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1. Introduction

In the present paper, we will investigate blow-up conditions for the following semilinear generalized
Tricomi equation with a time-dependent speed of propagation:

— *Au = P eR”, t>0,
{utt u=gx*lul X (1)

(u, u)(0, x) = (uo, u1)(x), x€R”,
with p > 1, where € is a positive parameter and g = g(7) denotes the relaxation function in the memory

term (or the so-called memory kernel). Moreover, the right-hand side of the equation in the initial value
problem (1) is given by

(g * lul”)(z, x) i=j;g(t—7)lu(T,X)|”dT,

in which the relaxation function satisfies some assumptions that will be specified later. Roughly
speaking, our main purpose in this paper is to understand the interplay effect of the parameter ¢ and
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the relaxation function g(7) to the blow-up condition (i.e. energy solutions for the Cauchy problem (1)
blows up in finite time) for the power exponent p.

In order to introduce the background related to our model (1), let us recall some results for the limit
case ¢ = 0 in the Cauchy problem (1), i.e.

utt - Au = g % |l/[|p, X € Rn, t > O, (2)
(u, u:)(0, x) = (up, uy)(x), xeR"
Concerning the special case (the Riemann-Liouville fractional integral of 1 — y order)
gt = 177 with y € (0, 1), 3)

(1 -7y)

where I stands for the Euler integral of the second kind. The completed blow-up result has been
firstly derived by Chen-Palmieri [6]. They proved blow-up of energy solutions to the semilinear wave
equation with nonlinear memory carrying (3) if

n+3-2y+ \n2+(14-4yn+3-2y)>*-8
2(n—1)

1 <p<poln,y) = for n > 2,

and 1 < p < oo for n = 1. Furthermore, py(n,y) is the greatest root of the equation

(n— D)p3(n,y) — (n+3 = 2y)po(n,y) =2 = 0. 4)

Here, we should mention that the exponent py(n,vy) is a natural generalization of the so-called
Strauss exponent, since when y T 1 the exponent py(n,vy) tends to the Strauss exponent. Here, the
Strauss exponent pg,(n) was proposed by Strauss [23] as critical exponent for the semilinear wave
equation with power nonlinearity and it is the greatest root of

(n— 1)p2y(n) = (n + Dpsu(n) =2 = 0

In the same year, Chen-Palmieri [5] investigated the blow-up condition of local in time solution
when 1 < p < pg(n) for the semilinear Moore-Gibson-Thompson (MGT) equation in the conservative
case, which is somehow a particular case (the relaxation function g() is an exponential decay function)
of the Cauchy problem (2). More detailed explanations on the relation between the semilinear MGT
equation and semilnear hyperbolic-like (or wave) model also shown in Chen-lkehata [4]. Therefore,
one may conjecture some influence of the relaxation function on the blow-up condition. Quite recently,
Chen [3] answered this conjecture and developed a generalization of the result in [5] for a wider class
of relaxation functions of the wave equation and it corresponding weakly coupled system with general
nonlinear memory terms, where some new blow-up results combined with a new threshold in the
subcritical case were derived. Although the global (in time) existence condition for the semilinear
wave equation with nonlinear memory term is a completely open problem, there are some ideas and
hints that would suggest the likelihood of the critical condition. All these results are based on the
constant propagation speed. Clearly, when the model owns variable propagation speed, the shape of
the light-cone depends on the speed of propagation. Concerning other studies for nonlinear memory in
evolution equations, we refer readers to [2,9-11].
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Let us recall the results for the semilinear generalized Tricomi equation

®)

Uy — 12Au = |ul?, xeR", t>0,
(u’ l/lt)(O, -x) = (l/l(), ul)(X), X € Rn~

In recent year, this problem caught a lot of attention. According to a series of work on global
existence and blow-up from He-Witt-Yin [12—-14] and Lin-Tu [18], one may conjecture the reasonable
critical exponent for the Cauchy problem (5) is the greatest real root p,(n, £) of the quadratic equation

((L+ Dn—1D)p>n,0) = (L+ Dn+1=20p;(n, €) = 2L + 1) = 0. (6)

Obviously, when ¢ = 0 in the last equation, the greatest real root is the Strauss exponent. Therefore,
it is a natural generalization of the Strauss exponent. In some sense, the power nonlinearity can be
treated thanks to Holder’s inequality. However, when the nonlinear part has the memory effect, we
need to find a suitable way to deal with relaxation function under suitable assumption. Other works
for the semilinear Tricomi equation with derivative-type or mixed-type nonlinearity are refereed to
Chen-Lucente-Palmieri [7], Lucente-Palmieri [19] and references therein.

From the above introduction, we found that these two generalized Strauss exponent are different,
and they have been influenced by the property of the relaxation function or the time-dependent
coeflicient. Nevertheless, to the best of author’s knowledge, the combined influence of the relaxation
function and the time-dependent coefficient on the wave equation (especially, generalized Tricomi
equation) is still unknown. In this paper, our purpose is to investigate the effects on the blow-up
range for p due to the combined presence of the speed of propagation #* and of the relaxation function
g. Moreover, we will consider a general assumption on the relaxation function whose form is not
only including the Riemann-Liouville type but also some oscillations. For these reasons, we will
face the treatment of a general memory term. Actually, we cannot use the classical Kato’s lemma
(see Kato [16]). To overcome this difficulty, we found that the iteration procedure (see, for example,
Agemi-Kurokawa-Takamura [1], Lai-Takamura [17], Palmieri-Takamura [20-22], Chen-Reissig [8]
and reference therein) will provide us a strong tool to deal with it.

After stating our main result, we will give some examples. For one thing, we will investigate the
relation between our model and the memoryless case or the constant coefficient case. For another, we
will show the wide applications of our result.

Throughout this paper, we denote Bg(0) as the ball around the origin with radius R in the whole
space R"; f < g as f < Cg with a positive constant C; f > g as f > Cg with a positive constant C;
Ny :=NU{0}.

2. Main result

To begin with, following the idea of Chen-Palmieri [6], let us introduce a suitable definition of an
energy solution for our main problem.

Definition 2.1. Let uy € H'(R") and u; € L*(R"). We say u = u(t,x) is an energy solution to the
Cauchy problem (1) if

u e C(0,T), H'(R") N CY([0,T), L*(R™)) such that g * |ul’ € L. ((0,T) x R")

loc
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satisfies u(0,-) = uy € H'(R") and the next identity is fulfilled:

f u,(t, )U(t, x)dx — f f u, (T, X)Y, (1, x)dxdt + f f TMVu(T,x)-ng(T,x)dxdT
R 0 JRrr 0 JRrr

: (7
= f u ()Y (0, x)dx + f (g * |ulP)(T, )Y (T, x)dxdt
Rn 0 Jrn

for any test function y € Cy([0,T) X R") and any t € (0, T).
Applying integration by parts in (7), we get

(u, (2, X)W (2, x) — u(t, X)W,(t, x))dx + f f u(t, X)Wry(t, x) — T AY(r, x))dxdt
R~ 0 R”

— [ (w0, ) = o0, X))l + fo (¢ * ul")(x, 0 (x, )dxd.
N

R

Thanks to Definition 2.1, we can show the main result of the present paper. Before doing this, we
introduce the exponent p,(n, ¢, 6) given by the greatest root of the quadratic equation

(L+ Dn = 1D)p2n, €,0) = (L + Dn+ 1 =20+ 2(1 — 0))pa(n, £,0) = 2(€ + 1) = 0. (8)

We feel the combined effect of the speed of propagation and of the relaxation function in (8). Precisely,
we denote

(+Dn+1-20+2(1-0))+ \/(({’+ Dn+1-20+2(1-60)>+8(¢+ D((€+ 1n—-1))

pa(n, L, 0) = 2((C+n—-1)

The influence from the relaxation function (represented by #) and the time-dependent coefficient
(represented by ¢) plays different crucial roles on the determination of the exponent p;,(n, €, 6). Indeed,
this effect cannot be easily observed from the beginning of the model.

Theorem 2.1. Let us consider the positive relaxation function g = g(t) such that
gt—1)=h(t) >0 forany 7 €[0,1], 9
and the monotonously decreasing or constant function h = h(t) has the lower bound
h(t) > Ct™ forany t >0, (10)

where 8 > 0. Let us suppose that uy € H'(R") and u; € L*(R") are nonnegative and compactly
supported functions with supports contained in a ball Bg(0) with some R > 0 such that uy,u, are
not identically zero. Let u = u(t, x) be the local (in time) energy solution to the Cauchy problem (1)
according to Definition 2.1. Providing that

1 <p<pan,t,6),
then a solution to (1) according to Definition 2.1 that satisfies
suppu C {(t,x) € [0, T) X R" : |x] < R + ¢(1)}

blows up in finite time, i.e. T < co. Here, ¢(t) := t**1 /(€ + 1) denotes the speed of propagation.
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Remark 2.1. The condition (9) may be relaxed by some approaches developed in [3], where the trick
slicing method need to be introduced. For our model, we need to investigate a new sequence in slicing
procedure. In the forthcoming future, this relaxation of condition will be studied.

Remark 2.2. Let us take the first example when g(t) is chosen so that g = |u|? is the Riemann-Liouville

fractional integral of 1 — y order, i.e. (3). Clearly,

gt—1)= F(l;—y)(t -7 > Hl;—wt_y = h(t) forany Tt € [0,1],

where h(t) is a monotonously decreasing function with y € (0, 1) and it satisfies
h(t) > Ct™” >0 forany t > 0.

So, the nontrivial energy solution to (1) blows up in finite time provided 1 < p < p>(n,{,7y). Let us
consider the limit case € | 0. We observe from (4) and (8) that

lim p>(n, £,y) = po(n,)
foranyn > 1andy € (0,1). We recall
s, {5‘7 if s>0,

lim ———— = 8y(s) in the sense of distributions with s, :=
it I'(1—7y) ols) / ’ 0 if s<O.

Thus, the blow-up result seems reasonable due to the fact that
lim pZ(n’ f’ ’)/) = pl(n’ f)
1

foranyn > 1 and € > 0. One may see (6) and (8). In this sense, we believe our result is reasonable.

Remark 2.3. Let us consider another example, in which we will show that the blow-up result not only
holds for the polynomial decay relaxation function. We set g(t) = (2 + sinw(t))t™ withy € (0, 1) and
a continuous function w(t). Then, we may find

gt—-1)=Q+sinw(t-71)(t—-7)7">Ct" forany 7 €[0,1].
Thus, we still can prove blow-up of energy solutions if 1 < p < po(n,€,7y) for £ >0 andy € (0, 1).

Remark 2.4. To determine the critical exponent for the Cauchy problem (1), even in the special case
of the Riemann-Liouville fractional integral type (3), we still need to investigate the situation when
p = pa(n,L,y). Honestly, we conjecture that for the supercritical case p > p,(n,{,y), under some
suitable assumptions on small data, the solution exists globally in time. Concerning the limit case
p = pa2(n, L, y), we expect every nontrivial solution blows up in finite time. Nevertheless, these questions
are still open problems.

Remark 2.5. Concerning lifespan estimates, we consider initial data (u, u,)(0, x) = &(ug, uy)(x) with
the positive parameter € > 0. Therefore, by following the same approach, the estimate (17) will be
changed into

3
1 ) log(z — o)

! l)logh(t) + (o +

Fo(t) 2 exp (p/(log(Moe”) + (e +

AIMS Mathematics Volume 6, Issue 10, 10907-10919.



10912

— (yo + n(¢ + 1)) log(R + t)))(h(;))—ﬁ(t _ to)_%(R n t)n(€+1).

By denoting the power of t in the exponential function by

Q(panagae) L= _0*/09_ +ﬁ0+ _70_n(€+ 1)
p-1 p-1

1
:_z(p_1)(((n—1)(€+1)+5)p2_((n_1)(f+1)+5—2(5+9—2))p—2€—2),

we arrive at upper bound estimate for lifespan

2p(p=1)
TS S g Qpnlo)

to the model (1) in (0,T,). The derivation of lifespan in this case is standard, and one may see, for
example, the end of Section 2 of [6].

3. Proof of the main theorem

3.1. Iteration frame and first lower bound estimate

Recalling some results from the paper He-Witt-Yin [12], we may define a test function ¥ = ‘¥(z, x)
such that

Y(z, x) = A)P(x) > 0, (11)

where the time-dependent test function A4 = A(¢) is given by

1

/l(t) = Cgl’l/zKl/(25+2) (mt€+l)

with the positive constant C, such that 4(0) = 1, moreover, K,(f) stands for the modified Bessel
function of the second kind with the order @. The space-dependent test function was introduced by
Yordanov-Zhang [24], namely,

ef+e* if n=1,
O(x) := , .
edo, if n>2,
Sn—l

where S"~! denotes the n — 1 dimensional sphere. Therefore, it holds that
AD(x) = ) 3 D(x) = D(x).
k=1

Due to the fact that K,(7) with positive variable 7 is the solution to the next differential equation of
second-order:

K (1) + 1K (1) — (@7 + T°)K,(1) = 0,
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we may find from (11) that

¥, — AT = (1) D(x) — XA AD(x)
= (A"(1) — A1) D(x) = 0,

carrying its value W(0, x) = ®(x) and W¥(oco, x) = 0. In other words, the test function in (11) solves the
adjoint equation of the homogeneous generalized Tricomi equation.
We now introduce two suitable functionals as follows:

Fo() ::f u(t, x)dx,
Fi@) = f u(t, x)W(t, x)dx,

where the test function ‘Y(z, x) was defined in (11). We should emphasize that the functional F(¢) plays
a crucial role in the proof, and if F((#) blows up then u(z, x) will blow up in finite time. Our aim will
be to show that F(¢) blows up in finite time. The auxiliary functional F(¢) will provide a first lower
bound for Fy(?).

Due to the support assumption in the statement of Theorem 2.1, we have

supp u(t, ) C Bryg(0) forany 1€ (0,T).

With the help of the previous statement, one may choose the test function in (7) by ¥(7,x) = 1 for

|x] < R + ¢(7), namely,
Fy1) = f i (x)dx + f f (g * ul”)(t, x)dxdr.
Rl‘l O n

Integrating the last one with respect to the time variable, it yields

Fo(t):f(uo(x)+u1(x)t)dx+f fo fsg(s—n)lu(n,x)I”dndxdsdT. (12)
Rn 0 Jo Jrr Jo

The inequality (12) implies two facts. For one thing, the nonnegativity of Fy(#) for any # > 0 can be
asserted because of the assumption on initial data. For another, by using Holder’s inequality and the
assumption on relaxation function (9), we get

! T )
Fa> [ [ et = nlutn o dndxdsar
0o Jo JrrJo
! T S
fo h(s)f |u(n, x)|Pdxdndsdr
0 Jo 0 Jrn
t T S » —(p-1)
fo h(s)f |[Fi(n)l? (f Yr1(n, x)dx dndsdr.
0 Jo 0 Brigi(0)

Employing the next estimate from He-Witt-Yin [12]:
P 17_1 tp 1 1 n—1
(f T (n, x>dx) SR+ ¢TI,
BRrig)(0)
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W€ S€€

Fo(t) 2 h(t)(R + ¢(t))_(”_”("_”f fT fs F1I"n* (R + ¢(p)) " Pdndsdr. (13)
0 Jo 0

At the same time, the application of Holder’s inequality associated with nonnegativity of Fy(¢) shows

f T S
Fo(t) > f f f gls—mn) | |u(@m,x)Pdxdndsdr
0 0 0 Rn

> Coh(t)(R + 1)~ DD f f ' f S(Fo(n))"dndsdr, (14)
0 0 0

with a positive constant Cy, which provides the iteration frame for the functional F,.

With the aim of deriving a first lower bound of F (%), it is necessary for us to turn to the lower bound
of F(t). Thanks to nonnegativity of the nonlinear term, we may directly follow the same approach of
Lemma 2.3 in He-Witt-Yin [12]. Then, there exists a constant #, > O such that

F () 2t for t > 1. (15)

Here, we have used the nontrivial assumption on u, and u; in deriving the last estimate. Thus,
combining (13) with (15), we have

, t T A B
Fo(H) 2 h()(R + 1) ¥~ Dip=DED f f f (1~ 10)'T " Dend s
to o o

n—1 p
> Cih(1)(t — 1)’z P VB(R 4 1y~ F = Dle=DED

with a positive constant C; > 0, for any ¢ > #y. In other words, we have deduced the first lower bound
estimate

Fo(t) > Qo(h(1)*(t — to)’°*(R + £)™° for any t > t,,

where
n—1 {p
Qo=Cy, ap=1, ﬁo=Tp(f+1)+3, 70=7+(n—1)(1?—1)(5+1)-

3.2. Iteration procedure

In the previous section, a first lower bound for the functional Fy(7) has been established, and
therefore, we will investigate a sequence of lower bounds for it by making use of the frame of iteration
(14). To do that, we establish the sequence of lower bounds

Fo(t) > Q;(h(t)"(t - 1R+ 1) for any t > t, (16)

where {Q} jen,» (@} jen,» 1B} jen, and {y;}jen, are sequences of nonnegative real numbers which will be
determined in the forthcoming part.

Let us assume that (16) holds for j. We need to prove that the lower bound estimate also holds for
J + 1. Let us plug (16) into the nonlinear integral inequality (14). Then, it holds

! T S
Fatt = o @ + 070 %0 [ [ [y = @ + oy s
1o 1o 1o
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. CoQf
~ Bip+ DBip+2)Bip+3)

for any ¢ > fy. So, the lower bound estimate (16) holds for j + 1 providing that

Con
Bip + DB;p +2)Bjp +3)
@ =ap+1,
Bjs1 =Bjp+3,
Y1 =yip +n(p— D+ D).

(h(t))ajpﬂ(t _ jp+3(R + t)—yjp—n(p—l)(€+1)

Qj+1 =

We now determine the sequence for a;, 8, y; firstly. We know that if
0 j+1 = 0 jpt+tm
with a constant m, then the sequence can be deduced by

§j=06p+m=35;p" +m(l+p)

ce=8pl+m(l+p+-+ ph

)P T ot

Hence, the elements in all sequences can be determined

( 1 ) , 1
Q’]: Qo + P]_ ’
p

3 . 3
.= J _

y; = (yo +n(l + 1)) p/ = n(€ + 1).

One derives

3\
Bip+ DB;p +2)Bip+3) < B;p +3)* =B, < (/30+ Py 1) pY,

which implies

-3
QjZCo(ﬁO‘i‘ ) pYQL = MpIQ

p—1

In order to estimate Q; from below, we apply the logarithmic function to both sides of the last
inequality, obtaining

logQ; >1logM —3jlogp + plog Qj_
> (1 +p)logM =3(j+(j - Dp)log p + p*log Q;-2
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10916

2 2(I+p+--+p HlogM =33+ (= Dp+---+pHlogp + p'log Qg

flogM 3pl
_ J(og B pog€+long)—
p-1 (-1

In the last chain, we used

10gM+3plogp+3jlogp
p-1 (-1D* p-1~

Jj-1 i+1
1 p=p
i—k)pt = - 7jl.
§(J p p—l(p—l ])

k=0

Let us choose j > jy such that

logM 3pl 31
_logM  3plogp  3jlogp

> 0.
p-1 (-1 p-1
Here, the positive integer j, can be fixed by
log M
jo=min{jieN: jz-—22r P L
3logp p-1
Fixing
logM 3pl
log My := o8 PSP, log Qo,

p—1 (p-172

in conclusion for j > j,, the lower bound for F(#) can be expressed by

Fo(t) = exp(p’ log Mo)(h(D) ™" 77 (1 = 10) % 77 (R + 1) 00007

X (h(t)) P T(t — to) P T(R + )"

! 1)log h(t) + (,80 +

= exp (pj( log My, + (ao + )log(t — 1)

p—1
~ (o + 1€ + 1)) log(R + 1) )(h()) 771 (t = 1) 7 (R + 1"+, (17)

According to our assumption on the relaxation function, it is valid that
log h(t) > —6logt + log C.

Concerning j > j, and ¢ > max{2t, R}, we arrive at

Fo(t) > exp (pj (log My+ M, + (—aOH - + Bo + —vo —n(f + 1)) log t))

p-1
X (h(t))_p%l(t - tO)_P%l(R + t)l’l(f+l)’

p—1

where

1
M]:(a/o+ 1)10gC—(ﬁ0+

3
+ v + n(f + 1))log2.
p—1
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The coefficient of log ¢ is

—0’09— +ﬁ0+ —’)/O—l’l(f+1)
p—1 p—1
= P+ D+ —t+2—+ 20
2 p—1
_ 1 (((n—1)(€+l)+{’)p2—((n—1)(€+1)+f—2(€+9—2))p—2€—2)>0
2(p-1)
if and only if

(n=DE+ D+ O = ((n=1)(E+ 1) +£-26+0-2)p-20-2<0

that is equivalent to our assumption 1 < p < p,(n,¢€,0). All in all, for t > max{2fy, R} and letting
Jj — oo, we can claim that the lower bound for the functional F((#) blows up in finite time. The proof
is complete.

4. Conclusions

In this paper, we found a new blow-up result for the semilinear generalized Tricomi equation with
a general nonlinear memory term. Particularly, the combined effect from the “decay” property of the
relaxation function and the propagation speed on the blow-up condition was investigated. Finally, it
seems also interesting to derive interplay effect for the corresponding nonlinear system

Uy — 20Au = g * P, xeR" t>0,
Vi — P2AY = g5 * [ul9, xeR", t>0,

(u, ur, v, v)(0, x) = (U, ur, vo, vi)(x), x€R",

where £, ¢, > 0 and g, g, satisfy suitable assumptions. The crucial point of interesting is the blow-up
condition Q(p,q) = Q(p,q; 1,2, 81,82) > 0. The weakly coupled system of generalized Tricomi
equations with power nonlinearities is studied by [15] recently. In the forthcoming future, we will
study this problem.
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