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Abstract: Semiparametric spatial autoregressive model has drawn great attention since it allows
mutual dependence in spatial form and nonlinear effects of covariates. However, with development of
scientific technology, there exist functional covariates with high dimensions and frequencies containing
rich information. Based on high-dimensional covariates, we propose an interesting and novel
functional semiparametric spatial autoregressive model. We use B-spline basis function to approximate
the slope function and nonparametric function and propose generalized method of moments to estimate
parameters. Under certain regularity conditions, the asymptotic properties of the proposed estimators
are obtained. The estimators are computationally convenient with closed-form expression. For slope
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pointwise confidence interval. Simulation studies show that the proposed method performs well.
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1. Introduction

Spatial autoregressive model (SAR) and its derivatives have been widely used in many areas such
as economics, political science, public health and so on. There are lots of literatures concerning about
spatial autoregressive models such as Anselin [1], LeSage [19], Anselin and Bera [2], Lee and Yu [20],
LeSage and Pace [21], Lee [22], Dai, Li and Tian [9]. In particular, Lee [22] utilised generalized
method of moments to make inference about spatial autoregressive model. Xu and Li [25] investigated
the instrumental variable (IV) and maximum likelihood estimators for spatial autoregressive model
using a nonlinear transformation of dependent variable. However, spatial autoregressive model may
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not be flexible enough to capture nonlinear impact of some covariates since its parametric structure.
In order to enrich model adaptability and flexibility, some semiparametric spatial autoregressive
models have been proposed. For example, Su [31] studied a semiparametric SAR, which includes
nonparametric covariates. Su and Jin [32] proposed partially linear SAR with both linear covariates and
nonparametric explanatory variables. Sun et al. [33] studied a semiparametric spatial dynamic model
with a profile likelihood approach. Wei and Sun [36] derived semiparametric generalized method of
moments estimator. Hoshino [35] proposed a semiparametric series generalized method of moments
estimator and established consistency and asymptotic normality of the proposed estimator.

However, with development of economic and scientific technology, huge amounts of data can be
easily collected and stored. In particular, some types of data are observed in high dimensions and
frequencies containing rich information. We usually call them functional data. When those types data
are included in a model as covariates, it is common to use functional linear model (FLM). There exist
vast literatures on estimation and prediction for FLM (See, for example, Reiss et al. [26], Ramsay
and Dalzell [27], Delaigle and Hall [11], Aneiros-Pérez and Vieu [3]). Many methods were proposed
to estimate the slop function such as Cardot et al. [5], Hall and Horowitz [14], Crambes et al. [8],
Shin [28]. In particular, Hall and Horowitz [14] established minimax convergence rates of estimation.
Cai and Hall [6] proposed functional principle components method and a reproducing kernel Hilbert
space approach was used in Yuan and Cai [7].

In many applications of spatial data, there are often covariates with nonlinear effect and functional
explanatory variables. This motivates us to propose an interesting and novel functional semiparametric
spatial autoregressive model. The model is relatively flexible because it utilises functional linear
model to deal with functional covariate and semiparametric SAR model to allow spatial dependence
and nonlinear effect of scalar covariate. Recently, some models consider both functional covariates
and spatial dependence. For instance, Pineda-Ríos [24] proposed functional SAR model and used
least squares and maximum likelihood methods to estimate parameters. The functional SAR model
considers spatial effect for error term instead of spatial effect for response variable. Huang et al.
[12] considered spatial functional linear model and they developed an estimation method based on
maximum method and functional principle component analysis. Hu et al. [13] developed generalized
methods of moments to estimate parameters in spatial functional linear model. In the paper, we
proposed a generalized method of moments estimator which is heteroskedasticity robust and takes
a closed-form written explicitly.

The rest of the paper is organized as follows. Section 2 introduces the proposed model and
the estimation procedure. The asymptotic properties of the proposed estimators are established in
Section 3. Section 4 conducts simulation studies to evaluate the empirical performance of the proposed
estimators. Section 5 gives some discussions about the model. All technical proofs are provided in
appendix.

2. Model and estimation method

2.1. Model and notations

Consider the following novel functional semiparametric spatial autoregressive model,

Y = ρWY + Z′θ +

∫ 1

0
X(t)β(t)dt + g(U) + ε, (2.1)
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where Y is a response variable, ρ is an unknown coefficient of the spatial neighboring effect, W is the
constant spatial weight matrix with a zero diagonal, Z = (Z1, ...,Zp)

′

is a p-dimensional covariate and
θ is its coefficient. {X(t) : t ∈ [0, 1]} is a zero-mean and second-order (i.e. E|X(t)|2 < ∞,∀t ∈ [0, 1])
stochastic process defined on (Ω,B, P) with sample paths in L2[0, 1], the Hilbert space containing
integrable functions with inner product 〈x, y〉 =

∫ 1

0
x(t)y(t)dt,∀x, y ∈ L2[0, 1] with norm ‖x‖ = 〈x, x〉1/2.

The slope function β(t) is a square integrable function on [0, 1], U is a random variable, g(·) is an
unknown function on its support [0, 1] without loss of generality. We assume E[g(·)] = 0 to ensure the
identifiability of the nonparametric function. ε is a random error with zero mean and finite variance
σ2, independent of Z,U and X(t).

Remark 1. The model (2.1) is more flexible to take different models. It generalizes both
semiparametric spatial autoregressive model [32] and functional partial linear model [28] which
correspond to the cases β(t) = 0 and ρ = 0, respectively. The model can be represented by
Y = (I−ρW)−1

∫ 1

0
X(t)β(t)dt+ (I−ρW)−1Z′θ+ (I−ρW)−1g(U)+ (I−ρW)−1ε. We assume I−ρW could

be inverted to make the presentation valid. Thus Yi is also influenced by its neighbours’ covariates X j(t)
as j , i. Parameter ρ indicates the basic impact of the neighbours. Greater absolute value of ρ means
that the response variable is more likely to be affected by its neighbours.

2.2. Estimation method

In the section, we give a method to estimate unknown parameter ρ and θ, slope function β(·) and
nonparametric function g(·). We use B-spline basis function to approximate g(·) and β(·). Let 0 = u0 <

u1... < uk1+1 = 1 be a partition of interval [0, 1]. Using ui as knots, we have N1 = k1 + l1 + 1 normalized
B-spline basis functions of order l1 + 1 that from a basis function for the linear spline space. Put the
basis function as a vector B1(t) = (B11(t), ..., B1N1(t))

′ and then the slope function β(·) is approximated
by B′1(·)γ. Similarly, let B2(u) = (B21(u), ..., B2N2(u))′ be normalized B-spline basis function vector
determined by k2 interior knots in [0, 1] and the order l2 + 1 to approximate g(·), where N2 = k2 + l2 + 1.
Then it follows that

β(t) ≈ B′1(t)γ, g(u) ≈ B′2(u)ζ,

where γ = (γ1, ..., γN1)
′ and ζ = (ζ1, ..., ζN2)

′.

Let D = 〈X(t), B1(t)〉 =

( ∫ 1

0
X(t)B11(t)dt, ...,

∫ 1

0
X(t)B1N1(t)dt

)′
,Di = 〈Xi(t), B1(t)〉. Then the model

can be rewritten as

Y ≈ ρWY + Z′θ + D′γ + B′2(U)ζ + ε.

Let P = Π(Π′Π)−1Π′ denote the projection matrix onto the space by Π, where Π = (D′, B′2(U))′.
Similar to Zhang and Shen [39], profiling out the functional approximation, we obtain

(I − P)Y ≈ ρ(I − P)WY + (I − P)Z′θ + (I − P)ε.

Let Q = (WY, Z) and η = (ρ, θ′)′. Applying the two stage least squares procedure proposed by Kelejian
and Prucha [17], we propose the following estimator

η̂ = (Q′(I − P)M(I − P)Q)−1Q′(I − P)M(I − P)Y,
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where M = H(H′H)−1H′ and H is matrices of instrumental variables. Moreover,

(γ̂, ζ̂) = (Π′Π)−1Π′(Y −Qη̂).

Consequently, we use β̂(t) = B′1(t)γ̂, ĝ(u) = B′2(u)ζ̂ as the estimator of β(t) and g(u).
For statistical inference based on η̂, consistent estimators of the asymptotic covariance matrices are

needed. Define the following estimator

σ̂2 =
1
n
‖Y − ρ̂WY − Z′θ̂ − D′γ̂ − B′2(U)ζ̂‖2,

and
Σ̂ =

1
n

Q′(I − P)M(I − P)Q,

where ‖ · ‖ is the L2 norm for a function or the Euclidean norm for a vector. In order to make statistical
inference aboutσ2, it need to get the valueω = E[(ε2

1−σ
2)2]. Therefore, we use the following estimator

ω̂ to estimate ω

ω̂ =
1
n

n∑
i=1

(ε̂2
i − σ̂

2)2.

Similar to Zhang and Shen [39], we use an analogous idea for the construction of instrument
variables. In the first step, the following instrumental variables are obtained H̃ = (W(I −
ρ̃W)−1(Z,D′γ̃, B′2(U)ζ̃), Z,Π), where ρ̃, γ̃ and ζ̃ are obtained by simply regressing Y on pseudo
regressor variables WY,Π. In the second step, instrumental variables H̃ are used to obtain the
estimators η̄, γ̄ and ζ̄, which are necessary to construct the following instrumental variables H =

(W(I− ρ̄W)−1(Z′θ̄+ D′γ̄+ B′2(U)ζ̄), Z). Finally, we use the instrumental variables H to obtain the final
estimators ρ̂ and θ̂.

3. Asymptotic theory

In this section, we derive the asymptotic normality and rates of convergence for the estimators
defined in previous section. Firstly, we introduce some notations. For convenience and simplicity,
c denote a generic positive constant, which may take different values at different places. Let β0(·)
and go(·) be the true value of function β(·) and g(·) respectively. K(t, s) = Cov(X(t), X(s)) denotes
the covariance function of X(·). an ∼ bn means that an/bn is bounded away from zero and infinity as
n→ ∞. In the paper, we make the following assumptions.

C1 The matrix I − ρW is nonsingular with |ρ| < 1.
C2 The row and column sums of the matrices W and (I − ρW)−1 are bounded uniformly in absolute

value for any |ρ| < 1.
C3 For matrix S = W(I−ρW)−1, there exists a constant λc such that λcI−SS′ is positive semidefinite

for all n.
C4 Matrix 1

nQ̃′(I − P)M(I − P)Q̃ → Σ in probability for some positive definite matrix, where Q̃ =

(W(I − ρW)−1(Z′θ +
∫ 1

0
X(t)β(t)dt + g(U)), Z).

C5 For matrix Q̃, there exsits a constant λ∗c such that λ∗c I − Q̃Q̃′ is positive semidefinite for all n.
C6 X(t) has a finite fourth moment, that is, E‖X(t)‖4 ≤ c.

AIMS Mathematics Volume 6, Issue 10, 10890–10906.



10894

C7 K(t, s) is positive definite.
C8 The nonparametric function g(·) has bounded and continuous derivatives up to order r(≥ 2) and

the slope function β(t) ∈ Cr[0, 1].
C9 The density of U, fU(u), is bounded away from 0 and ∞ on [0, 1]. Furthermore, we assume that

fU(u) is continuously differentiable on [0, 1].
C10 For the knots number k j, ( j = 1, 2), it is assumed k1 ∼ k2 ∼ k.

Assumptions C1−C3 are required in the setting of spatial autoregressive model (see, for example,
Lee [23], Kelejian and Prucha [18], Zhang and Shen [39]). They concern the restriction of spatial
weight matrix and SAR parameter. Assumption C4 (see Du et al. [10]) is used to represent the
asymptotic covariance matrix of η̂. Moreover, assumption C4 requires implicitly that the generated
regressors CZ and Z, deviated from their functional part of projection onto Π, are not asymptotically
multicollinear. Assumption C5 is required to ensure the identifiability of parameter η. Assumptions
C6−C7 are commonly assumed in functional linear model [14]. Assumption C6 is a mild restriction
to prove the convergence of our estimator. Assumption C7 guarantees the identifiability of β(t).
Assumption C8 ensures that β(·) and g(·) are sufficiently smoothed and can be approximated by basis
functions in the spline space. Assumption C9 requires a bounded condition on the covariates. It is
often assumed in asymptotic analysis of nonparametric regression problems (see, for example [15,37]).
Assumption C10 is required to achieve the optimal convergence rate of β̂(·) and ĝ(·).

Let

∆n = E(DD′) − E{E(DB′2(u)|U)[E(B2(u)B′2(u)|U)]−1E(B2(u)D′|U)},
Ωn = E(B2B′2) − E{E(B2(u)D′|V)[E(DD′|V)]−1E(DB′2(u)|V)},

where V = 〈X(t), β0(t)〉. The following theorems state the asymptotic properties of the estimators for
parameter and nonparametric function.

Theorem 1. Suppose assumptions C1-C10 hold, then
√

n(η̂ − η)
d
−→ N(0, σ2Σ−1).

Theorem 2. Assumptions C1-C10 hold and k ∼ n
1

2r+1 , then

‖β̂(·) − β0(·)‖2 = Op(n−
2r

2r+1 ).

‖ĝ(·) − g0(·)‖2 = Op(n−
2r

2r+1 ).

Remark 2. Theorem 2 gives the consistency of function estimators. The slope function estimator β̂(·)
and nonparametric function estimator ĝ(·) have the same optimal global convergence rate established
by Stone [29].

Theorem 3. Suppose assumptions C1-C10 hold, and E(|ε1|
4+r) < ∞ for some r > 0, then

σ̂2 p
−→ σ2, ω̂

p
−→ ω, and Σ̂

p
−→ Σ.

Remark 3. From the proof of Theorem 3, if trace(S)/n = o(1), it can be shown that
√

n(σ̂2 − σ2)
d
−→ N(0, ω).

AIMS Mathematics Volume 6, Issue 10, 10890–10906.



10895

Theorem 4. Suppose assumptions C1-C10 hold and n/(k2r+1
1 ) = n/(k2r+1

2 ) = o(1), for any fixed points
t, u ∈ (0, 1), as n→ ∞, √

n
k1

(β̂(t) − β∗(t))
d
−→ N(0,Ξ(t)),√

n
k2

(ĝ(u) − g∗(u))
d
−→ N(0,Λ(u)).

where β∗(t) = B′1(t)γ0, g∗(u) = B′2(u)ζ0, Ξ(t) = limn→∞
σ2

k1
B′1(t)∆nB1(t), Λ(u) =

limn→∞
σ2

k2
B′2(u)ΩnB2(u), γ0 and ζ0 are defined in Lemma 1 of appendix.

Remark 4. The above conclusions is similar to those of Yu et al. [38], which gave the asymptotic
normality for spline estimators in single-index partial functional linear regression model. Note that
β̂(t) − β0(t) = (β∗(t) − β0(t)) + (β̂(t) − β∗(t)). We obtain that β∗(t) − β0(t) = O(k−r

1 ) by Lemma 1 on
Appendix and β̂(t) − β∗(t) dominates β∗(t) − β0(t). Therefore we can use the asymptotic behaviors of
β̂(t) − β∗(t) to describe the asymptotic behaviors of β̂(t) − β0(t).

The variance Ξ(t) and Λ(u) are involved in basic function and knots. Different basis functions
and knots can get different variance estimators. Moreover, the variance expression contains unknown
quantities. Replacing them by consistent estimators can lead to approximation errors. What’s
more, there may exist heteroscedasticity in error term and then the estimator σ̂2 is not consistent.
Consequently, we propose the following residual-based method to construct piecewise confidence
interval in practice.

It is crucial that spatial structure must be preserved during data resampling in models with spatial
dependence [1]. Therefore, we employ the residual-based bootstrap procedure to derive the empirical
pointwise standard error of β̂(t) and ĝ(·). The procedure can be described as follows:

(1) Based on the data sets {Y, Z, X(t),U} and spatial matrix W, one fits the proposed model and
obtain the residual vector ε̂1 = (ε̂11, ..., ε̂n1)′. Then, we derive the centralized residual vector ε̂.

(2) Draw a bootstrap sample ε̂∗ with replacement from the empirical distribution function of ε̂ and
generate Y∗ = (I − ρ̂W)−1(Z′θ + D′γ̂ + B′2(U)ζ̂ + ε̂∗).

(3) Based on the new data sets {Y∗, Z, X(t),U} and spatial matrix W, we fit the proposed model
again to derive the estimator β̂∗(t) and ĝ∗(u). Repeat the process many times. Thus, for given t and
u, calculate empirical variance of β̂∗(t) and ĝ∗(u) respectively. Consequently, we use the empirical
variance to construct its confidence interval.

4. Simulation studies

In this section, we use simulation examples to study the properties of the proposed estimators. The
data is generated from the following model:

Yi = ρ

n∑
i=1

wi jY j + Z1iθ1 + Z2iθ2 +

∫ 1

0
β(t)Xi(t)dt + g(Ui) + εi, i = 1, ..., n,

where ρ = 0.5, β(t) =
√

2sin(πt/2) + 3
√

2sin(3πt/2) and X(t) =
∑50

j=1 γ jφ j(t), where γ j is distributed
as independent normal with mean 0 and variance λ j = (( j − 0.5)π)−2 and φ j(t) =

√
2sin(( j − 0.5)πt).
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Zi1 and Zi2 are independent and follow standard normal distribution, θ1 = θ2 = 1, Ui ∼ U(0, 1),
g(u) = sin(π(u−A)

C−A ), A =
√

3
2 −

1.654
√

12
,C =

√
3

2 + 1.654
√

12
. The spatial weight matrix W = (wi j)n×n is generated

based on mechanism that wi j = 0.3|i− j|I(i , j), 1 ≤ i, j ≤ n with wii = 0, i = 1, ..., n. A standardized
transformation is used to convert the matrix W to have row-sums of unit. We set the following three
kinds of error term: (1) εi ∼ N(0, σ2); (2) εi ∼ 0.75t(3); (3) εi ∼ (1 + 0.5Ui)N(0, σ2), where σ2 = 1.
In order to compare the different situations for magnitudes of ρ, we set ρ = {0.2, 0.7} with error term
N(0, σ2). Simulation results are derived based on 1000 replications.

To achieve good numerical performances, the order l1 and l2 of splines and the number of interior
knots k1 and k2 should be chosen. To reduce the burden of computation, we use the cubic B-spline
with four evenly distributed knots (i.e., k1 = k2 = 2) for slope function β(·) and nonparametric function
g(·) respectively. These choices of k1 and k2 are small enough to avoid overfitting in typical problem
with sample size not too small and big enough to flexibly approximate many smooth function. We use
the square root of average square errors (RASE) to assess the performance of estimators β̂(·) and ĝ(·)
respectively

RASE1 =

{ n1∑
i=1

(β̂(ti) − β(ti))2

n1

}1/2

,

RASE2 =

{ n2∑
i=1

(ĝ(ui) − g(ui))2

n2

}1/2

,

where {ti, i = 1, ..., n1}, {ui, i = 1, ..., n2} and n1 = n2 = 200 are grid points chosen equally spaced in the
domain of β(·) and g(·) respectively.

Tables 1–3 show simulation results with different kinds of error terms. Table 4 presents different
magnitudes of ρ with error term N(0, 1). They show the bias (Bias), standard deviation (SD), standard
error (SE) and coverage probability (CP) with nominal level of 95% for estimator and the mean and
standard deviation (SD) of RASE j( j = 1, 2) for β̂(·) and ĝ(·). The simulation results can be summarized
as follows:

(1) The estimators ρ̂, θ̂1, θ̂2, σ̂
2 are approximately unbiased and the estimated standard errors are

close to sample standard deviations in normal error distribution. The empirical coverage probabilities
approximate the nominal level of 95% well.

(2) Figure 1 gives an example of the estimated function curve β̂(·) and ĝ(·) and its empirical 95%
confidence interval with sample size n = 300 for error term N(0, 1). From the mean and standard
deviation (SD) of RASE j( j = 1, 2), combined with Figure 1, we conclude that the proposed function
estimators β̂(·) and ĝ(·) perform well.

(3) For error term 0.75t(3) and (1+0.5Ui)N(0, 1), the estimators ρ̂, θ̂1, θ̂2 are approximately unbiased
and the estimated standard errors are close to sample standard deviations. In addition, the mean and
standard deviation for RASE of estimated coefficient function β̂(·) and ĝ(·) are decreasing. It indicates
that parametric and non parametric estimators perform well in non-normal error term.

(4) From Table 1 and Table 4, as basic spatial effect ρ increases, the SE and SD of ρ̂ decrease. For
the different magnitudes of ρ, the Bias and SD of parametric estimators for θ̂1 and θ̂2, and the mean
of RASE for β̂(·) and ĝ(·) remain stable. It means that the magnitudes of ρ do not affect the other
parametric and nonparametric estimators.

AIMS Mathematics Volume 6, Issue 10, 10890–10906.
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Table 1. Simulation results for ρ = 0.5 with error term N(0, 1).

n Est Bias SD SE CP

100 ρ̂ -0.0091 0.0789 0.0799 0.9430

θ̂1 -0.0065 0.1058 0.1030 0.9500

θ̂2 -0.0012 0.1052 0.1078 0.9430

σ̂2 -0.1100 0.1379 0.1232 0.7900

RASE1 1.4361 0.7046

RASE2 0.1950 0.0683

300 ρ̂ -0.0031 0.0441 0.0444 0.9520

θ̂1 -0.0011 0.0594 0.0594 0.9580

θ̂2 0.0027 0.0595 0.0595 0.9480

σ̂2 -0.0291 0.0834 0.0785 0.8970

RASE1 0.7932 0.3728

RASE2 0.1108 0.0392

500 ρ̂ -0.0019 0.0339 0.0332 0.9600

θ̂1 -0.0039 0.0456 0.0442 0.9610

θ̂2 -0.0004 0.0455 0.0461 0.9410

σ̂2 -0.0212 0.0653 0.0616 0.9100

RASE1 0.6253 0.2847

RASE2 0.0838 0.0303

Note: It shows that the bias (Bias), standard deviation (SD), standard error (SE) and coverage
probability (CP) with nominal level of 95% for estimator and the mean and standard deviation
(SD) of RASE for β̂(·) and ĝ(·) from 1000 repetitions.
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Table 2. Simulation results for ρ = 0.5 with error term 0.75t(3).

n Est Bias SD SE CP

100 ρ̂ -0.0152 0.1010 0.1092 0.9620

θ̂1 -0.0059 0.1332 0.1297 0.9540

θ̂2 0.0028 0.1332 0.1376 0.9350

RASE1 1.8018 1.0485

RASE2 0.2440 0.1053

300 ρ̂ -0.0093 0.0567 0.0600 0.9530

θ̂1 0.0062 0.0761 0.0805 0.9460

θ̂2 -0.0002 0.0759 0.0793 0.9400

RASE1 0.9992 0.5281

RASE2 0.1393 0.0591

500 ρ̂ -0.0017 0.0429 0.0431 0.9500

θ̂1 -0.0008 0.0577 0.0571 0.9540

θ̂2 -0.0008 0.0578 0.0596 0.9410

RASE1 0.8034 0.4053

RASE2 0.1073 0.0427

Note: It shows that the bias (Bias), standard deviation (SD), standard error (SE) and coverage
probability (CP) with nominal level of 95% for estimator and the mean and standard deviation
(SD) of RASE for β̂(·) and ĝ(·) from 1000 repetitions.
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Table 3. Simulation results for ρ = 0.5 with error term (1 + 0.5Ui)N(0, 1).

n Est Bias SD SE CP

100 ρ̂ -0.0143 0.0979 0.0984 0.9490

θ̂1 -0.0065 0.1331 0.1465 0.9500

θ̂2 0.0048 0.1328 0.1339 0.9540

RASE1 1.8170 0.8823

RASE2 0.2431 0.0922

300 ρ̂ -0.0037 0.0556 0.0540 0.9530

θ̂1 0.0012 0.0750 0.0735 0.9500

θ̂2 -0.0032 0.0752 0.0755 0.9470

RASE1 1.0316 0.4720

RASE2 0.1411 0.0536

500 ρ̂ -0.0017 0.0431 0.0430 0.9470

θ̂1 0.0026 0.0577 0.0555 0.9570

θ̂2 -0.0026 0.0577 0.0574 0.9440

RASE1 0.8035 0.3615

RASE2 0.1058 0.0385

Note: It shows that the bias (Bias), standard deviation (SD), standard error (SE) and coverage
probability (CP) with nominal level of 95% for estimator and the mean and standard deviation
(SD) of RASE for β̂(·) and ĝ(·) from 1000 repetitions.
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Table 4. Simulation results for different magnitudes of ρ with error term N(0, 1).

ρ n Est Bias SE SD CP

0.2 100 ρ̂ -0.0114 0.1036 0.1046 0.9410
θ̂1 -0.0036 0.1046 0.1064 0.9390
θ̂2 -0.0019 0.1052 0.1009 0.9550
σ̂2 -0.1141 0.1334 0.1228 0.7500

RASE1 1.4329 0.6579
RASE2 0.1922 0.0705

300 ρ̂ 0.0013 0.0565 0.0532 0.9620
θ̂1 -0.0029 0.0585 0.0594 0.9500
θ̂2 -0.0011 0.0586 0.0586 0.9480
σ̂2 -0.0389 0.0817 0.0779 0.8820

RASE1 0.8313 0.3826
RASE2 0.1115 0.0397

500 ρ̂ -0.0012 0.0434 0.0435 0.9540
θ̂1 -0.0006 0.0452 0.0457 0.9460
θ̂2 -0.0021 0.0452 0.0439 0.9520
σ̂2 -0.0210 0.0658 0.0617 0.9090

RASE1 0.6203 0.2789
RASE2 0.0863 0.0307

0.7 100 ρ̂ -0.0059 0.0569 0.0553 0.9600
θ̂1 0.0028 0.1075 0.1101 0.9400
θ̂2 -0.0011 0.1068 0.1125 0.9340
σ̂2 -0.0990 0.1396 0.1239 0.7740

RASE1 1.4460 0.6813
RASE2 0.1935 0.0679

300 ρ̂ -0.0012 0.0317 0.0319 0.9500
θ̂1 0.0008 0.0597 0.0606 0.9480
θ̂2 0.0010 0.0597 0.0578 0.9520
σ̂2 -0.0324 0.0840 0.0782 0.8860

RASE1 0.7987 0.3837
RASE2 0.1109 0.0415

500 ρ̂ -0.0017 0.0242 0.2382 0.9560
θ̂1 -0.0035 0.0459 0.0443 0.9580
θ̂2 0.0006 0.0459 0.0488 0.9410
σ̂2 -0.0199 0.0651 0.0617 0.9030

RASE1 0.6124 0.2717
RASE2 0.0853 0.0311

Note: It shows that the bias (Bias), standard error (SE), standard deviation (SD) and coverage probability (CP) with nominal level of

95% for estimator and the mean and standard deviation (SD) of RASE for β̂(·) from 1000 repetitions.
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Figure 1. It displays the true curve β(t) and g(u) (red solid line), the estimated curve β̂(t) and
ĝ(u) (green dotted line) and ponitwise 2.5 and 97.5 percentile of the estimated function β̂(·)
and ĝ(u) (light green line) in 500 replications with sample size n = 300 respectively. In the
firgure, the left one shows estimator β̂(t) and the right one shows estimator ĝ(u) with error
term N(0,1).

5. Discussion

In this paper, an interesting and novel functional semiparametric spatial autoregressive model is
proposed. The model considers functional covariates based on semiparametric spatial autoregressive
model. The slope function and nonparametric function are approximated by B-spline basis function.
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Then generalized method of moments is proposed to estimate parameters. Under mild conditions, we
establish the asymptotic properties for proposed estimators.

In order to use our model in practical applications, firstly, response variable needs spatial
dependence. Secondly, there are covariates with nonlinear effect and functional variables. A problem
of practical interest is to extend our model to take into account functional covariates and single index
function simultaneously. What’s more, making a test about spatial dependence and nonlinear effect of
covariates is an important issue. Those topics are left for future work.
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A. Appendix

Lemma 1. Assume condition C8 holds for g0(u) and β0(t), there exits γ0 and ζ0 such that

sup
t∈(0,1)

‖β0(t) − B′1(t)γ0‖ ≤ c1k−r
1 , sup

u∈(0,1)
‖g0(u) − B′2(u)ζ0‖ ≤ c2k−r

2 ,

where γ = (γ01, ..., γ0N1)
′, ζ = (ζ01, ..., ζ0N2)

′ and c1 > 0, c2 > 0 depend only on l1 and l2, respectively.

Proof of Lemma 1. It can be followed by spline’s approximation property ( [4, 16, 34]).

Proof of Theorem 1. The proof is similar to Theorem 1 in [10] and we omit here.

Proof of Theorem 2. Let δ = n−
r

2r+1 , T1 = δ−1(γ − γ0), T2 = δ−1(ζ − ζ0) and T = (T′1,T
′
2)′. We then

prove that for any given ε > 0, there exits a sufficient large constant L = Lε such that

p
{

inf
‖T‖=L

l(φ0 + δT) > l(φ0)
}
≥ 1 − ε,

where φ0 = (γ′0, ζ
′
0)′, l(γ, ζ) =

∑n
i=1(Yi −Q′i η̂ − D′iγ − B′2(ui)ζ)2. This implies that with the probability

at least 1 − ε that there exits a local minimizer in the ball {φ0 + δT : ‖T‖ ≤ L}. By Taylor expansion
and simple calculation, it holds that

{l(φ0 + δT) − l(φ0)} ≥ −2δ
∑n

i=1(εi + R1i + R2i + Q′i(η − η̂))Vi

+δ2 ∑n
i=1 V2

i + op(1)
= A1 + A2 + op(1),

AIMS Mathematics Volume 6, Issue 10, 10890–10906.



10905

where R1i = 〈Xi(t), β0(t) − B′1(t)γ0〉,R2i = g0(ui) − B′2(ui)ζ0, Vi = D′iT1 + B′2(ui)T2. By assumption
C6, Lemmas 1 and 8 of Stone [30], we derive that ‖R1i‖ ≤ ck−r

1 , ‖R2i‖ = Op(k−r
2 ). Then by simple

calculation, we obtain that

n∑
i=1

R1iVi =

n∑
i=1

R1i(D′iT1 + B′2(ui)T2) = Op(nk−r)‖T‖.

Similarly, it hold that
∑n

i=1 εiVi = Op(
√

n)‖T‖,
∑n

i=1 R2iVi = Op(nk−r)‖T‖,
∑n

i=1 V2
i = Op(n)‖T‖2. Similar

to the proof of Theorem 2 in Du et al. [10], we get (η − η̂)′Q′Q(η − η̂) = Op(1). Then it holds that∑n
i=1 Qi(η − η̂)Vi = Op(

√
n)‖T‖. Consequently, we show that A1 = Op(nδ2)‖T‖, A2 = Op(nδ2)‖T‖2.

Then through choosing a sufficiently large L, A2 dominates A1 uniformly in ‖T‖ = L. Thus, there exits
local minimizers γ̂, ζ̂ such that ‖γ − γ̂‖ = Op(δ), ‖ζ − ζ̂‖ = Op(δ).

Let R1k1(t) = β0(t) − B′1(t)γ0. Then we get

‖β̂(t) − β0(t)‖2 =
∫ 1

0
(B′1(t)γ̂ − β0(t))2dt

=
∫ 1

0
(B′1(t)γ̂ − B′1(t)γ0 + R1k1(t))

2dt
≤ 2

∫ 1

0
{B′1(t)(γ̂ − γ0)}2dt + 2

∫ 1

0
R2

1k1
(t)dt

= 2(γ̂ − γ0)′
∫ 1

0
B1(t)B′1(t)dt(γ̂ − γ0) + 2

∫ 1

0
R2

1k1
(t)dt.

Since ‖γ − γ̂‖ = Op(δ) and ‖
∫ 1

0
B1(t)B′1(t)dt‖ = O(1), then we have

(γ̂ − γ0)′
∫ 1

0
B1(t)B′1(t)dt(γ̂ − γ0) = Op(δ2).

In addition, by Lemma1, it holds that
∫ 1

0
R2

1k1
(t)dt = Op(δ2). Thus, we obtain ‖β̂(t) − β0(t)‖2 = Op(δ2).

Similarly, we get ‖ĝ(u) − g0(u)‖2 = Op(δ2).

Proof of Theorem 3. The proof is similar to Theorem 3 in [10] and we omit here.

Proof of Theorem 4. By the definition of l(γ, ζ) in the proof of Theorem 2, we have

− 1
2n

∂l(γ̂,ζ̂)
∂γ

= 1
n

∑n
i=1

[
Yi −Q′i η̂ − D′iγ − B′2(ui)ζ

]
D′i

= 1
n

∑n
i=1

[
ẽi − D′i(γ̂ − γ0) − B′2(ui)(ζ̂ − ζ0)

]
D′i + op(1) = 0,

(A.1)

where ẽi = εi + R1i + R2i,R1i = 〈Xi(t), β0(t) − B′1(t)γ0〉,R2i = g0(ui) − B′2(ui)ζ0. The remainder is op(1)
because 1

n

∑n
i=1 Qi(η̂ − η) = op(1) by Theorem 1. In addition, we have

− 1
2n

∂l(γ̂,ζ̂)
∂ζ

= 1
n

∑n
i=1

[
ẽi − D′i(γ̂ − γ0) − B′2(ui)(ζ̂ − ζ0)

]
B′2(ui) + op(1) = 0. (A.2)

It follows from (A.2) that

ζ̂ − ζ0 = [
1
n

n∑
i=1

B′2(ui)B2(ui)]−1{
1
n

n∑
i=1

ẽiB2(ui) −
1
n

n∑
i=1

B2(ui)D′i(γ̂ − γ0) + op(1)}. (A.3)
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Let

Λ̄n =
1
n

n∑
i=1

DiD′i −
1
n

n∑
i=1

DiB′2(ui)[
1
n

n∑
i=1

B2(ui)B′2(ui)]−1 1
n

n∑
i=1

B2(ui)D′i .

By substituting (A.3) into (A.1), we obtain

γ̂ − γ0 = (Λ̄n)−1{
1
n

n∑
i=1

ẽi[Di − (
1
n

DiB′2(ui)) × [
1
n

n∑
i=1

B2(ui)B′2(ui)]−1B2(ui)] + op(1)}.

Since β̂(t) − β∗(t) = B′1(t)(γ̂ − γ0) and for any t ∈ (0, 1), as n → ∞, by the law of large numbers, the
slutsky’s theorem and the property of multivariate normal distribution, we obtain that√

n
k1

(β̂(t) − β∗(t))
d
−→ N(0,Ξ(t)),

where Ξ(t) = limn→∞
σ2

k1
B′1(t)∆nB1(t). Similar arguments hold for ĝ(u).
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