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1. Introduction

In this paper, we assume that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna’s value distribution theory in the unit disc D = {z ∈ C : |z| < 1} (see
[1–4]). As for the definition of the iterated order of meromorphic function, we know that for r ∈
[0, 1), exp1 r = er and expn+1 r = exp(expn r), n ∈ N, and for all r sufficiently large in (0, 1), log1 r =

log r and logn+1 r = log(logn r), n ∈ N. Moreover, we denote by exp0 r = r, log0 r = r, exp−1 r =

log1 r, log−1 r = exp1 r. Then, let us recall the following definitions for n ∈ N.

Definition 1 ( [5, 6]). Let f be a meromorphic function in D. Then the iterated n-order of f is defined
by

σn( f ) = lim
r→1−

log+
n T (r, f )

− log(1 − r)
,
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where log+
1 x = log+ x = max{log x, 0}, log+

n+1 x = log+(log+
n x). For n = 1, σ1( f ) = σ( f ).

If f is analytic in D, then the iterated n-order is defined by

σM,n( f ) = lim
r→1−

log+
n+1 M(r, f )
− log(1 − r)

.

For n = 1, σM,1( f ) = σM( f ).

Remark 1 ( [5]). It follows by M. Tsuji [7] that if f is an analytic function in D, then

σ1( f ) ≤ σM,1( f ) ≤ σ1( f ) + 1,

which is the best possible in the sense that there are analytic functions g and h such thatσM,1(g) = σ1(g)
and σM,1(h) = σ1(h) + 1, see [8]. However, it follows by Proposition 2.2.2 in [3] that σM,n( f ) = σn( f )
for n ≥ 2.

Definition 2 ( [5]). Let f be a meromorphic function in D. Then the iterated n-convergence exponent
of the sequence of zeros in D of f (z) is defined by

λn( f ) = lim
r→1−

log+
n N(r, 1

f )

− log(1 − r)
,

where N(r, 1
f ) is the integrated counting function of zeros of f (z).

Similarly, the iterated n-convergence exponent of the sequence of distinct zeros in D of f (z) is
defined by

λ̄n( f ) = lim
r→1−

log+
n N(r, 1

f )

− log(1 − r)
,

where N(r, 1
f ) is the integrated counting function of distinct zeros of f (z).

In [6], Heittokangas et al. investigated the fast growing solutions of the differential equations

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = 0, (1.1)

where the coefficient of f dominates other coefficients in the unit disc D. They proved the following
result.

Theorem 1 ( [6]). Let n ∈ N and α ≥ 0. All solutions of (1) ,where the coefficients A0(z), ..., Ak−1(z)
are analytic in D, satisfy σM,n+1( f ) ≤ α if and only if σM,n(A j) ≤ α for all j = 0, ..., k − 1. Moreover, if
q ∈ {0, ..., k− 1} is the largest index for which σM,n(Aq) = max

0≤ j≤k−1
{σM,n(A j)}, then there are at least k− q

linearly independent solutions f of (1.1) such that σM,n+1( f ) = σM,n+1(Aq).

As a result of Theorem 1, by comparing the iterated n-order of coefficients, they obtained that if
q = 0, i.e., σM,n(A j) < σM,n(A0), for all j = 1, ..., k − 1, then all solutions f . 0 of (1.1) satisfy
σn+1( f ) = σM,n(A0) (see [6, Theorem 1.2]).

Heittokangas et al. in [6] and others also investigated the fast growth of solutions by comparing the
iterated n-type of coefficients if σM,n(A j) ≤ σM,n(A0) for all j = 1, ..., k − 1.

Cao and Yi obtained some results similar to Theorem 1 in [9], and in [5] Cao proved the following
results in the cases of the modulus and characteristic function of the coefficient A0 dominating,
respectively, those of other coefficients.
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Theorem 2 ( [5]). Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} > 0, and let
A0, A1, ..., Ak−1 be analytic functions in D such that

max{σM,n(Ai) : i = 1, 2, ..., k − 1} ≤ σM,n(A0) = σ < ∞,

and for some constants 0 ≤ β < α we have, for all ε > 0 sufficiently small,

|A0(z)| ≥ expn

{
α

(
1

1 − |z|

)σ−ε}
and

|Ai(z)| ≤ expn

{
β

(
1

1 − |z|

)σ−ε}
, i = 1, 2, ..., k − 1,

as |z| → 1− for z ∈ H. Then every solution f . 0 of (1.1) satisfies σn( f ) = ∞ and σn+1( f ) = σM,n(A0).

Theorem 3 ( [5]). Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} > 0, and let
A0, A1, ..., Ak−1 be analytic functions in D such that

max{σn(Ai) : i = 1, 2, ..., k − 1} ≤ σn(A0) = σ < ∞,

and for some constants 0 ≤ β < α we have, for all ε > 0 sufficiently small,

T (r, A0) ≥ expn−1

{
α

(
1

1 − |z|

)σ−ε}
and

T (r, Ai) ≤ expn−1

{
β

(
1

1 − |z|

)σ−ε}
, i = 1, 2, ..., k − 1,

as |z| → 1− for z ∈ H. Then every solution f . 0 of (1.1) satisfies σn( f ) = ∞ and αM,n ≥ σn+1( f ) ≥
σn(A0), where αM,n = max{σM,n(A j) : j = 0, 1, ..., k − 1}.

A result similar to Theorem 3 is given in Corollary 1 and 2.
In the case of the modulus of A0 dominating those of other coefficients, Hamouda obtained extensive

version and improved Theorem 2 in [10] as follows.

Theorem 4 ( [10]). Let A0(z), ..., Ak−1(z) be meromorphic functions in the unit disc D. If there exist a
point ω0 on the boundary ∂D of the unit disc and a curve γ ⊂ D tending to ω0 such that

lim
z→ω0

k−1∑
j=1
|A j(z)| + 1

|A0(z)|(1 − |z|)µ
= 0, with z ∈ γ,

for any µ > 0, then every solution f (z) . 0 of the differential Eq (1.1) is of infinite order.

Theorem 5 ( [10]). Let A0(z), ..., Ak−1(z) be meromorphic functions in the unit disc D. If there exist
ω0 ∈ ∂D and a curve γ ⊂ D tending to ω0 such that

lim
z→ω0

k−1∑
j=1
|A j(z)| + 1

|A0(z)|
expn

(
λ

(1 − |z|)µ

)
= 0, with z ∈ γ,
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where n ≥ 1 is an integer, (exp1(z) = exp(z), expn+1(z) = exp{expp(z)}), and λ > 0, µ > 0 are real
constants, then every solution f (z) . 0 of the differential Eq (1.1) satisfies σn( f ) = ∞, and furthermore
σn+1( f ) ≥ µ.

There arises a natural question: can we improve Hamouda’s results further, and what is the extensive
version releted to coefficient characteristic functions. The first aim of this paper is to investigate this
problem and obtain the following results of the fast growth of solutions of (1.1), where the modulus
and characteristic function of A0 dominates, respectively, those of other coefficients.

Theorem 6. Let A0(z), ..., Ak−1(z) be meromorphic functions in the unit disc D. Suppose there exist a
point ω0 on the boundary ∂D of the unit disc and a curve γ ⊂ D tending to ω0 such that for any µ > 0,

lim
z→ω0

z∈γ

k−1∑
j=1
|A j(z)| + 1

|A0(z)|(1 − |z|)µ
< 1. (1.2)

If the Eq (1.1) has a solution f . 0, then f is of infinite order.

Theorem 7. Let A0(z), ..., Ak−1(z) be meromorphic functions in unit disc D. Suppose there existω0 ∈ ∂D
and a curve γ ⊂ D tending to ω0 such that

lim
z→ω0

z∈γ

k−1∑
j=1
|A j(z)| + 1

|A0(z)|
expn

(
λ

(1 − |z|)µ

)
< 1, (1.3)

where n ≥ 1 is an integer, and λ > 0, µ > 0 are real constants. If the Eq (1.1) has a solution f . 0,
then f satisfies σn( f ) = ∞ and σn+1( f ) ≥ µ.

Remark 2. Obviously, Theorems 4 and 5 are direct results of Theorems 6 and 7.

Theorem 8. Let A0(z), ..., Ak−1(z) be analytic functions in the unit disc D. If there exist ω0 ∈ ∂D and a
curve γ ⊂ D tending to ω0 such that for any µ > 0,

lim
z→ω0

z∈γ

k−1∏
j=1

eT (r,A j)

eT (r,A0)(1 − |z|)µ
< 1, (1.4)

then every solution f . 0 of (1.1) is of infinite order.

Theorem 9. Let A0(z), ..., Ak−1(z) be analytic functions in the unit disc D such that

max{σM,n(Ai) : i = 1, 2, ..., k − 1} ≤ σM,n(A0) = µ (0 < µ < ∞).

If there exist ω0 ∈ ∂D and a curve γ ⊂ D tending to ω0 such that

lim
z→ω0

z∈γ

k−1∏
j=1

eT (r,A j)

eT (r,A0) expn

(
λ

(1 − |z|)µ

)
< 1, (1.5)

where n ≥ 1 is an integer, and λ > 0 is a real constant, then every solution f . 0 of (1.1) satisfies
σn( f ) = ∞ and σn+1( f ) = σM,n(A0).
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Corollary 1. Let A0(z), ..., Ak−1(z) be analytic functions in the unit disc D such that

max{σM,n(Ai) : i = 1, 2, ..., k − 1} ≤ σM,n(A0) = σ (0 < σ < ∞).

If there exist ω0 ∈ ∂D and a curve γ ⊂ D tending to ω0 such that for some constants 0 ≤ β < α and
any given ε (0 < ε < σ), we have

T (r, A0) ≥ expn−1

{
α

(
1

1 − |z|

)σ−ε}
and

T (r, Ai) ≤ expn−1

{
β

(
1

1 − |z|

)σ−ε}
, i = 1, 2, ..., k − 1,

as z→ ω0 for z ∈ γ, then every solution f . 0 of (1.1) satisfies σn( f ) = ∞ and σn+1( f ) = σM,n(A0).

In fact, from the assumption of Corollary 1, for any given ε (0 < ε < σ), taking 0 < λ < α − β, we
can easily obtain

lim
z→ω0

z∈γ

k−1∏
j=1

eT (r,A j)

eT (r,A0) expn

(
λ

(1 − |z|)µ

)
= 0 < 1.

Since ε is arbitrary, we can substitute µ by σ − ε in the assumption (1.5) and the proof of Theorem 9,
and then easily obtain the result.

Corollary 2. Let A0(z), ..., Ak−1(z) be analytic functions in the unit disc D such that

max{σn(Ai) : i = 1, 2, ..., k − 1} ≤ σn(A0) = σ (0 < σ < ∞).

If there exist ω0 ∈ ∂D and a curve γ ⊂ D tending to ω0 such that for some constants 0 ≤ β < α and
any given ε (0 < ε < σ), we have

T (r, A0) ≥ expn−1

{
α

(
1

1 − |z|

)σ−ε}
and

T (r, Ai) ≤ expn−1

{
β

(
1

1 − |z|

)σ−ε}
, i = 1, 2, ..., k − 1,

as z → ω0 for z ∈ γ, then every solution f . 0 of (1.1) satisfies σn( f ) = ∞ and αM,n ≥ σn+1( f ) ≥
σn(A0), where αM,n = max{σM,n(A j) : j = 0, 1, ..., k − 1}.

Remark 3. Corollary 1 improves Theorems 3 with an accurate value of σn+1( f ) instead of a range of
it.

Example 1. Consider the following differential equation

f ′′ + H1(z) exp2


(

1
1 − z

)2
 f ′ + 2H0(z) exp

2 exp


(

1
1 − z

)2

 f = 0,
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where H0(z) and H1(z) are meromorphic functions in the unit disc D and analytic at the point ω0 = 1.
We choose the curve γ to be the ray arg z = 0 in D.

We note that if max{σ2(H0), σ2(H1)} < 2, then the coefficients have the same 2-order and 2-type. It
is easy to see by Theorem 6, every solution f . 0 of this equation satisfies σ2( f ) = ∞ and σ3( f ) ≥ 2.

We also have that if 1 ≤ |H1(z)| ≤ |H0(z)|, then every solution f . 0 of this equation satisfies
σ( f ) = σ2( f ) = ∞ and σ3( f ) ≥ 2. For example, if H0(z) = H1(z) = 1

z , then the assumption (1.3) holds
since

lim
z→ω0

z∈γ

|A1(z)| + 1
|A0(z)|

exp2

{
1

(1 − |z|)2

}
=

1
2
< 1.

Therefore, from Theorem 7, every solution f . 0 of this equation satisfies σ2( f ) = ∞ and σ3( f ) ≥ 2.
If H0(z) and H1(z) above are analytic functions in D, then, from Theorems 8 and 9, the same results

hold, and we can easily obtain σ3( f ) = 2 further.

In addition, Cao also investigated the fixed points of homogeneous linear differential equations in
D in [5].

Theorem 10 ( [5]). Under the hypothesis of one of Theorems 2 and 3, if A1(z) + zA0(z) . 0, then every
solution f . 0 of (1.1) satisfies λn+1( f − z) = σn+1( f ).

The second aim of this paper is to investigate the fixed points of solutions of higher-order equation
further. We obtain the following result.

Theorem 11. Let A0(z), ..., Ak−1(z) be finite iterated n-order analytic (or meromorphic) functions in
the unit disc D. If all non-trivial solutions f of (1.1) satisfy σn( f ) = ∞ and σn+1( f ) < ∞, then
λn( f − z) = σn( f ) = ∞ and λn+1( f − z) = σn+1( f ).

Remark 4. By removing the condition A1(z) + zA0(z) . 0, and as a general result, Theorems 11
improves Theorems 10.

Corollary 3. Assume that the assumptions of one of Theorems 2, 3, 9, Corollaries 1 and 2 hold. Then
every solution f . 0 of (1.1) satisfies λn+1( f − z) = σn+1( f ).

2. Preliminary Lemmas

Lemma 1 ( [8]). Let k and j be integers satisfying k > j ≥ 0, and let ε > 0 and d ∈ (0, 1). If f is a
meromorphic function in D such that f ( j) does not vanish identically, then∣∣∣∣∣∣ f (k)(z)

f ( j)(z)

∣∣∣∣∣∣ ≤
( 1

1 − |z|

)2+ε

max
{

log
1

1 − |z|
,T (s(|z|), f )

}k− j

, |z| < E,

where E ⊂ [0, 1) with finite logarithmic measure
∫

E
dr

1−r < ∞ and s(|z|) = 1 − d(1 − |z|). Moreover, if
σ1( f ) < ∞, then ∣∣∣∣∣∣ f (k)(z)

f ( j)(z)

∣∣∣∣∣∣ ≤
(

1
1 − |z|

)(k− j)(σ1( f )+2+ε)

, |z| < E,

while if σn( f ) < ∞ for n ≥ 2, then∣∣∣∣∣∣ f (k)(z)
f ( j)(z)

∣∣∣∣∣∣ ≤ expn−1


(

1
1 − |z|

)σn( f )+ε
 , |z| < E.
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Lemma 2. Let f : D → R be an analytic or meromorphic function in the unit disc D. If there exist a
point ω0 ∈ ∂D and a curve γ ⊂ D tending to ω0 such that

lim
z→ω0

z∈γ

f (z) < a, a ∈ R,

then there exists a set E ⊂ [0, 1) with infinite logarithmic measure
∫

E
dr

1−r = ∞ such that for all |z| ∈ E,
we have f (z) < a.

Proof of Lemma 2. Set
lim
z→ω0

z∈γ

f (z) = b < a, a, b ∈ R.

Then for any ε = a − b > 0, there exists δ > 0 such that for all z ∈ γ and 0 < |z − ω0| < δ, we have
f (z) < b + ε = a. Let g : z → |z|, z ∈ γ and E = {|z| : z ∈ γ ∩ Do(ω0, δ)}. It is easy to see that g
is continuous and E ⊂ [0, 1) is of infinite logarithmic measure. For all |z| ∈ E, we have z ∈ γ and
0 < |z − ω0| < δ. Hence, for all |z| ∈ E, we have f (z) < a. �

Lemma 3 ( [4]). Let f be a meromorphic function in the unit disc, and let k ≥ 1 be an integer. Then

m(r,
f (k)

f
) = S (r, f ),

where S (r, f ) = O(log+ T (r, f ) + log( 1
1−r )), possibly outside a set E ⊂ [0, 1) with

∫
E

dr
1−r < +∞. If f is of

finite order of growth, then

m(r,
f (k)

f
) = O

(
log

(
1

1 − r

))
.

Lemma 4 ( [11]). Let f be a meromorphic function in the unit disc D for which i( f ) = p > 1 and
σp( f ) = β < +∞, and let k ≥ 1 be an integer. Then for any ε > 0,

m(r,
f (k)

f
) = O

expp−2

(
1

1 − r

)β+ε ,
holds for all r outside a set E ⊂ [0, 1) with

∫
E

dr
1−r < ∞.

Lemma 5 ( [12]). Let f be a solution of (1.1) where the coefficients A j(z) ( j = 0, ..., k − 1) are analytic
functions in the disc DR = {z ∈ C : |z| < R}, 0 < R ≤ ∞, let nc ∈ {1, ..., k} be the number of nonzero
coefficients A j(z), j = 0, ..., k − 1, and let θ ∈ [0, 2π) and ε > 0. If zθ = νeiθ ∈ DR is such that A j(zθ) , 0
for some j = 0, ..., k − 1, then for all ν < r < R,

| f (reiθ)| ≤ C exp
(
nc

∫ r

ν

max
j=0,...,k−1

|A j(teiθ)|1/(k− j)dt
)
,

where C > 0 is a constant satisfying

C ≤ (1 + ε) max
j=0,...,k−1

 | f ( j)(zθ)|
(nc) j max

j=0,...,k−1
|An(zθ)| j/(k−n)

 .
AIMS Mathematics Volume 6, Issue 10, 10833–10845.
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The next lemma follows by Lemma 5.

Lemma 6 ( [5, 10]). Let n ∈ N. If the coefficient A0(z), A1(z), · · · , Ak−1(z) are analytic in the unit disc
D, then all solutions of (1.1) satisfy σM,n+1( f ) ≤ max{σM,n(A j) : j = 0, · · · , k − 1}.

Lemma 7 ( [9]). If f and g are meromorphic functions in the unit disc D, n ∈ N, then we have
(i) σn( f ) = σn(1/ f ), σn(a · f ) = σn( f ) (a ∈ C − {0});
(ii) σn( f ) = σn( f ′);
(iii) max{σn( f + g), σn( f · g)} ≤ max{σn( f ), σn(g)};
(iv) if σn( f ) < σn(g), then σn( f + g) = σn(g), σn( f · g) = σn(g).

Lemma 8 ( [11]). Let A0, A1, ..., Ak−1 and F (. 0) be finite iterated p-order analytic functions in the
unit disc D. If f is a solution with σp( f ) = ∞ and σp+1( f ) = ρ < ∞ of the equation

f (k) + Ak−1 f (k−1) + · · · + A1 f ′ + A0 f = F,

then λp( f ) = λp( f ) = σp( f ) = ∞ and λp+1( f ) = λp+1( f ) = σp+1( f ) = ρ.

Lemma 9 ( [13]). Let A0, A1, ..., Ak−1 and F . 0 be meromorphic functions in the unit disc D and let f
be a meromorphic solution of the differential equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = F(z),

such that
max{σp(F), σp(A j) ( j = 0, 1, ..., k − 1)} < σp( f ).

Then λp( f ) = λp( f ) = σp( f ).

3. Proofs of Theorems

Proof of Theorem 6. Suppose that f . 0 is a solution of (1.1) with finite order σ( f ) = σ < ∞. From
Lemma 1, for a given ε > 0 there exists a set E1 ⊂ [0, 1) with

∫
E1

dr
1−r < ∞, such that for all z ∈ D

satisfying |z| < E1, we have ∣∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣∣ ≤ 1
(1 − |z|) j(σ+2+ε) ( j = 1, ..., k) (3.1)

From (1.1) we can write

|A0(z)| ≤

∣∣∣∣∣∣ f (k)(z)
f (z)

∣∣∣∣∣∣ + |Ak−1(z)|

∣∣∣∣∣∣ f (k−1)(z)
f (z)

∣∣∣∣∣∣ + · · · + |A1(z)|
∣∣∣∣∣ f ′(z)

f (z)

∣∣∣∣∣ (3.2)

By (3.1) and (3.2), for all z ∈ D satisfying |z| < E1, we have

|A0(z)| ≤ (
k−1∑
j=1

|A j(z)| + 1)
1

(1 − |z|)k(σ+2+ε) . (3.3)

AIMS Mathematics Volume 6, Issue 10, 10833–10845.



10841

By the assumption (1.2) and Lemma 2, for any µ > 0, there exists a set E2 ⊂ [0, 1) with infinite
logarithmic measure

∫
E2

dr
1−r = ∞ such that for all |z| ∈ E2, we have

k−1∑
j=1
|A j(z)| + 1

|A0(z)|(1 − |z|)µ
< 1.

It yields that for any µ > 0,

|A0(z)| >

k−1∑
j=1
|A j(z)| + 1

(1 − |z|)µ
(3.4)

as |z| ∈ E2 \ E1, where E2 \ E1 is of infinite logarithmic measure. Obviously, (3.4) contradicts (3.3) in
{z ∈ D : |z| ∈ E2 \ E1}. �
Proof of Theorem 7. Suppose that f . 0 is a solution of (1.1) with σn( f ) = σn < ∞. From Lemma
1, for a given ε > 0 there exists a set E3 ⊂ [0, 1) with

∫
E3

dr
1−r < ∞, such that for all z ∈ D satisfying

|z| < E3, if n = 1, we have ∣∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣∣ ≤ 1
(1 − |z|) j(σ1+2+ε) ( j = 1, ..., k); (3.5)

and if n ≥ 2, we have ∣∣∣∣∣∣ f ( j)(z)
f (z)

∣∣∣∣∣∣ ≤ expn−1

{(
1

1 − |z|

)σn+ε}
( j = 1, ..., k). (3.6)

Using (3.5) and (3.6) in (3.2), we have

|A0(z)| ≤ (
k−1∑
j=1

|A j(z)| + 1)
1

(1 − |z|)k(σ1+2+ε) (n = 1), (3.7)

and

|A0(z)| ≤ (
k−1∑
j=1

|A j(z)| + 1) expn−1

{(
1

1 − |z|

)σn+ε}
(n ≥ 2), (3.8)

for all z ∈ D satisfying |z| < E3. By the assumption (1.3) and Lemma 2, there exists a set E4 ⊂ [0, 1)
with infinite logarithmic measure

∫
E4

dr
1−r = ∞ such that for all |z| ∈ E4, we have

k−1∑
j=1
|A j(z)| + 1

|A0(z)|
expn

{
λ

(1 − |z|)µ

}
< 1.

It yields that

|A0(z)| > (
k−1∑
j=1

|A j(z)| + 1) expn

{
λ

(1 − |z|)µ

}
, |z| ∈ E4. (3.9)

Obviously, (3.9) contradicts both (3.7) and (3.8) in {z ∈ D : |z| ∈ E4 \ E3}. So, σn( f ) = ∞. Now by
Lemma 1 and since σn( f ) = ∞ (n ≥ 1), we have∣∣∣∣∣∣ f (k)(z)

f ( j)(z)

∣∣∣∣∣∣ ≤
( 1

1 − |z|

)2+ε

max
{

log
1

1 − |z|
,T (s(|z|), f )

}k− j

, |z| < E5, (3.10)
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where E5 ⊂ [0, 1) with finite logarithmic measure and s(|z|) = 1 − d(1 − |z|) (d ∈ (0, 1)). By (3.2) and
(3.10), for all z ∈ D satisfying |z| < E5, we have

|A0(z)| ≤ (
k−1∑
j=1

|A j(z)| + 1)
(

1
1 − |z|

)k(2+ε)

(T (s(|z|), f ))k. (3.11)

By (3.9) and (3.11), for all z ∈ D satisfying |z| ∈ E4 \ E5, we have

expn

{
λ

(1 − |z|)µ

}
(1 − |z|)k(2+ε) < (T (s(|z|), f ))k. (3.12)

Set s(|z|) = R. We have 1 − |z| = 1
d (1 − R) and

∫
E5

dr
1−r < ∞. So, (3.12) becomes

expn

{
λdµ

(1 − R)µ

}
(
1 − R

d
)k(2+ε) < (T (R, f ))k, R ∈ d(E4 \ E5) + 1 − d. (3.13)

Obviously, d(E4 \ E5) + 1 − d is of infinite logarithmic measure. Then by (3.13), we get

σn+1( f ) = lim
R→1−

log+
n+1 T (R, f )

− log(1 − R)
≥ µ.

�

Proof of Theorem 8. Suppose that f . 0 is a solution of (1.1) with finite order σ( f ) = σ < ∞. From
Lemma 3, we have

m(r,
f ( j)

f
) = O

(
log

(
1

1 − r

))
( j = 1, ..., k). (3.14)

From (1.1), we can write

−A0 =
f (k)

f
+ Ak−1

f (k−1)

f
+ · · · + A1

f ′

f
.

It follows that

m(r, A0) ≤
k−1∑
j=1

m(r, A j) +

k∑
j=1

m(r,
f ( j)

f
) + O(1). (3.15)

By the assumption (1.4) and Lemma 2, for any µ > 0, there exists a set E6 ⊂ [0, 1) with infinite
logarithmic measure such that for all |z| ∈ E6, we have

k−1∏
j=1

eT (r,A j)

eT (r,A0)(1 − |z|)µ
< 1.

It yields that for any µ > 0,

k−1∑
j=1

T (r, A j) − T (r, A0) + µ log
(

1
1 − |z|

)
< 0, |z| ∈ E6. (3.16)
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Using (3.14) and (3.15), we get

T (r, A0) = m(r, A0) ≤
k−1∑
j=1

T (r, A j) + O
(
log

(
1

1 − |z|

))
. (3.17)

It is easy to see (3.17) contradicts (3.16) in {z ∈ D : |z| ∈ E6}. Therefore, σ( f ) = ∞. �
Proof of Theorem 9. Suppose that f . 0 is a solution of (1.1) with σn( f ) < ∞. If n = 1, we have 3.17.
If n ≥ 2, from Lemma 4, for any ε > 0, we have

m(r,
f ( j)

f
) = O

expn−2

(
1

1 − r

)σn( f )+ε ( j = 1, ..., k), (3.18)

holds for all r outside a set E7 ⊂ [0, 1) with
∫

E7

dr
1−r < ∞. By (3.15) and (3.18), we have

T (r, A0) ≤
k−1∑
j=1

T (r, A j) + O
expn−2

(
1

1 − r

)σn( f )+ε , r < E7, n ≥ 2. (3.19)

By the assumption (1.5) and Lemma 2, there exists a set E8 ⊂ [0, 1) with infinite logarithmic measure
such that for all |z| ∈ E8, we obtain

k−1∏
j=1

eT (r,A j)

eT (r,A0) expn

(
λ

(1 − |z|)µ

)
< 1.

It yields that

T (r, A0) −
k−1∑
j=1

T (r, A j) > expn−1

(
λ

(1 − |z|)µ

)
, |z| = r ∈ E8. (3.20)

Obviously, (3.20) contradicts (3.17) and (3.19) in {z ∈ D : |z| ∈ E8 \ E7}. So, σn( f ) = ∞. Now by
Lemma 3 and since σn( f ) = ∞ (n ≥ 1), we have

m(r,
f (k)

f
) = O(log+ T (r, f ) + log(

1
1 − r

)), (3.21)

possibly outside a set E9 ⊂ [0, 1) with
∫

E9

dr
1−r < ∞. Using (3.21) in (3.15), we obtain

T (r, A0) ≤
k−1∑
j=1

T (r, A j) + O
(
log+ T (r, f ) + log

(
1

1 − r

))
, r < E9. (3.22)

By (3.20) and (3.22), we have

expn−1

(
λ

(1 − |z|)µ

)
< O

(
log+ T (r, f ) + log

(
1

1 − r

))
, |z| = r ∈ E8 \ E9. (3.23)

Obviously, E8 \ E9 is of infinite logarithmic measure. Then by (3.23), we get

σn+1( f ) = lim
r→1−

log+
n+1 T (r, f )

− log(1 − r)
≥ µ.
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By Lemma 6, we obtain σn+1( f ) ≤ σM,n(A0) = µ. Therefore, σn+1( f ) = σM,n(A0) = µ. We complete the
proof. �
Proof of Theorem 11. Suppose that f . 0 is a solution of (1.1). By the assumption, we have

σn( f ) = ∞, σn+1( f ) < ∞. (3.24)

Set g(z) = f (z) − z, z ∈ D. Then by (3.24), we get

σn(g) = σn( f ) = ∞, σn+1(g) = σn+1( f ), λn+1(g) = λn+1( f − z). (3.25)

Substituting f = g + z into (1.1), we get

g(k) + Ak−1g(k−1) + · · · + A1g′ + A0g = −A1 − zA0. (3.26)

Next we prove that −A1 − zA0 . 0. Suppose that −A1 − zA0 ≡ 0. Hence Eq (1.1) has a solution f1

satisfying f1 = −z and σn( f1) < ∞. This contradicts (3.24). Hence, −A1 − zA0 . 0. By Lemma 7, we
have

max{σn(−A1 − zA0), σn(A j) ( j = 0, 1, ..., k − 1)} < ∞.

Hence, by (3.25), (3.26) and Lemma 8 or Lemma 9, we deduce that λn(g) = σn(g) = ∞, λn+1(g) =

σn+1(g). Therefore, we obtain

λn( f − z) = λn(g) = σn(g) = σn( f ) = ∞,

λn+1( f − z) = λn+1(g) = σn+1(g) = σn+1( f ).

�
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