝜁∗𝜂∗, 𝜁∗𝜂∗, 𝜁∗𝜂∗ . 

The inclusion " ⊆ " means that 
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𝜁 ⊆ 𝜂 if and only if, 𝜁∗, 𝜁∗ ⊆ 𝜂∗, 𝜂∗ , if and only if 𝜂∗ 𝜁∗, 𝜁∗ 𝜂∗.     (16) 

Remark 2.1. [29] The relation " " defined on 𝒦  by 

𝜁∗, 𝜁∗ 𝜂∗, 𝜂∗  if and only if 𝜁∗ 𝜂∗, 𝜁∗ 𝜂∗,      (17) 

for all 𝜁∗, 𝜁∗ , 𝜂∗, 𝜂∗ ∈ 𝒦 , it is an order relation. For given 𝜁∗, 𝜁∗ , 𝜂∗, 𝜂∗ ∈ 𝒦 , we say that 
𝜁∗, 𝜁∗ 𝜂∗, 𝜂∗  if and only if 𝜁∗ 𝜂∗, 𝜁∗ 𝜂∗. 

For 𝜁∗, 𝜁∗ , 𝜂∗, 𝜂∗ ∈ 𝒦 ,  the Hausdorff-Pompeiu distance between intervals 𝜁∗, 𝜁∗  and 
𝜂∗, 𝜂∗  is defined by 

𝑑 𝜁∗, 𝜁∗ , 𝜂∗, 𝜂∗ 𝑚𝑎𝑥 |𝜁∗  𝜂∗|, |𝜁∗ 𝜂∗| . 

It is familiar fact that 𝒦 , 𝑑  is a complete metric space. 
A fuzzy subset 𝐴 of ℝ is characterize by a mapping 𝜁: ℝ → 0,1  called the membership 

function, for each fuzzy set and if 𝛾 ∈ 0, 1 , then 𝛾-level sets of 𝜁 is denoted and defined as 
follows 𝜁 𝘶 ∈ ℝ| 𝜁 𝘶 𝛾 . If 𝛾 0, then 𝑠𝑢𝑝𝑝 𝜁 𝓏 ∈ ℝ| 𝜁 𝓏 0  is called support of 

𝜁. By 𝜁  we define the closure of 𝑠𝑢𝑝𝑝 𝜁 . 
Let 𝔽 ℝ  be the family of all fuzzy sets and 𝜁 ∈ 𝔽 ℝ  be a fuzzy set. Then, we define the 

following: 
(1) 𝜁 is said to be normal if there exists 𝓏 ∈ ℝ and 𝜁 𝓏 1; 
(2) 𝜁 is said to be upper semi continuous on ℝ if for given 𝓏 ∈ ℝ, there exist 𝜀 0 there exist 

𝛿 0 such that 𝜁 𝓏 𝜁 𝓍 𝜀 for all 𝓍 ∈ ℝ with |𝓏 𝓍| 𝛿; 
(3) 𝜁 is said to be fuzzy convex if 𝜁  is convex for every 𝛾 ∈ 0, 1 ; 
(4) 𝜁 is compactly supported if 𝑠𝑢𝑝𝑝 𝜁  is compact. 

A fuzzy set is called a fuzzy number or fuzzy-interval if it has properties (1)–(4). We denote by 𝔽  
the family of all interval. 

From these definitions, we have 

𝜁 𝜁∗ 𝛾 , 𝜁∗ 𝛾 , 

where 

𝜁∗ 𝛾 𝑖𝑛𝑓 𝓏 ∈ ℝ| 𝜁 𝓏 𝛾 , 𝜁∗ 𝛾 𝑠𝑢𝑝 𝓏 ∈ ℝ| 𝜁 𝓏 𝛾 . 

Proposition 2.2. [18] If 𝜁, 𝜂 ∈ 𝔽 , then relation " ≼ " defined on 𝔽  by 

𝜁 ≼ 𝜂 if and only if, 𝜁 𝜂 , for all 𝛾 ∈ 0, 1 ,    (18) 

this relation is known as partial order relation. 
For 𝜁, 𝜂 ∈ 𝔽  and 𝜏 ∈ ℝ, the sum 𝜁 𝜂, product 𝜁 𝜂, scalar product 𝜏. 𝜁 and sum with 

scalar are defined by: 

𝜁 𝜂 𝜁 𝜂 ,         (19) 

𝜁 𝜂 𝜁  𝜂 ,         (20) 
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𝜏. 𝜁 𝜏. 𝜁 ,           (21) 

𝜏  𝜁 𝜏 𝜁 .          (22) 

for all 𝛾 ∈ 0, 1 . For 𝜓 ∈ 𝔽  such that 𝜁 𝜂 𝜓, then by this result we have existence of 
Hukuhara difference of 𝜁 and 𝜂, and we say that 𝜓 is the H-difference of 𝜁 and 𝜂, and denoted 
by 𝜁 𝜂. If H-difference exists, then 

𝜓 ∗ 𝛾 𝜁 𝜂 ∗ 𝛾 𝜁∗ 𝛾 𝜂∗ 𝛾 , 𝜓 ∗ 𝛾 𝜁 𝜂 ∗ 𝛾 𝜁∗ 𝛾 𝜂∗ 𝛾 . (23)  

A partition of 𝑢, 𝜈  is any finite ordered subset 𝑃 having the form 

𝑃 𝑢 𝓏 𝓏 𝓏 𝓏 𝓏 … … 𝓏 𝜈 . 

The mesh of a partition 𝑃 is the maximum length of the subintervals containing 𝑃 that is, 

mesh 𝑃 𝑚𝑎𝑥 𝓏 𝓏 : 𝑗 1, 2, 3, … … 𝑘 . 

Let 𝒫 𝛿, 𝑢, 𝜈  be the set of all partitions 𝑃 of 𝑢, 𝜈  such that mesh 𝑃 𝛿. For each interval 
𝓏 , 𝓏 , where 1 𝑗 𝑘, choose an arbitrary point 𝜉  and taking the sum 

𝑆 𝒬, 𝑃, 𝛿 𝒬 𝜉 𝓏 𝓏 , 

where 𝒬: 𝑢, 𝜈 → 𝒦 . We call 𝑆 𝒬, 𝑃, 𝛿  a Riemann sum of 𝒬 corresponding to 𝑃 ∈ 𝒫 𝛿, 𝑢, 𝜈 . 

Definition 2.3. [30] A function 𝒬: 𝑢, 𝜈 → 𝒦  is called interval Riemann integrable (𝐼𝑅-integrable) 
on 𝑢, 𝜈  if there exists 𝐵 ∈ 𝒦  such that, for each 𝜖 0, there exists 𝛿 0 such that 

𝑑 𝑆 𝒬, 𝑃, 𝛿 , 𝐵 𝜖, 

for every Riemann sum of 𝒬 corresponding to 𝑃 ∈ 𝒫 𝛿, 𝑢, 𝜈  and for arbitrary choice of 𝜉 ∈
𝓏 , 𝓏  for 1 𝑗 𝑘. Then, we say that 𝐵 is the 𝐼𝑅-integral of 𝒬 on 𝑢, 𝜈  and is denote by 

𝐵 𝐼𝑅 𝒬 𝓏 𝑑𝓏. 

Moore [9] firstly proposed the concept of Riemann integral for IVF and it is defined as follow: 

Theorem 2.4. [16] If 𝒬: 𝑢, 𝜈 ⊂ ℝ → 𝒦  is an IVF on such that 𝒬 𝓏 𝒬∗, 𝒬∗ , then 𝒬 is 
Riemann integrable over 𝑢, 𝜈  if and only if, 𝒬∗ and 𝒬∗ both are Riemann integrable over 𝑢, 𝜈  
such that 

𝐼𝑅 𝒬 𝓏 𝑑𝓏 𝑅 𝒬∗ 𝓏 𝑑𝓏 , 𝑅 𝒬∗ 𝓏 𝑑𝓏 .      (24) 

Definition 2.5. [31] A fuzzy map 𝒬: 𝑢, 𝜈 → 𝔽  is called fuzzy-IVF. For each 𝛾 ∈ 0, 1 , whose 
𝛾-levels define the family of IVFs 𝒬 : 𝑢, 𝜈 → 𝒦  are given by 𝒬 𝓏 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  for 
all 𝓏 ∈ 𝑢, 𝜈 .  Here, for each 𝛾 ∈ 0, 1 ,  the left and right real valued functions 
𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾 : 𝑢, 𝜈 → ℝ are also called lower and upper functions of 𝒬. 

Remark 2.6. If 𝒬: 𝑢, 𝜈 ⊂ ℝ → 𝔽  is a fuzzy-IVF, then 𝒬 𝓏  is called continuous function at 𝓏 ∈
𝑢, 𝜈 , if for each 𝛾 ∈ 0, 1 , both left and right real valued functions 𝒬∗ 𝓏, 𝛾  and 𝒬∗ 𝓏, 𝛾  are 
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continuous at 𝓏 ∈ 𝐾. 
The following conclusion can be drawn from the above literature review, see [17, 31]. 

Definition 2.7. Let 𝒬: 𝑢, 𝜈 ⊂ ℝ → 𝔽  is called fuzzy-IVF. The fuzzy Riemann integral of 𝒬 over 
𝑢, 𝜈 , denoted by 𝐹𝑅 𝒬 𝓏 𝑑𝓏, it is defined level by level 

𝐹𝑅 𝒬 𝓏 𝑑𝓏
𝜸

𝐼𝑅 𝒬 𝓏 𝑑𝓏 𝒬 𝓏, 𝛾 𝑑𝓏 : 𝒬 𝓏, 𝛾 ∈ ℛ , ,   (25) 

for all 𝛾 ∈ 0, 1 , where ℛ ,  contains the family of left and right functions of IVFs. 𝒬  is 

𝐹𝑅 -integrable over 𝑢, 𝜈  if 𝐹𝑅 𝒬 𝓏 𝑑𝓏 ∈ 𝔽 .  Note that, if left and right real valued 

functions are Lebesgue-integrable, then 𝒬 is fuzzy Aumann-integrable over 𝑢, 𝜈 , denoted by 
𝐹𝐴 𝒬 𝓏 𝑑𝓏, see [31]. 

Theorem 2.8. Let 𝒬: 𝑢, 𝜈 ⊂ ℝ → 𝔽  be a fuzzy-IVF, whose 𝛾-levels obtain the collection of IVFs 
𝒬 : 𝑢, 𝜈 ⊂ ℝ → 𝒦  are defined by 𝒬 𝓏 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  for all 𝓏 ∈ 𝑢, 𝜈  and for all 

𝛾 ∈ 0, 1 . Then, 𝒬 is 𝐹𝑅 -integrable over 𝑢, 𝜈  if and only if, 𝒬∗ 𝓏, 𝛾  and 𝒬∗ 𝓏, 𝛾  both are 
𝑅-integrable over 𝑢, 𝜈 . Moreover, if 𝒬 is 𝐹𝑅 -integrable over 𝑢, 𝜈 , then 

𝐹𝑅 𝒬 𝓏 𝑑𝓏
𝜸

𝑅 𝒬∗ 𝓏, 𝛾 𝑑𝓏 , 𝑅 𝒬∗ 𝓏, 𝛾 𝑑𝓏 𝐼𝑅 𝒬 𝓏 𝑑𝓏, (26) 

for all 𝛾 ∈ 0, 1 . 

Definition 2.9. A real valued function 𝒬: 𝑢, 𝜈 → ℝ  is called convex function if 

𝒬 𝜏𝓍 1 𝜏 𝓏 𝜏𝒬 𝓍 1 𝜏 𝒬 𝓏 ,      (27) 

for all  𝓍, 𝓏 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 . If (27) is reversed, then 𝒬 is called concave. 

Definition 2.10. [32] The fuzzy-IVF 𝒬: 𝑢, 𝜈 → 𝔽  is called convex fuzzy-IVF on 𝑢, 𝜈  if 

𝒬 𝜏𝓍 1 𝜏 𝓏 ≼ 𝜏𝒬 𝓍 1 𝜏 𝒬 𝓏 ,      (28) 

for all 𝓍, 𝓏 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 , where 𝒬 𝓏 ≽ 0 for all 𝓏 ∈ 𝑢, 𝜈 . If (28) is reversed, then 𝒬 is 
called concave fuzzy-IVF on 𝑢, 𝜈 . 𝒬 is affine if and only if it is both convex and concave 
fuzzy-IVF. 

Remark 2.11. If 𝒬∗ 𝓏, 𝛾 𝒬∗ 𝓏, 𝛾  and 𝛾 1, then we obtain the inequality (1). 

Definition 2.12. [28] Let ℎ , ℎ : 0, 1 ⊆ 𝑢, 𝜈 → ℝ  such that ℎ , ℎ ≢ 0 . Then, fuzzy-IVF 
𝒬: 𝑢, 𝜈 → 𝔽  is said to be ℎ , ℎ -convex fuzzy-IVF on 𝑢, 𝜈  if 

𝒬 𝜏𝓍 1 𝜏 𝓏 ≼ ℎ 𝜏 ℎ 1 𝜏 𝒬 𝓍 ℎ 1 𝜏 ℎ 𝜏 𝒬 𝓏 ,    (29) 

for all  𝓍, 𝓏 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 ,  where 𝒬 𝓍 ≽ 0.  If 𝒬  is ℎ , ℎ -concave on 𝑢, 𝜈 , then 
inequality (29) is reversed. 

Remark 2.13. [28] If ℎ 𝜏 ≡ 1, then ℎ , ℎ -convex fuzzy-IVF becomes ℎ-convex fuzzy-IVF, 
that is 

𝒬 𝜏𝓍 1 𝜏 𝓏 ≼ ℎ 𝜏 𝒬 𝓍 ℎ 1 𝜏 𝒬 𝓏 , ∀ 𝓍, 𝓏 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 .  (30) 
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If ℎ 𝜏 𝜏, ℎ 𝜏 ≡ 1, then ℎ , ℎ -convex fuzzy-IVF becomes convex fuzzy-IVF, that is 

𝒬 𝜏𝓍 1 𝜏 𝓏 ≼ 𝜏𝒬 𝓍 1 𝜏 𝒬 𝓏 , ∀ 𝓍, 𝓏 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 .   (31) 

If ℎ 𝜏 ℎ 𝜏 ≡ 1, then ℎ , ℎ -convex fuzzy-IVF becomes 𝑃-convex fuzzy-IVF, that is 

𝒬 𝜏𝓍 1 𝜏 𝓏 ≼ 𝒬 𝓍 𝒬 𝓏 , ∀  𝓍, 𝓏 ∈ 𝑢, 𝜈 , 𝜏 ∈ 0, 1 .   (32) 

Theorem 2.14. Let ℎ: 0, 1 ⊆ 𝑢, 𝜈 → ℝ be anon-negative real valued function such that ℎ ≢ 0 
and let 𝒬: 𝑢, 𝜈 → 𝔽  be a fuzzy-IVF, whose 𝛾-levels define the family of IVFs 𝒬 : 𝑢, 𝜈 →
𝒦 ⊂ 𝒦  are given by 

𝒬 𝓏 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾 ,          (33)  

for all 𝓏 ∈ 𝑢, 𝜈  and for all 𝛾 ∈ 0, 1 . Then, 𝒬 is ℎ-convex fuzzy-IVF on 𝑢, 𝜈 , if and only if, 
for all 𝛾 ∈ 0, 1 , 𝒬∗ 𝓏, 𝛾  and 𝒬∗ 𝓏, 𝛾  are ℎ-convex function. 

Proof. The demonstration of proof of Theorem 2.14 is similar to the demonstration proof of 
Theorem 6 in [28]. 

Example 2.15. We consider ℎ 𝜏 𝜏, for 𝜏 ∈ 0, 1  and the fuzzy-IVF 𝒬: 0, 4 → 𝔽  defined by 

𝒬 𝓏 𝜎

⎩
⎪
⎨

⎪
⎧

𝜎

2𝑒𝓏
           𝜎 ∈ 0, 2𝑒𝓏

4𝑒𝓏 𝜎

2𝑒𝓏
   𝜎 ∈ 2𝑒𝓏 , 4𝑒𝓏  

0             otherwise,

 

then, for each 𝛾 ∈ 0, 1 ,  we have 𝒬 𝓏 2𝛾𝑒𝓏 , 2 2 𝛾 𝑒𝓏 . Since end point functions 
𝒬∗ 𝓏, 𝛾 ,  𝒬∗ 𝓏, 𝛾  are ℎ -convex functions for each 𝛾 ∈ 0, 1 . Hence 𝒬 𝓏  is ℎ -convex 
fuzzy-IVF. 

3. Fuzzy-interval fractional Hermite-Hadamard type inequalities 

In this section, we will prove some new Hermite-Hadamard type inequalities for 

ℎ-convex fuzzy-IVFs by means of fuzzy order relation via Riemann Liouville fractional 
integral operator. In what follows, we denote by 𝐿 𝑢, 𝜈 , 𝔽  the family of Lebesgue measureable 
fuzzy-IVFs. 

Theorem 3.1. Let 𝒬: 𝑢, 𝜈 → 𝔽  be a ℎ-convex fuzzy-IVF on 𝑢, 𝜈 , whose 𝛾-levels define the 
family of IVFs 𝒬 : 𝑢, 𝜈 ⊂ ℝ → 𝒦  are given by 𝒬 𝓏 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  for all 𝓏 ∈ 𝑢, 𝜈  

and for all 𝛾 ∈ 0, 1 . If 𝒬 ∈ 𝐿 𝑢, 𝜈 , 𝔽 , then 

𝒬 ≼ ℐ 𝒬 𝜈 ℐ 𝒬 𝑢 ≼ 𝒬 𝒬 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏. (34) 

If 𝒬 𝓏  is concave fuzzy-IVF, then 

𝒬 ≽ ℐ 𝒬 𝜈 ℐ 𝒬 𝑢 ≽ 𝒬 𝒬 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏. (35) 

Proof. Let 𝒬: 𝑢, 𝜈 → 𝔽  be a ℎ-convex fuzzy-IVF. Then, by hypothesis, we have 
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1

ℎ 1
2

𝒬
𝑢 𝜈

2
≼ 𝒬 𝜏𝑢 1 𝜏 𝜈 𝒬 1 𝜏 𝑢 𝜏𝜈 . 

Therefore, for every 𝛾 ∈ 0, 1 , we have 

1

ℎ 1
2

𝒬∗
𝑢 𝜈

2
, 𝛾 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 ,

1

ℎ 1
2

𝒬∗ 𝑢 𝜈
2

, 𝛾 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 .
 

Multiplying both sides by 𝜏  and integrating the obtained result with respect to 𝜏 over 0,1 , 
we have 

1

ℎ 1
2

𝜏 𝒬∗
𝑢 𝜈

2
, 𝛾 𝑑𝜏 

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝑑𝜏 𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝑑𝜏, 

1

ℎ 1
2

𝜏 𝒬∗ 𝑢 𝜈
2

, 𝛾 𝑑𝜏 

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝑑𝜏 𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝑑𝜏. 

Let 𝓍 𝜏𝑢 1 𝜏 𝜈 and 𝓏 1 𝜏 𝑢 𝜏𝜈. Then, we have 

1

𝛼 ℎ 1
2

𝒬∗
𝑢 𝜈

2
, 𝛾

1
𝜈 𝑢

𝜈 𝓍 𝒬∗ 𝓍, 𝛾 𝑑𝓍
1

𝜈 𝑢
𝓏 𝑢 𝒬∗ 𝓏, 𝛾 𝑑𝓏

1

𝛼 ℎ 1
2

𝒬∗ 𝑢 𝜈
2

, 𝛾
1

𝜈 𝑢
𝜈 𝓍 𝒬∗ 𝓍, 𝛾 𝑑𝓍

1
𝜈 𝑢

𝓏 𝑢 𝒬∗ 𝓏, 𝛾 𝑑𝓏,

 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗ 𝜈, 𝛾 ℐ 𝒬∗ 𝑢, 𝛾

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗ 𝜈, 𝛾 ℐ 𝒬∗ 𝑢, 𝛾 .
 

That is 

1

𝛼 ℎ 1
2

𝒬∗
𝑢 𝜈

2
, 𝛾 , 𝒬∗ 𝑢 𝜈

2
, 𝛾  

ℐ 𝒬∗ 𝜈, 𝛾 ℐ 𝒬∗ 𝑢, 𝛾 , ℐ 𝒬∗ 𝜈, 𝛾 ℐ 𝒬∗ 𝑢, 𝛾 , 

thus, 

𝒬 ℐ 𝒬 𝜈 ℐ 𝒬 𝑢 .     (36) 
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In a similar way as above, we have 

ℐ 𝒬 𝜈 ℐ 𝒬 𝑢 𝒬 𝑢 𝒬 𝜈 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏. (37) 

Combining (36) and (37), we have 

1

𝛼ℎ 1
2

𝒬
𝑢 𝜈

2
𝛤 𝛼

𝜈 𝑢
ℐ 𝒬 𝜈 ℐ 𝒬 𝑢  

𝒬 𝑢 𝒬 𝜈 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏, 

that is 

1

𝛼ℎ 1
2

𝒬
𝑢 𝜈

2
≼

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬 𝜈 ℐ 𝒬 𝑢 ≼ 𝒬 𝑢 𝒬 𝜈 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏. 

Hence, the required result. 

Remark 3.2 From Theorem 3.1 we clearly see that: 
If 𝛼 1, then Theorem 3.1 reduces to the result for ℎ-convex fuzzy-IVF: 

𝟐
𝒬 ≼ 𝐹𝑅 𝒬 𝓏 𝑑𝓏 ≼ 𝒬 𝑢 𝒬 𝜈 ℎ 𝜏 𝑑𝜏.   (38) 

If ℎ 𝜏 𝜏, then Theorem 3.1 reduces to the result for convex fuzzy-IVF: 

𝒬 ≼ ℐ 𝒬 𝜈 ℐ 𝒬 𝑢 ≼ 𝒬 𝒬
.       (39) 

Let 𝛼 1 and ℎ 𝜏 𝜏. Then, Theorem 3.1 reduces to the result for convex-IVF given in [28]: 

𝒬 ≼ 𝐹𝑅 𝒬 𝓏 𝑑𝓏 ≼ 𝒬 𝒬
.       (40) 

If 𝒬∗ 𝓏, 𝛾 𝒬∗ 𝓏, 𝛾  and 𝛾 1, then, from Theorem 3.1 we get following inequality given 
in [12]: 

𝒬 ℐ 𝒬 𝜈 ℐ 𝒬 𝑢 𝒬 𝑢 𝒬 𝜈 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏. (41) 

Let 𝛼 1 𝛾 and 𝒬∗ 𝓏, 𝛾 𝒬∗ 𝓏, 𝛾 . Then, from Theorem 3.1 we obtain following inequality 
given in [2]: 

𝟐
𝒬 𝑅 𝒬 𝓏 𝑑𝓏 𝒬 𝑢 𝒬 𝜈 ℎ 𝜏 𝑑𝜏.   (42) 

Example 3.3. Let  , ℎ 𝜏 𝜏, for all 𝜏 ∈ 0, 1 and the fuzzy-IVF 𝒬: 𝑢, 𝜈 2, 3 → 𝔽 , 

defined by 
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𝒬 𝓏 𝜃

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜃

2 𝓏
,                     𝜃 ∈ 0, 2 𝓏

2 2 𝓏 𝜃

2 𝓏
,   𝜃 ∈ 2 𝓏 , 2 2 𝓏

0,                      otherwise.

 

Then, for each 𝛾 ∈ 0, 1 , we have 𝒬 𝓏 𝛾 2 𝓏 , 2 𝛾 2 𝓏 . Since left and right 

end point functions 𝒬∗ 𝓏, 𝛾 𝛾 2 𝓏 , 𝒬∗ 𝓏, 𝛾 2 𝛾 2 𝓏 , are ℎ-convex functions 

for each 𝛾 ∈ 0, 1 , then 𝒬 𝓏  is ℎ-convex fuzzy-IVF. We clearly see that 𝒬 ∈ 𝐿 𝑢, 𝜈 , 𝔽  and 

1

𝛼 ℎ 1
2

𝒬∗
𝑢 𝜈

2
, 𝛾 𝒬∗

5
2

, 𝛾 𝛾
4 √10

8
 

1

𝛼 ℎ 1
2

𝒬∗ 𝑢 𝜈
2

, 𝛾 𝒬∗ 5
2

, 𝛾 2 𝛾
4 √10

8
, 

𝒬∗ 𝑢, 𝛾 𝒬∗ 𝜈, 𝛾
2

𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏  𝛾 4 √2 √3  

𝒬∗ 𝑢, 𝛾 𝒬∗ 𝜈, 𝛾
2

𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏 2 𝛾 4 √2 √3 . 

Note that 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗ 𝜈, 𝛾 ℐ 𝒬∗ 𝑢, 𝛾  

𝛤 1
2

2
1

√𝜋
3 𝓏 . 𝛾 2 𝓏 𝑑𝓏 

𝛤 1
2

2
1

√𝜋
𝓏 2 . 𝛾 2 𝓏 𝑑𝓏 

1
2

𝛾
7393

10,000
9501

10,000
 

𝛾
8447

20,000
. 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗ 𝜈, 𝛾 ℐ  𝒬∗ 𝑢, 𝛾  

𝛤 1
2

2
1

√𝜋
3 𝓏 . 2 𝛾 2 𝓏 𝑑𝓏 

𝛤 1
2

2
1

√𝜋
𝓏 2 . 2 𝛾 2 𝓏 𝑑𝓏 



10975 

AIMS Mathematics  Volume 6, Issue 10, 10964–10988. 

1
2

2 𝛾
7393

10,000
9501

10,000
 

2 𝛾
8447

20,000
. 

Therefore 

𝛾
4 √10

8
, 2 𝛾

4 √10
8

𝛾
8447

20,000
, 2 𝛾

8447
20,000

 

𝛾 4 √2 √3 , 2 𝛾 4 √2 √3 , 

and Theorem 3.1 is verified. 
From Theorem 3.4 and Theorem 3.5, we obtain some fuzzy-interval fractional integral 

inequalities related to fuzzy-interval fractional 𝐻𝐻-inequalities 

Theorem 3.4. Let 𝒬, 𝒫 ∶ 𝑢, 𝜈 → 𝔽  be ℎ -convex and ℎ -convex fuzzy-IVFs on 𝑢, 𝜈 , 
respectively, whose 𝛾 -levels 𝒬 , 𝒫 : 𝑢, 𝜈 ⊂ ℝ → 𝒦  are defined by 𝒬 𝓏
𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  and 𝒫 𝓏 𝒫∗ 𝓏, 𝛾 , 𝒫∗ 𝓏, 𝛾  for all 𝓏 ∈ 𝑢, 𝜈  and for all 𝛾 ∈ 0, 1 . If 

𝒬 𝒫 ∈  𝐿 𝑢, 𝜈 , 𝔽 , then 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬 𝜈 𝒫 𝜈 ℐ 𝒬 𝑢 𝒫 𝑢

≼ 𝛥 𝑢, 𝜈 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏

𝛻 𝑢, 𝜈 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏. 

Where 𝛥 𝑢, 𝜈 𝒬 𝑢 𝒫 𝑢   𝒬 𝜈 𝒫 𝜈 ,  𝛻 𝑢, 𝜈 𝒬 𝑢 𝒫 𝜈   𝒬 𝜈 𝒫 𝑢 ,  and 
𝛥 𝑢, 𝜈 𝛥∗ 𝑢, 𝜈 , 𝛾 , 𝛥∗ 𝑢, 𝜈 , 𝛾  and 𝛻 𝑢, 𝜈 𝛻∗ 𝑢, 𝜈 , 𝛾 , 𝛻∗ 𝑢, 𝜈 , 𝛾 . 

Proof. Since 𝒬, 𝒫 both are ℎ -convex and ℎ -convex fuzzy-IVFs then, for each 𝛾 ∈ 0, 1  we 
have 

  
𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾  
𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾 .

  

 

and 
  

𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 ℎ 𝜏 𝒫∗ 𝑢, 𝛾 ℎ 1 𝜏 𝒫∗ 𝜈, 𝛾  
𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 ℎ 𝜏 𝒫∗ 𝑢, 𝛾 ℎ 1 𝜏 𝒫∗ 𝜈, 𝛾 .

 

From the definition of ℎ-convex fuzzy-IVFs it follows that 0 ≼ 𝒬 𝓏  and 0 ≼ 𝒫 𝓏 , so 
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𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾

ℎ 𝜏 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾 ℎ 1 𝜏 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾
ℎ 𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝜈, 𝛾 ℎ 1 𝜏 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝑢, 𝛾

𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
ℎ 𝜏 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾 ℎ 1 𝜏 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾

ℎ 𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝜈, 𝛾 ℎ 1 𝜏 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝑢, 𝛾 .

  (43) 

Analogously, we have 
  

𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾
ℎ 1 𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾 ℎ 𝜏 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾
ℎ 1 𝜏 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝜈, 𝛾 ℎ 𝜏 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝑢, 𝛾

𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾
ℎ 1 𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾 ℎ 𝜏 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾

ℎ 1 𝜏 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝜈, 𝛾 ℎ 𝜏 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝑢, 𝛾 .

  (44) 

Adding (43) and (44), we have 
  

𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾                                                                

ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾
ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝑢, 𝛾 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝜈, 𝛾

𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾                                                                

ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾
ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝑢, 𝛾 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝜈, 𝛾 .

 (45) 

Taking multiplication of (45) with 𝜏  and integrating the obtained result with respect to 𝜏 over 
(0,1), we have 

  

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝑑𝜏            

𝛥∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏

𝛻∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝑑𝜏          

𝛥∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏

𝛻∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏.

 



10977 

AIMS Mathematics  Volume 6, Issue 10, 10964–10988. 

It follows that, 
  

𝛤 𝛼
𝜈 𝑢

ℐ  𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾 ℐ  𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾

𝛥∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏

𝛻∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏.

𝛤 𝛼
𝜈 𝑢

ℐ  𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾 ℐ  𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾

 𝛥∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏

𝛻∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏. 
  

 

It follows that 
𝛤 𝛼

𝜈 𝑢
ℐ 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾 ℐ 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾 ,

ℐ 𝒬∗ 𝜈, 𝛾 𝒫∗ 𝜈, 𝛾 ℐ 𝒬∗ 𝑢, 𝛾 𝒫∗ 𝑢, 𝛾  

𝛥∗ 𝑢, 𝜈 , 𝛾 , 𝛥∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏 

𝛻∗ 𝑢, 𝜈 , 𝛾 , 𝛻∗ 𝑢, 𝜈 , 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏, 

that is 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬 𝜈 𝒫 𝜈 ℐ 𝒬 𝑢 𝒫 𝑢  

𝛥 𝑢, 𝜈 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏 

𝛻 𝑢, 𝜈 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏. 

Thus, 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬 𝜈 𝒫 𝜈 ℐ 𝒬 𝑢 𝒫 𝑢

≼ 𝛥 𝑢, 𝜈 𝜏 ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏

𝛻 𝑢, 𝜈 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝑑𝜏. 

and the theorem has been established. 
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Theorem 3.5. Let 𝒬, 𝒫 ∶ 𝑢, 𝜈 → 𝔽  be two ℎ -convex and ℎ -convex fuzzy-IVFs, respectively, 
whose 𝛾 -levels define the family of IVFs 𝒬 , 𝒫 : 𝑢, 𝜈 ⊂ ℝ → 𝒦  are given by 𝒬 𝓏
𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  and 𝒫 𝓏 𝒫∗ 𝓏, 𝛾 , 𝒫∗ 𝓏, 𝛾  for all 𝓏 ∈ 𝑢, 𝜈  and for all 𝛾 ∈ 0, 1 . If 

𝒬 𝒫 ∈ 𝐿 𝑢, 𝜈 , 𝔽 , then 

1

𝛼 ℎ 1
2 ℎ 1

2

𝒬
𝑢 𝜈

2
𝒫

𝑢 𝜈
2

 

≼
𝛤 𝛼

𝜈 𝑢
ℐ 𝒬 𝜈 𝒫 𝜈 ℐ 𝒬 𝑢 𝒫 𝑢 𝛻 𝑢, 𝜈 𝜏 1 𝜏 ℎ 𝜏 ℎ 1

𝜏 𝑑𝜏 𝛥 𝑢, 𝜈 𝜏 1 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏. 

Where  𝛥 𝑢, 𝜈 𝒬 𝑢 𝒫 𝑢   𝒬 𝜈 𝒫 𝜈 ,  𝛻 𝑢, 𝜈 𝒬 𝑢 𝒫 𝜈   𝒬 𝜈 𝒫 𝑢 ,  and 
𝛥 𝑢, 𝜈 𝛥∗ 𝑢, 𝜈 , 𝛾 , 𝛥∗ 𝑢, 𝜈 , 𝛾  and 𝛻 𝑢, 𝜈 𝛻∗ 𝑢, 𝜈 , 𝛾 , 𝛻∗ 𝑢, 𝜈 , 𝛾 . 

Proof. Consider 𝒬, 𝒫 ∶ 𝑢, 𝜈 → 𝔽  are ℎ -convex and ℎ -convex fuzzy-IVFs. Then, by hypothesis, 
for each 𝛾 ∈ 0, 1 , we have 

𝒬∗
𝑢 𝜈

2
, 𝛾 𝒫∗

𝑢 𝜈
2

, 𝛾

𝒬∗ 𝑢 𝜈
2

, 𝛾 𝒫∗ 𝑢 𝜈
2

, 𝛾
 

ℎ
1
2

ℎ
1
2

𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

ℎ
1
2

ℎ
1
2

𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾

𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

ℎ
1
2

ℎ
1
2

𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

ℎ
1
2

ℎ
1
2

𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾

𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾
,

 

ℎ
1
2

ℎ
1
2

𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

ℎ
1
2

ℎ
1
2

⎣
⎢
⎢
⎢
⎡ 𝜏𝒬∗ 𝑢, 𝛾 1 𝜏 𝒬∗ 𝜈, 𝛾

1 𝜏 𝒫∗ 𝑢, 𝛾 𝜏𝒫∗ 𝜈, 𝛾

1 𝜏 𝒬∗ 𝑢, 𝛾 𝜏𝒬∗ 𝜈, 𝛾

𝜏𝒫∗ 𝑢, 𝛾 1 𝜏 𝒫∗ 𝜈, 𝛾 ⎦
⎥
⎥
⎥
⎤

                              

ℎ
1
2

ℎ
1
2

𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

ℎ
1
2

ℎ
1
2

⎣
⎢
⎢
⎢
⎡ 𝜏𝒬∗ 𝑢, 𝛾 1 𝜏 𝒬∗ 𝜈, 𝛾

1 𝜏 𝒫∗ 𝑢, 𝛾 𝜏𝒫∗ 𝜈, 𝛾

1 𝜏 𝒬∗ 𝑢, 𝛾 𝜏𝒬∗ 𝜈, 𝛾

𝜏𝒫∗ 𝑢, 𝛾 1 𝜏 𝒫∗ 𝜈, 𝛾 ⎦
⎥
⎥
⎥
⎤

,                              
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ℎ ℎ
𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

     

ℎ ℎ
ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝛻∗ 𝑢, 𝜈 , 𝛾

ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝛥∗ 𝑢, 𝜈 , 𝛾
    

ℎ ℎ
𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒫∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾
𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝒫∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

    

ℎ ℎ
ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 ℎ 𝜏 𝛻∗ 𝑢, 𝜈 , 𝛾

ℎ 𝜏 ℎ 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝛥∗ 𝑢, 𝜈 , 𝛾
.

  (46) 

Taking multiplication of (46) with 𝜏  and integrating over 0, 1 , we get 

1

𝛼 ℎ 1
2 ℎ 1

2

𝒬∗
𝑢 𝜈

2
, 𝛾 𝒫∗

𝑢 𝜈
2

, 𝛾

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗ 𝜈 𝒫∗ 𝜈 ℐ 𝒬∗ 𝑢 𝒫∗ 𝑢                      

𝛻∗ 𝑢, 𝜈 , 𝛾 𝜏 1 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏               

𝛥∗ 𝑢, 𝜈 , 𝛾 𝜏 1 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏       

1

𝛼ℎ 1
2 ℎ 1

2

𝒬∗ 𝑢 𝜈
2

, 𝛾 𝒫∗ 𝑢 𝜈
2

, 𝛾

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗ 𝜈 𝒫∗ 𝜈 ℐ 𝒬∗ 𝑢 𝒫∗ 𝑢                    

𝛻∗ 𝑢, 𝜈 , 𝛾 𝜏 1 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝑑𝜏               

𝛥∗ 𝑢, 𝜈 , 𝛾 𝜏 1 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏,        

 

It follows that 

1

𝛼 ℎ 1
2 ℎ 1

2

𝒬
𝑢 𝜈

2
𝒫

𝑢 𝜈
2

 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬 𝜈 𝒫 𝜈 ℐ 𝒬 𝑢 𝒫 𝑢  

𝛻 𝑢, 𝜈 𝜏 1 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏 

𝛥 𝑢, 𝜈 𝜏 1 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏, 

that is 
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1

𝛼 ℎ 1
2 ℎ 1

2

𝒬
𝑢 𝜈

2
𝒫

𝑢 𝜈
2

≼
𝛤 𝛼

𝜈 𝑢
ℐ 𝒬 𝜈 𝒫 𝜈 ℐ 𝒬 𝑢 𝒫 𝑢 𝛻 𝑢, 𝜈 𝜏

1 𝜏 ℎ 1 𝜏 ℎ 1 𝜏 𝑑𝜏 𝛥 𝑢, 𝜈 𝜏 1 𝜏 ℎ 1

𝜏 ℎ 1 𝜏 𝑑𝜏. 

Hence, the required result. 
The Theorem 3.6 and Theorem 3.7 are directly connected with right and left part of classical 
𝐻𝐻-Fejér inequality, respectively. Now firstly, we obtain the right part of classical 𝐻𝐻-Fejér 
inequality through fuzzy Riemann Liouville fractional integral is known as second fuzzy fractional 
𝐻𝐻-Fejér inequality. 

Theorem 3.6. (Second fuzzy fractional 𝐻𝐻-Fejér inequality) Let 𝒬: 𝑢, 𝜈 → 𝔽  be a ℎ-convex 
fuzzy-IVF with 𝑢  𝜈, whose 𝛾-levels define the family of IVFs 𝒬 : 𝑢, 𝜈 ⊂ ℝ → 𝒦  are given 
by 𝒬 𝓏 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  for all 𝓏 ∈ 𝑢, 𝜈  and for all 𝛾 ∈ 0, 1 . If 𝒬 ∈ 𝐿 𝑢, 𝜈 , 𝔽  and 

𝛺: 𝑢, 𝜈 → ℝ, 𝛺 𝓏 0, symmetric with respect to , then 

ℐ 𝒬𝛺 𝜈 ℐ 𝒬𝛺 𝑢 ≼ 𝒬 𝒬 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏. (47) 

If 𝒬 is concave fuzzy-IVF, then inequality (47) is reversed. 

Proof. Let 𝒬 be a ℎ-convex fuzzy-IVF and 𝜏 𝛺 𝜏𝑢 1 𝜏 𝜈 0. Then, for each 𝛾 ∈ 0, 1 , 
we have 

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 𝜏𝑢 1 𝜏 𝜈  

𝜏 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾 𝛺 𝜏𝑢 1 𝜏 𝜈  

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 𝜏𝑢 1 𝜏 𝜈  

𝜏 ℎ 𝜏 𝒬∗ 𝑢, 𝛾 ℎ 1 𝜏 𝒬∗ 𝜈, 𝛾 𝛺 𝜏𝑢 1 𝜏 𝜈 ,    (48) 

And 

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈  

𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈  

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈  

𝜏 ℎ 1 𝜏 𝒬∗ 𝑢, 𝛾 ℎ 𝜏 𝒬∗ 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 .    (49) 
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After adding (48) and (49), and integrating over 0, 1 , we get 
  

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 𝜏𝑢 1 𝜏 𝜈 𝑑𝜏

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏                                                    

𝜏 𝒬∗ 𝑢, 𝛾 ℎ 𝜏 𝛺 𝜏𝑢 1 𝜏 𝜈 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈

𝜏 𝒬∗ 𝜈, 𝛾 ℎ 1 𝜏 𝛺 𝜏𝑢 1 𝜏 𝜈 ℎ 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈
𝑑𝜏,

𝒬∗ 𝑢, 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 𝜏𝑢 1 𝜏 𝜈 𝑑𝜏                                        

𝒬∗ 𝜈, 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏,                                          

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 𝜏𝑢 1 𝜏 𝜈 𝑑𝜏                                                    

𝜏 𝒬∗ 𝑢, 𝛾 ℎ 𝜏 𝛺 𝜏𝑢 1 𝜏 𝜈 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈

𝜏 𝒬∗ 𝜈, 𝛾 ℎ 1 𝜏 𝛺 𝜏𝑢 1 𝜏 𝜈 ℎ 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈
𝑑𝜏,

𝒬∗ 𝑢, 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 𝜏𝑢 1 𝜏 𝜈 𝑑𝜏                                             

𝒬∗ 𝜈, 𝛾 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏.                                             

  (50) 

Taking right hand side of inequality (50), we have 

  
𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

𝓏 𝑢 𝒬∗ 𝑢 𝜈 𝓏, 𝛾 𝛺 𝓏 𝑑𝓏        

𝓏 𝑢 𝒬∗ 𝓏, 𝛾 𝛺 𝓏 𝑑𝓏                        

𝜈 𝑢 𝒬∗ 𝓏, 𝛾 𝛺 𝑢 𝜈 𝓏 𝑑𝓏        

𝓏 𝑢 𝒬∗ 𝓏, 𝛾 𝛺 𝓏 𝑑𝓏                        

ℐ 𝒬∗𝛺 𝜈 ℐ  𝒬∗𝛺 𝑢 ,                            

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

ℐ  𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢 .                            
  

     (51) 

From (51), we have 
  

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢
𝒬∗ 𝑢, 𝛾 𝒬∗ 𝜈, 𝛾

2
𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈

 
𝛤 𝛼

𝜈 𝑢
ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢  

𝒬∗ 𝑢, 𝛾 𝒬∗ 𝜈, 𝛾
2

𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 ,

 

that is 
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𝛤 𝛼
𝜈 𝑢

ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢 , ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢  

𝒬∗ , 𝒬∗ , , 𝒬∗ , 𝒬∗ , 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏, 

hence 

𝛤 𝛼
𝜈 𝑢

ℐ 𝒬𝛺 𝜈 ℐ 𝒬𝛺 𝑢 ≼
𝒬 𝑢 𝒬 𝜈

2
𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏. 

Now, we obtain the following result connected with left part of classical 𝐻𝐻-Fejér inequality for 
ℎ-convex fuzzy-IVF through fuzzy order relation which is known as first fuzzy fractional 𝐻𝐻-Fejér 
inequality. 

Theorem 3.7. (First fuzzy fractional 𝐻𝐻-Fejér inequality) Let  𝒬: 𝑢, 𝜈 → 𝔽  be a ℎ-convex 
fuzzy-IVF with 𝑢 𝜈, whose 𝛾-levels define the family of IVFs 𝒬 : 𝑢, 𝜈 ⊂ ℝ → 𝒦  are given 
by 𝒬 𝓏 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  for all 𝓏 ∈ 𝑢, 𝜈  and for all 𝛾 ∈ 0, 1 . If 𝒬 ∈  𝐿 𝑢, 𝜈 , 𝔽  and 

𝛺: 𝑢, 𝜈 → ℝ, 𝛺 𝓏 0, symmetric with respect to , then 

𝒬 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 ≼ ℐ 𝒬𝛺 𝜈 ℐ 𝒬𝛺 𝑢 .    (52) 

If 𝒬 is concave fuzzy-IVF, then inequality (52) is reversed. 

Proof. Since 𝒬 is a ℎ-convex fuzzy-IVF, then for 𝛾 ∈ 0, 1 , we have 

  
𝒬∗ , 𝛾 ℎ 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾

𝒬∗ , 𝛾 ℎ 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 .
    (53) 

Since 𝛺 𝜏𝑢 1 𝜏 𝜈 𝛺 1 𝜏 𝑢 𝜏𝜈 , then by multiplying (53) by 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈  
and integrate it with respect to 𝜏 over 0, 1 , we obtain 

  
𝒬∗ , 𝛾 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏                                                      

ℎ
𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏
,

𝒬∗ , 𝛾 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏                                                      

ℎ
𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏
.

   (54) 

Let 𝓏 1 𝜏 𝑢 𝜏𝜈. Then, right hand side of inequality (54), we have 
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𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏            

  𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

𝓏 𝑢 𝒬∗ 𝑢 𝜈 𝓏, 𝛾 𝛺 𝓏 𝑑𝓏      

𝓏 𝑢 𝒬∗ 𝓏, 𝛾 𝛺 𝓏 𝑑𝓏                      

𝜈 𝑢 𝒬∗ 𝓏, 𝛾 𝛺 𝑢 𝜈 𝓏 𝑑𝓏      

𝓏 𝑢 𝒬∗ 𝓏, 𝛾 𝛺 𝓏 𝑑𝓏                       

ℐ  𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢 ,                          

𝜏 𝒬∗ 𝜏𝑢 1 𝜏 𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏            

   𝜏 𝒬∗ 1 𝜏 𝑢 𝜏𝜈, 𝛾 𝛺 1 𝜏 𝑢 𝜏𝜈 𝑑𝜏

ℐ  𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢 .                        

     (55) 

Then from (55), we have 
  

𝒬∗ , 𝛾 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢

𝒬∗ , 𝛾 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢 ,
  

from which, we have 
  

𝒬∗ , 𝛾 , 𝒬∗ , 𝛾 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢

ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢 , ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢 ,
  

  

it follows that 

𝒬 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 ℐ 𝒬 𝛺 𝜈 ℐ 𝒬 𝛺 𝑢 , 

that is 

1

2ℎ 1
2

𝒬
𝑢 𝜈

2
ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 ≼ ℐ 𝒬𝛺 𝜈 ℐ 𝒬𝛺 𝑢 . 

This completes the proof. 

Remark 3.8. If 𝛺 𝓏 1, then from Theorem 3.6 and Theorem 3.7, we get Theorem 3.1. 
If ℎ 𝜏 𝜏, then from Theorem 3.6 and Theorem 3.7, we get following factional 𝐻𝐻-Fejér 
inequality: 

𝒬 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 ≼ ℐ 𝒬𝛺 𝜈 ℐ 𝒬𝛺 𝑢 ≼ 𝒬 𝒬 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 . (56) 

Let ℎ 𝜏 𝜏  and 𝛼 1 . Then, from Theorem 3.6 and Theorem 3.7, we obtain following 
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𝐻𝐻-Fejér inequality for convex fuzzy-IVF which is also new one. 

𝒬 ≼
𝓏 𝓏

𝐹𝑅 𝒬 𝓏 𝛺 𝓏 𝑑𝓏 ≼ 𝒬 𝒬
.     (57) 

Let ℎ 𝜏 𝜏 and 𝛼 1 𝛺 𝓏 . Then, from Theorem 3.6 and Theorem 3.7, we obtain following 
𝐻𝐻-inequality for convex fuzzy-IVF given in [28]: 

𝒬 ≼ 𝐹𝑅 𝒬 𝓏 𝑑𝓏 ≼ 𝒬 𝒬
.      (58) 

If 𝒬∗ 𝓏, 𝛾 𝒬∗ 𝓏, 𝛾  and 1 𝛾  and  ℎ 𝜏 𝜏 , then from Theorem 3.6 and Theorem 3.7, 
following 𝐻𝐻-Fejér inequality for classical function following inequality given in [9]: 

𝒬 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 ℐ 𝒬𝛺 𝜈 ℐ 𝒬𝛺 𝑢
𝒬 𝒬

ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 . (59) 

If 𝒬∗ 𝓏, 𝛾 𝒬∗ 𝓏, 𝛾  and 𝛼 1 𝛾 and ℎ 𝜏 𝜏, then from Theorem 3.6 and Theorem 3.7, 
we obtain the classical 𝐻𝐻-Fejér inequality (2). 

If 𝒬∗ 𝓏, 𝛾 𝒬∗ 𝓏, 𝛾  and 𝛺 𝓏 𝛼 1 𝛾 and ℎ 𝜏 𝜏, then from Theorem 3.6 and 
Theorem 3.7, we get the classical 𝐻𝐻-inequality (1). 

Example 3.9. We consider the fuzzy-IVF 𝒬: 0, 2 → 𝔽  defined by, 

𝒬 𝓏 𝜎

⎩
⎪
⎨

⎪
⎧

𝜎

2 √𝓏
,                    𝜎 ∈ 0, 2 √𝓏 ,

2 2 √𝓏 𝜎

2 √𝓏
,   𝜎 ∈ 2 √𝓏, 2 2 √𝓏 ,

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, for each 𝛾 ∈ 0, 1 ,  we have 𝒬 𝓏 𝛾 2 √𝓏 , 2 𝛾 2 √𝓏 . Since end point 
functions 𝒬∗ 𝓏, 𝛾 , 𝒬∗ 𝓏, 𝛾  are ℎ-convex functions for each 𝛾 ∈ 0, 1 , then 𝒬 𝓏  is ℎ-convex 
fuzzy-IVF. If 

𝛺 𝓏
√𝓏,      𝜎 ∈ 0,1 ,

2 𝓏,   𝜎 ∈ 1, 2 ,
 

then 𝛺 2 𝓏 𝛺 𝓏 0, for all 𝓏 ∈ 0, 2 . Since 𝒬∗ 𝓏, 𝛾 𝛾 2 √𝓏  and 𝒬∗ 𝓏, 𝛾 2

𝛾 2 √𝓏 . If ℎ 𝜏 𝜏 and 𝛼 , then we compute the following: 

𝒬∗ , 𝒬∗ , 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈
√

𝛾 √ ,

 𝒬
∗ , 𝒬∗ , 𝜏 ℎ 𝜏 ℎ 1 𝜏 𝛺 1 𝜏 𝑢 𝜏𝜈

√
2 𝛾 √ ,

  (60) 

ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢
√

𝛾 2𝜋 √ ,

 ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢
√

2 𝛾 2𝜋 √ .
   (61)  
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From (61) and (62), we have 

√
𝛾 2𝜋 √ , 2 𝛾 2𝜋 √

√
𝛾 √ , 2 𝛾 √ , for each 𝛾 ∈ 0, 1 . 

Hence, Theorem 10 is verified. 
For Theorem 11, we have 

ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢

√
2 𝓏 𝛺 𝓏 𝛾 2 √𝓏 𝑑𝓏

√
𝓏 𝛺 𝓏 𝛾 2 √𝓏 𝑑𝓏

√
𝛾 𝜋 √

√
𝛾 𝜋

√
𝛾 2𝜋 √

                                          

ℐ 𝒬∗𝛺 𝜈 ℐ 𝒬∗𝛺 𝑢

√
2 𝓏 𝛺 𝓏 2 𝛾 2 √𝓏 𝑑𝓏

√
𝓏 𝛺 𝓏 2 𝛾 2 √𝓏 𝑑𝓏

√
2 𝛾 𝜋 √

√
2 𝛾 𝜋

√
2 𝛾 2𝜋 √ .                          

 (62) 

𝒬∗ , 𝛾 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 𝛾√𝜋,

𝒬∗ , 𝛾 ℐ 𝛺 𝜈 ℐ 𝛺 𝑢 2 𝛾 √𝜋.
      (63) 

From (63) and (63), we have 

√𝜋 𝛾, 2 𝛾
√

𝛾 2𝜋 √ , 2 𝛾 2𝜋 √ , for each 𝛾 ∈ 0, 1 . 

4. Conclusions 

In this study, we used fuzzy-interval Riemann-Liouville fractional integrals to prove some new 
Hermite-Hadamard inequalities for h-convex fuzzy IVFs. The results are consistent with those found 
in [1,2,7,16,26,28]. Furthermore, these results could be expanded in the future for different types of 
convexities and fractional integrals. 
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