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1. Introduction

Given an n X n real matrix A and a vector g € R”, the linear complementarity problem is to find a
vector x € R" satisfying
x>20,Ax+¢>0,(Ax+¢)"x=0 (L.1)

or to show that no such vector x exists. We denote the problem (1.1) and its solution by LCP(A, ¢) and
x*, respectively. The LCP(A, g), as one of the fundamental problems in optimization and mathematical
programming, has various applications in the quadratic programming, the optimal stopping, the Nash
equilibrium point of a bimatrix game, the network equilibrium problem, the contact problem, and the
free boundary problem for journal bearing, for details, see [1,2,26].

It is well known that the LCP(A, ¢) has a unique solution x* for any ¢ € R" if and only if A is a
P-matrix [2]. Here, a real square matrix A is called a P-matrix if all its principal minors are positive.
For this case, an important topic in the study of the LCP(A, ¢) concerns the bound of ||x — x*||, since


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021630

10847

it can be used as termination criteria for iterative algorithms and can be used to measure the sensitivity
of the solution of LCP(A, g) in response to a small perturbation, e.g., [18,19,28,34]. When the matrix
A is a P-matrix, Chen and Xiang [3] gave the following error bound for the LCP(A, ¢):

X = xlle < max [|(I = D + DAY ol ()l (1.2)
de[0,1]"

where D = diag(d;) with0 < d; < 1foreachi € N :={1,...,n},d = (d,,d>,...,d,)" €[0,1]", and
r(x) = min{x, Ax + g} in which the min operator denotes the componentwise minimum of two vectors.
Furthermore, to avoid the high-cost computations of the inverse matrix in (1.2), some easily computable
bounds for the LCP(A, g) were derived for the different subclass of P-matrices, such as, B-matrices
[10, 20], doubly B-matrices [6], S B-matrices [7, 8], M B-matrices [4], B-Nekrasov matrices [11,21],
weakly chained diagonally dominant B-matrices [22,32,35], Bff-matrices [12,13,27], and so on [9, 14—
17,23,36].

Recently, Li et al. [24] presented a new subclass of P-matrices called Dashnic-Zusmanovich type
B-matrices (DZ-type-B-matrices), and provided an error bound for the LCP(A, ¢) when A is a DZ-type-
B-matrix.

Definition 1.1. [33] A matrix A = [a;;] € C™", with n > 2, is a DZ-type matrix if for each i € N, there
exists j € N, j # i such that
(laul = r/(A)) lajl > lalri(A),

where r{(A) =r1i(A) = la;jl and ri(A) = 3 lajl.
JEN\{i}

Definition 1.2. [24] Let A = [a;;] € C™" be written in the form

A=B"+C, (1.3)
where

+ + + +

ap —ry - ap—r e

+ . . . _ . . .

B = [bl]] = . ‘. . ) C - . ‘. . ’
+ + + +
Ap — T, <+ Qu— T, r r

and r! := max{0, a;;|j # i}. Then, A is called a DZ-type-B-matrix if B is a DZ-type matrix with all
positive diagonal entries.

Theorem 1.1. [24, Theorem 6] Let A = [a;;] € R™" be a DZ-type-B-matrix, and B* = [b;;] be the
matrix of (1.3). Then,

_ I <« m=1). i (B*
dfe?(f}fﬁn”(l D+ DA) |lo <(n—1) %%ngggg){l,(B ), (1.4)
where _
YiB*) = {j € N\{i} : (1bil = r/(B")) b1 > byl (B},
and

(b,',' - I”l](B"')) bjj max {m, 1} + bjjlbij| max{%, 1}

(bii = r/(B*)) bj; = Ibijlrj(B*)

Lii(BY) =
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Very recently, Cvetkovi€ et al. [5] proposed a new subclass of H-matrices called CKV-type matrices,
which generalizes CKV matrices (also known as X-SDD matrices in the literature) and DZ-type
matrices.

Definition 1.3. [5] A matrix A = [a;;] € C™", with n > 2, is called a CKV-type matrix if Ny = 0 or
S*(A) is not empty for all i € Ny, where Ny :={i € N : |a;| < r,(A)} and

S*(A) = {S € () ¢ lagl > rS (A), and forall j€ S
(il = S (Al = 75 (4) > )

with2(i) :={S CN:i€Syand r¥(A):= Y |ajl.
JeS\{i}

Motivated by the definition of DZ-type-B-matrices, two meaningful questions naturally arise: can
we get a more general subclass of P-matrices using CKV-type matrices, and can we obtain a sharper
error bound than the bound (1.4) for the linear complementarity problem of DZ-type-B-matrices? To
answer these questions, in Section 2, we present a new class of matrices: CKV-type B-matrices, and
prove that it is a subclass of P-matrices containing DZ-type-B-matrices and S B-matrices. Meanwhile,
we give an upper bound for the infinity norm for the inverse of CKV-type B-matrices. In Section 3, we
give an error bound for the LCP(A, g) when A is a CKV-type B-matrix, consequently, for the LCP(A, q)
when A is a DZ-type-B-matrix, and some comparisons with other results are also discussed. Finally, in
Section 4, numerical examples are given to illustrate the corresponding theoretical results.

2. CKV-type B-matrices

Using CKV-type matrices, we first give the definition of CKV-type B-matrices.

Definition 2.1. A matrix A € R™" is called a CKV-type B-matrix if B* given by (1.3) is a CKV-type
matrix with positive diagonal entries.

To show that a CKV-type B-matrix is a P-matrix, we recall the following results.
Lemma 2.1. /5, Theorem 6] Every CKV-type matrix is a nonsingular H-matrix.

Lemma 2.2. [29, Corollary 2.4] If A is a real nonsingular M-matrix and P is a nonnegative matrix
with rank(P)=1, then A + P is a P-matrix.

Proposition 2.1. If A is a CKV-type B-matrix, then A is a P-matrix.

Proof. Let A be written in the form A = B* + C as shown in (1.3). It follows from (1.3) and Definition
2.1 that B* is a Z-matrix (all non-diagonal entries are non-positive [1]) with positive diagonal entries
and C is a nonnegative matrix of rank 1. By Lemma 2.1, we know that B* is a nonsingular H-matrix,
and thus the conclusion follows from Lemma 2.2. O

As shown in [5, 33], the relations of strictly diagonally dominant (SDD) matrices, doubly strictly
diagonally dominant (DSDD) matrices, S -strictly diagonally dominant (§-SDD) matrices, DZ-type
matrices, and CKV-type matrices are:
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e {SDD} C {DSDD} C {DZ} € {S-SDD} and {SDD} C {DZ-type};
e {DSDD} ¢ {DZ-type} and {DZ-type} £ {DSDD};
o {DZ} ¢ {DZ-type} and {DZ-type} £ {DZ};
e {S-SDD}C {CKV-type} and {DZ-type} C {CKV-type}.

According to [24] and the above relations, we give a figure to illustrate the relations among B-
matrices, DZ-type-B-matrices, DB-matrices, S B-matrices, CKV-type B-matrices. Here, the notions of
B-matrices, DB-matrices, and of S B-matrices are listed as follows. Let A = B* + C € R™", where B*

is defined by (1.3). Then, A is called

e a B-matrix if B* is SDD with all positive diagonal entries [30];

e a DB-matrix if B* is DSDD with all positive diagonal entries [29];

e a S B-matrix if B* is §-SDD with all positive diagonal entries for a given non-empty proper subset
S of N [25].

CKV-type B

Figure 1. Relations of CKV-type B-matrices and some existing subclasses of P-matrices.

Next, we give a sufficient and necessary condition for a CKV-type B-matrix. Before that, a lemma
is needed.

Lemma 2.3. [5, Remark 9] A matrix A = [a;;] € C™, with n > 2, is called a CKV-type matrix if
S *(A) given by Definition 1.3 is not empty for all i € N. Especially, if A is an SDD matrix, then for all
i € N, all proper subsets S containing i belong to S *(A).

Proposition 2.2. Given any diagonal matrix D = diag(d,,d,, ...,d,) withd; € [0, 1] for all i € N, and
let I be the identity matrix, then A is a CKV-type B-matrix if and only if I — D + DA is a CKV-type
B-matrix.

Proof. Sufficiency is clearly established. We next show the necessity. Suppose A = [a;;] € R™" is a
CKV-type B-matrix. Then, A = B + C, where B is the matrix of (1.3). Let A := I — D + DA = [a;j]
andA:=1-D+DA = B + C, where

+ _+ DEEENY _+

- — -
all_rl Ay —rl rl rl
_+ —
= ’C: .'. . s
— —+ — —+ —+ —+
anl_rn ann_rn r‘n r‘n
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and 7 := max{0, a;;|j # i}.
Note that
_ {1 —d; +dia;;, =},
aij = o
diaij, 1+ ]
It follows that
l_"l+ = rnax{O, lejlj * l} = max{O, d,-a,-jlj * l} = dl' max{O, Cl,‘jlj * l} = dl'l";—, (21)

and

(2.2)

i

_ _ l_di+di(aii_r,‘+) = J
o {di(al-j — ), i#
Since A = B* + C, it holds that
A=I-D+DA=I1-D+D(B" +C)=(I~-D+DB")+ DC.

Note that B* = [b;;] and b;; = a;; — r/. Hence, from (2.1) and (2.2), we easily obtain that

B =I1-D+DB"and C = DC.
Let B = [by]. Then,

N d, i# )

ij —

- {1 —-d;+db;, i=],

Since A is a CKV-type B-matrix, then B* = [b;;] is a CKV-type matrix with positive diagonal
entries. Thus, by Lemma 2.3, it follows that for each i € N, there exists § € §*(B"), which implies
that

. S +
{|b,l| > r$(BY), 03

(1bil = 13 (BO)(Ibjj — 15 (B*)) > rf (BH)r$(B*) forall j € S.
Hence, for each i € N, it follows from (2.3) that
Eii - rlS(§+) =1- di + d,’ (bii - r;S(B+)) > 0,

and that for all j € S, if d; # 0 and d; # 0, then

(1Bal = rf BO) (1B = 5B = [1=di+di(bi—ri BY)|[1 = d; +d; (b - r(BY)]
d; (b — r; (BY))d; (bj; - 1} (B"))
dir (BHYd,r5 (BY)

rsBHS B,

\%

\%

andif d; = 0 ord; = 0, then
(1Bal = r$ B)) (1Bl = 5B = [1=di+di (b — r{ BD)|[1 = d; + d; (b;; - 5 (BY))]
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> 0
= BB

These mean that § € S;*(EJr) for each i € N. Therefore, from Definition 1.3, B isa CKV-type

matrix with positive diagonal entries, and consequently, A = I — D + DA is a CKV-type B-matrix from
Definition 2.1. o

In the following, we give an infinity norm bound for the inverse of CK'V-type B-matrices. First, two
lemmas are listed.

Lemma 2.4. [5] Let A = [a;;] € C™",n > 2, be a CKV-type matrix. Then

A | < max min m@xﬁfj(A),
iEN SeS*(A) jes

where S ¥ (A) is given by Definition 1.3, and
lajl = S (A) + 7 (A)
(lail = ¥ () (lajsl = 5 A)) = ¥ (A)rs A)
Lemma 2.5. [11] Suppose P = (pi,...,pn) e, wheree = (1,...,1)and p; > 0 for all i € N, then

Bi(A) =

NI+ P) e <n—1.

Theorem 2.1. Let A = [a;;] € R™,n>2, be a CKV-type B-matrix, and B* = [b;;] be the matrix
of (1.3). Then

IA”llo < (1= 1)-max min maxf(B*),
ieN SGSZ-*(B'*') jes

where S ¥ (B") is defined as in Definition 1.3, and
bl = S (B*) + rS (BY)

(B = = = :
P (1Bl = ¥ (B)) (Ibj1 = 5 (B+)) = S (B*)rS (B*)

Proof. Since A is a CKV-type B-matrix, so B is a CKV-type matrix with positive diagonal entries
and also a Z-matrix. By Corollary 4 of [31], we know that B* is an M-matrix and thus (B*)™! is
nonnegative. Hence, from A = B* + C in which B* and C are given by (1.3), we have

-1

A= (B (e @) = (o) @,

which implies that

1A Nleo < I+ (BH'O) M lso - 1B") oo (2.4)
Note that C = (r7, ..., r})" e is nonnegative. Therefore, (B*)~!C can be written as (py, . .., p,)" e, where
pi > 0foralli e N. By Lemma 2.5, we get

I+ B 'O Mlw <n—1. (2.5)

Since B* is a CKV-type matrix, it follows from Lemma 2.4 that
I(B*) 'l < max min max},(B"). (2.6)

ieN SeS*(B*) jes

Hence, from (2.4), (2.5), and (2.6), the conclusion follows. |
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3. Error bounds for the linear complementarity problem

Based on Theorem 2.1, we give in this section an upper bound of drr[l(% (I = D + DA)™'|| when A
<[0,1]"

is a CKV-type B-matrix, and give some comparisons with other results. Before that, a useful lemma is
needed.

Lemma 3.1. /20, Lemma 3] Let y > 0 and n > 0. Then for any x € [0, 1],
1 1
< —
1 —x+vyx min{y,1}

and .
n < n

l—x+vyx vy

Theorem 3.1. Let A = [a;;] € R™",n > 2, be a CKV-type B-matrix, and B* = [b;;] be the matrix of
(1.3). Then

max ||(/ — D + DA) '|o < (n—1)-max min max a; (B+) (3.1)
de[0,17" iEN SeS*(B*) jeS

where S *(B") is defined as in Definition 1.3, and

(i = 5 (B")) (by; — 5 (B*)) max {b_+(3) 1} +(bj; = 3 (B")) S (B*) max {b,,._ gy 1}
(bi = 75 (B9)) (b — 5 (BH)) = 15 (B*)rs (B*) '

Proof. Since A is a CKV-type B-matrix, by Proposition 2.2, it follows that /—D+ DA is also a CK'V-type
B-matrix. Taking into account that A = B* + C in which B* and C are defined as (1.3), then

@} (B") =

I-D+DA=1-D+DB"+C)=1-D+DB" +DC.
Denote B := I — D + DB* = [E,- ;i1 and C = DC. Then, from Theorem 2.1, we have

Il - D+ DA) | <(n—1)-max min maX,B (B ). 3.2)

ieN SES*(B ) JES
By Lemma 3.1, it follows that foralli € N, j € S,
bl =SB+ (B)
(1B4l = r$ B)) (1B = S(B)) - r$ (B (B)
1—d;+d;(by; - r(BY)) + dirf (B*)
|1 = di+di (b = 5 (BO)|[1 = d; + d; (bj; - ©5 (BY))| - dirf (B3 (BY)

1 + dir} S (B*)
1—d;+d;(bii—r5 (BY)) [1=di+di(bii—rS (B)[1-d;+d;(b; j—r§(3+))]

BB

dir’ (B*)d; 7 (B*)
[1-d;i+d;(bii— rS(B+))][1 dj+dj(bjj— j(B+))]

AIMS Mathematics Volume 6, Issue 10, 10846—-10860.
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S (BY)
1 1 i
max {bn—rf )’ 1} +max {bj,-—r;‘-‘ww’ 1} b (B)

< —
- P8 ) (BY)
bi=r} (B") bj;—rS (B*)
(b = 2 B9) (b3 = 3 (B9) max { ;b 1} + (bj; - r5(B")) 5 (B) max {b” LT 1}
(bii = r$ (B)) (bjj = r5(BY)) = rf (BY)ri (BY)
= @ (B").

Furthermore, by the proof of Proposition 2.2, S *(B*) € § .*(§+) for each i € N. Thus,

max mm max ,8 (B ) <max min maxa; (B+) 3.3)
ieN SES (B ) jGS J ieN SES (B%) ES
Hence, the conclusion follows from (3.2) and (3.3). O

Remark 3.1. Note that, if b; — r} (B*) < 1 and b;; - rf(B*) < 1, then
bjj - r?(B*) + r?(B*)

H(BY) = = = ;
E (bii = 5 (BY)) (by; = 5(BY)) = 5 (B (B*)

Ifbi,' - rf(B+) > 1 andbjj — r?(B+) < 1, then

(bii =7 (BY) (b = 1} (BN)) + 7 (BT
(bi — 5 (BY) (bj; — r5(BY) - 15 (B (BY)

a;(B") =

Ifbi - rf(B*) < 1 and bj; - ri(B*) > 1, then
bjj=ri(B) +(by = rj(BH)rf(B)
(bi = 5 (B") (by; = r5(BY)) = 5 (B (BY)

@;(B") =

Ifbi—r$(B*) > 1 and bj; - r5(B*) > 1, then
(bii = 5 (BY)) (by; = 5 (BY)) + (bj; — 15 (BH)) 13 (BY)
(i = r$(B9) (by; - 5 (BH) - (B (BY)

Since a DZ-type-B-matrix is a CKV-type B-matrix, the bound (3.1) can also be used to estimate

drr[lgllx (I = D + DA) ||, when A is a DZ-type-B-matrix. The following theorem provides that the
€

bound (3.1) is better than the bound (1.4) in Theorem 1.1 (Theorem 6 of [24]).

Theorem 3.2. Let A = [a;;] € R™" be a DZ-type-B-matrix, and B* = [b;;] be the matrix of (1.3). Then
(3.1) holds. Furthermore,

@} (B") =

max min maxa; (B+) < max mm §,J(B ),
ieN SeS*(B*) je§ ieN jeyi(B*

where y,(B*) and {;j(B") are given by Theorem 1.1, S *(B*) and afj(BJr) are defined in Theorem 3.1.
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Proof. For each i € N, note that
Yi(B*) = {j € N\{i} : (1bal = r/(BY)) Ibjs1 > Ibijlri(B)},
and
SH(BY) := {S € X(i) : |bg| > r; (B*), and forall j € S,
(161 = 2 B) (1o - 15 (B0) > 15 (B (B
with2(i):={S CN:ieS}. Take S = N\ {j}, S = {j}, j # i, then
rS(BY) = rl(B*), 1} (B*) = Ibyl, r(B*) = rj(B"), (B") =0

which leads to

(bii—rf(B+))(bjj—rf(B*))max{m,l}+< P (B+))rS(B+)max{ e 1}
(bii = 5 (B") (bj; = 5 (B*)) = rF (BH)r (BY)

a3 (BY)

by — r/(B*)) b;jmax { —— 11 + b;;|b;| max {--, 1
i . bjj

bi=r](B")

(bii - rlj(BJ“)) bjj — bijlri(B*)

&ij(BY).

It is easy to see that j € y;(B") is equivalent to S = N \ {jj} € S *(B"). Therefore, for eachi € N,

min max «; (B+) = min min  max au(B ), min max a; (B+)
SeST(B*) jeS S=N\{jleS}(B*) jes§ SeSTBHONWN\Y  jes
= min{ min ¢;(B"), min max q; (B*)
Jjeyi(B*) SeSFBH\N\Y jes
<  min ;(BY).
jeyi(BY)
This completes the proof. O

Particularly, for B-matrices, as an important subclass of CKV-type B-matrices, we next show that
the bound (3.1) is better than that given by Garcia-Esnaola and Pefia in [10] in some cases.

Theorem 3.3. [10, Theorem 2.3] Let A € R™" be a B-matrix, and B* = [b;;] be the matrix of (1.3).
Let B; := by — ri(B") and 8 := mil\p{ﬁ,-}. Then

1
<(n-1)- — .
max, Il =D+ DA e <(m—1) peeTRTh (3.4)

AIMS Mathematics Volume 6, Issue 10, 10846—-10860.
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Theorem 3.4. Let A = [a;;] € R be a B-matrix, and B* = [b;;] be the matrix of (1.3). Let B; =
by —r{(B"), B := m}vn{,B,-}, and S be a nonempty proper subset of N. Then (3.1) holds. Furthermore, if
1€

bi—ri(B*) < 1 forallie N andb;;— r5(B*) < 1 forall j €S, then,

: S pt
max min maxa;(B") < ——, 3.5
i€N SeSF(BY) jes ”( ) min{g, 1} (3-5)
and if B; > 1 for each i € N, then
max min maxa;(B") > _ (3.6)
ieN SeS*(BY) jes ~ min{g, 1}’ .

where a/fj(B*) is defined as in Theorem 3.1.

Proof. By the fact that a B-matrix is a CKV-type B-matrix, we know that (3.1) holds directly. We now
prove that (3.5) and (3.6) hold. For eachi € N, S € S¥(B"), and j € S, if b; — rf(B*) < 1 and
bj; - rf. (B*) < 1, then from Remark 3.1 that

by —ri(B*) + r (B*)
(b3 = 5 (B) (bj; = 5 (BY)) = S (BX)rS (BY)

@} (B") =

If b;; — ri(B*) < b — r(B*), then
(b= (BY) = (B < (bi— 1} (BY)) - rf (BY).
which implies that
(b = B = (by; = P (BY) K (B + 15 (BY) (by; - ¥ (BY) - ¥ (B (BY)
< (bis = r$ (BY) (bj; = r{(B")) = 1 (B)r (BY),
ie.
|(B1; = 7 B) = 15 BBy = 5 (BN) + 17 (B < (b = 1 (BY) (bys = 1} (BY) = r} (BN (BY).

It follows that

(bjj— 5 (BH)) + 13 (BY) < |
(bi = 3 (B)) (bj; = S (B)) = S (BYS(BY)  (bj;—r3(BY) - r3(BY)
1
B bjj - I"j(B+)
= max{ ! ! }
B by — ri(B*)" b;; — ri(B)
1

S — G (3.7)
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If bj; — ri(B*) > b — r(B*), then
(bj; = 5 (B) = (B = (by — r (B") - 1§ (BY),

implying that

(B = 5 (B) (b = P (BY) = (byy = 5 (BY) (B + (b — ¥ (B") P (BY) = (T (BY)

< (bi = ¥ (BN) (bj; — i (B")) = r; (B )r(BY),

i.e.
(i = £ (BD)) = 17 BY)| - [(by; = 5 (BD) + 17 BY)| < (bis = 1 (BY)) (by; = 5 (BD)) = 17 (BY)r (BY).
It holds that

(b= r5(BY)) + ¥ (BY) < 1
(i = 75 (BY) (by; = r5(BD)) = S (BYS(BY) — (bi = (BY)) = 1 (BY)
~ 1
- bii — ri(B*)
= max{ ! ! }
b — ’”i(BJ’)’ bjj - ”j(B+)
1
Hence, (3.5) follows from (3.7) and (3.8).
If B; := b;; — ri(B*) > 1 for each i € N, then
bi— 3 (B*) > by — r(B*) > 1 and bj; — r (B*) > bj; — rj(B*) > 1.
By Remark 3.1, we can see that
s ) (b = 77 (B) (bys = r (BY) + (by; = 7} (BH) 17 (BY)
a;; — —
! (bii = 5 (B9)) (bj; = 5 (BY)) = ¥ (B (BY)
(i = 5 (BH)) (bj; = 5 (BY)) + r (BY)rS (BY)
(i = 15 (B)) (bj; = 5 (BY)) = S (B*)rS (BY)
> 1.
Therefore, .
i S B+ > 1 = —_—
T e B = = e
The proof is complete. O

Remark from Theorem 3.4 that we can take the minimum of bounds (3.1) and (3.4) to estimate the
error bound for the LCP(A, g) with A being a B-matrix, that is,

1
max || =D+ DA '|lo <(n—1)-min{ ——— max min maxa (B")}.
def0,1]n IC )i ( ) {min{,B, 1} ieN seSrBY) jes ”( )}
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4. Numerical examples

In this section, three examples are given to show the advantage of the bound (3.1) in Theorem 3.1.

Example 4.1. Consider the following matrix

4 0 -2 -2
0O 3 -2 2
A= -1 -1 6 =2
-1 -1 -2 6

Obviously, B = A and C = 0. It is easy to verify that B is not a DZ-type matrix and an S-SDD
matrix, consequently, not a SDD matrix and a DSDD matrix. Hence, A is not a DZ-type-B-matrix
and an S B-matrix, and thus not a B-matrix and a DB-matrix. So we cannot use the error bounds
in [6-8,10,20,24] to estimate max ||(/ — D + DA)™!||... However, by calculations, one has that B is a

de[0,1]*

CKV-type matrix with positive diagonal entries, and thus A is a CKV-type B-matrix. So by the bound

(3.1) in Theorem 3.1, we get

max ||( = D + DA) Y|l < 21.
de [0,1]4

Example 4.2. Consider the following matrix

30 -2 =2
0o 3 -2 -2
A= -1 -1 6 0
-1 -1 0 6

Note that 7" := max{0,a;;|j # i} = 0 fori = 1,2,3,4. Hence, B* = A and C = 0. By calculations,
we have that A is a DZ-type-B-matrix, and thus it is a CKV-type B-matrix. By the bound (3.1) in

Theorem 3.1, we have

max ||[(I = D + DA) Yl < 12.6,
de[O,l]4

while by the bound (1.4) in Theorem 1.1, it holds that

max ||( = D + DA) Y. < 27.
de[0,1]4

Obviously, the bound (3.1) is sharper than bound (1.4) in Theorem 1.1 (Theorem 6 of [24]).

Example 4.3. Consider the B-matrix

1

3 —1—1—%

-1 3 -1 -1

— 2
A=1.1 21 3 -1
0 0 0 1

Note that B* = A, C = 0. Then, by the bound (3.4) in Theorem 3.3, we have

max ||(I = D + DA) Y|, < 6.
de[(),l]4
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In addition, A is also a CKV-type B-matrix. By calculations, for i = 1,2,3, take S = {1,2,3} and
S = {4}, it follows that b;; — rf(B*) <1forallie{l,2,3,4} and by — r4§(B+) < 1; and for i = 4, take
S ={4}and § = {1,2,3}, it follows that b;; — rl.S(B+) < lforallie{1,2,3,4}and b;; - rf(B*) < 1 for
all j € §, which satisfy the hypothesis of Theorem 3.4. Therefore, by Theorem 3.4, we get

max ||(I = D + DAY Y|, < 4.5,
de[0,1]4

which is smaller than the bound (3.4) in Theorem 3.3 (Theorem 2.3 of [10]).
5. Conclusions

In this paper, on the basis of the class of CKV-type matrices, a new subclass of P-matrices: CKV-
type B-matrices, containing B-matrices, DB-matrices, S B-matrices as well as DZ-type-B-matrices,
is introduced, and an upper bound for the infinity norm for the inverse of CKV-type B-matrices is
provided. Then, by this bound, an error bound for the corresponding LCP(A, ¢) is given. We also
proved that the new error bound is sharper than those of [10] and [24] in some cases, and give numerical
examples to show the advantage of our results.
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