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Abstract: In this paper, the problem of estimating the parameter of Akash distribution applied when
the lifetime of the product follow Type-II censoring. The maximum likelihood estimators (MLE) are
studied for estimating the unknown parameter and reliability characteristics. Approximate confidence
interval for the parameter is derived under the s-normal approach to the asymptotic distribution of
MLE. The Bayesian inference procedures have been developed under the usual error loss function
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1. Introduction

Firstly, Akash distribution, a continuous one parameter distribution which has been introduced by
Shanker [1]. Akash distribution has many real life application in studies pertaining to medical,
engineering and survival analysis. Akash distribution has been proved useful in making statistical
inferences for such situations. They studied the shapes of the density moments, distribution of order
statistics, Renyi entropy measure, skewness and kurtosis. In particular, the author have obtained
reliability characteristics and stress-strength reliability of the proposed model. They have computed
the MLE, method of moment estimate for the unknown parameter and studied their behavior
numerically. Two real lifetime data sets are analysed from medical science.

Akash distribution is described respectively by the probability density function (PDF) and
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cumulative distribution function (CDF), take the following forms:

fX(x) =
β3

(β2 + 2)
(1 + x2) e−β x , x > 0, β > 0, (1.1)

FX(x) = 1 −
(
1 +

β x (β x + 2)
(β2 + 2)

)
e−β x , x > 0. (1.2)

This distribution can be easily expressed as a combination of exponential (β) and gamma (3, β) with
their mixing proportions β2

β2+2 and 2
β2+2 respectively.

Consequently, the hazard rate, reliability and mean residual life functions take the following forms

h(t) =
β2(t + 1)

(β t + β + 1)
, t > 0. (1.3)

R(t) =

(
1 +

β t (β t + 2)
(β2 + 2)

)
e−β t, t > 0, (1.4)

m(t) =
(β t + β + 2)
β(β t + β + 1)

, t > 0. (1.5)

In last few years, many authors have studied inference methods for Akash distribution. Using
one parameter family of distribution such as Akash, exponential and Lindley distributions have been
innovated and considered the concept of modeling of lifetime data by Shanker et al. [2]. They have
also obtained some inferential problems. Many real life data sets are used to reflected its exibility over
the exponential distribution. Shanker and Shukla [3] studied two-parameter Akash distribution and
calculated its different statistical properties, estimation problem and application to this distribution.
Shanker et al. [4] has introduced a generalized Akash distribution and studied their statistical aspects in
this paper. The method of moments and the maximum likelihood method for estimating its parameters
have been obtained. Also for real data, the author have fitted this distribution and compareed with
other several distribution. Abushal [5] studied the classical and Bayesian property of the unknown
parameters and reliability characteristic of Shanker distribution. However, two real data sets are studied
and the applicability of Shanker distribution have been presented. Owing to this we can treat Akash
distribution as an alternative lifetime model in reliability analysis.

In the literature, Several censoring schemes have been discussed. Even though, Type-I and Type-
II censoring schemes are most popular censoring. Consider a life test where n independent units
taken from a Akash distribution are placed under observation and failure time of each unit is recorded.
Suppose that the test is terminated when rth, (1 ≤ r ≤ n, r is prefixed) unit fails. These observed
failure times, say (X1, X2, . . . , Xr); X1 ≤ X2 ≤ · · · ≤ Xr, is a Type-II censored sample of size r. In this
censoring scheme n−r units remain unobserved and survive beyond the time of termination. In Type-II
censoring the time of termination is a random variable. The likelihood function based on X1, X2, . . . , Xr

is given by (see, Cohen [6] for detail)

L(| x) =
n!

(n − r)!

r∏
i=1

f (x(i))
[
1 − F(x(r))

]n−r
(1.6)
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The number of failure times r is fixed in Type-II censoring whereas the random observation is the
endpoint X(r). One may refer to the book by Lawless [7] for extensive literature and applications of this
censoring.

The current paper is concerned with estimating the unknown parameter β, the reliability function
R(t), the hazard function h(t) and the mean residual life function m(t) of an Akash distribution
grounded on Type-II censored sample. Section 2, displays the estimates of the unknown parameter
using maximum likelihood estimate. Approximate confidence intervals (CIs) are also derived. Section
3, considered the Bayesian estimates and Highest posterior density (HPD) interval are discussed.
Furthermore, a Simulation study is presented using Monte Carlo simulations in section 4 and section
6, presents a real life data to explain all the methods discussed. At last, the conclusion shown in
section 7.

2. Maximum likelihood estimators

Assume that n independent observed values taken of Akash distribution as presented in (1.1) are
put on a test. Using the Type-II censoring, we obtained the ordered r failures. If the ordered r failures
are X(1), X(2), . . . , X(r) then the likelihood function of β, under Type-II censored data drawn of an Akash
distribution, is obtained as follows:

L(β | x) ∝
β3r

(β2 + 2)n e−β s (β2 + 2 + 2 β x(r) + β2 x2
(r))

n−r, (2.1)

where s =

r∑
i=1

xi + x(r) (n − r), x = (x(1), x(2), . . . , x(r)); x(1) ≤ x(2) ≤ · · · ≤ x(r).

We consider the logarithm of likelihood function (2.1) as

log L(β) ∝ 3 r log β − n log(β2 + 2) − β s + (n − r) log(β2 x2
(r) + 2β x(r) + β2 + 2). (2.2)

MLEs of β is a solution of Eq (2.2) accomplished by addressing the first partial derivatives of the
total log-likelihood to be zero. So, we consider the equation as follows,

d log L
dβ

=
3 r
β
−

2 β n
(β2 + 2)

− s +
(n − r)(2 β x2

(r) + 2 x(r) + 2 β)

(β2 x2
(r) + 2β x(r) + β2 + 2)

= 0. (2.3)

The closed form solutions to the nonlinear Eq (2.3) is difficult to reach and a numerical method must
be applied to solve these simultaneous equation for obtaining the MLE β̂ of β. Iterative techniques
like Newton-Raphson and Broydan used to obtain the desired estimate. In particular, the nonlinear
equations are solved using nleqslv package of the R statistical software. We refer to Pradhan and
Kundu [8] for a detailed discussion for the initial guess and convergence of the iterative process. We
have taken true parameter values as our initial guess.

Note that (2.3) becomes in the form:

β = h(β), (2.4)
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where,

h(β) = 3 r
[

2 nβ
(β2 + 2)

+ s −
(n − r)(2β x2

(r) + 2 x(r) + 2β)

(β2 x2
(r) + 2β x(r) + β2 + 2)

]−1

.

We plan a simple iterative techniques to resolve (2.4) for β. Start with an initial guess say β(0) and
obtain β(1) = h(β(0)) and continuance this, we get β(k) = h(β(k−1)). When we get |β(k) − β(k−1)| < υ, we
stop this proceeding.

Finally, We have obtained the MLE of reliability characteristic as follows:

R̂(t) =

(
1 +

β̂ t (β̂ t + 2)
(β̂2 + 2)

)
e−β̂ t, ĥ(t) =

β̂2(t + 1)
(β̂ t + β̂ + 1)

, and m̂(t) =
(β̂ t + β̂ + 2)
β̂(β̂ t + β̂ + 1)

t > 0.

The interval estimation for the parameter that gets in the observed Fisher’s information I(β̂) for the

likelihood is obtain by I(β̂) = −
d2 log L

dβ2

∣∣∣∣∣∣
β=β̂

.

Frequently, following the asymptotic variance of MLE for Akash distribution parameter is computed
using observed Fisher’s information i.e., Var(β̂) = [IX(β)]−1.

The sampling distribution of (β̂−β)√
Var(β̂)

can be approximating by a standard normal distribution. That

is, the approximate of a two sided 100(1 − η)% confidence intervals for β given by β̂ ± z η
2

√
Var(β̂),

where 0 < η < 1 and z η
2

is the η

2 th percentile of standard normal distribution. The coverage probability
using simulation is presented by

P


∣∣∣∣∣∣ (β̂ − β)√

Var(β̂)

∣∣∣∣∣∣ ≤ z η
2

 = (1 − η).

3. The Bayesian estimation

In this section, we have derived Bayes estimates for parameter β and reliability characteristics of an
Akash distribution. We consider the Bayesian inference under squared error loss function which is also
called the quadratic loss function. This is symmetrical loss function and it has been considered equal
important. This loss function may be mathematically expressed as: L(d(µ), d̂(µ)) = (d̂(µ)− d(µ))2 with
d̂(µ) being an estimate for d(µ). Here d(µ) denotes some parametric function of µ. thus, the Bayesian
estimate; denoted by d̂(µ) can be determined by the posterior mean of d(µ).

Suppose X(1), X(2), . . . , X(r) be a Type-II censored order statistics of a random sample of size n, of
Akash distribution. Any conjugate and noninformative prior distribution can used if unknown
parameter does not exit. Kundu and Pradhan [9] discussed in detail that Gamma distribution can
accommodate variety of shapes depending upon parameter values. Thus the family of gamma
distributions is highly flexible in nature and can be considered as suitable prior β. It is assumed that β
has Gamma (a, b) prior i.e.,

π(β) ∝ βa−1 e−b β β > 0, a > 0, b > 0. (3.1)
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Based on the prior, the posterior distribution of β is derived as

π(β | x) ∝
β3 r+a−1

(β2 + 2)n e−β (b+s) (β2 x2
(r) + 2β x(r) + β2 + 2)(n−r) , (3.2)

Hence, x = (x(1), x(2), . . . , x(r)).
Therefore, the Bayes estimate of β under the square error loss function is computed as,

β̃ = E[β | x ] =
1
k

∫ ∞

0

β3 r+a

(β2 + 2)n e−β (b+s) (β2 x2
(r) + 2β x(r) + β2 + 2)(n−r) dβ,

k =

∫ ∞

0

β3 r+a−1

(β2 + 2)n e−β (b+s) (β2 x2
(r) + 2β x(r) + β2 + 2)(n−r) dβ.

Next, the Bayes estimate of reliability characteristic can be addressed as

R̃(t) =
1
k

∫ ∞

0

β3 r+a−1 (β2 t2 + 2β t + β2 + 2)
(β2 + 2)n+1 e−β (b+s+t) (β2 x2

(r) + 2β x(r) + β2 + 2)(n−r) dβ,

h̃(t) =
1
k

∫ ∞

0

β3 r+a+1 (t + 1)
(β t + β + 1) (β2 + 2)n e−β (b+s) (β2 x2

(r) + 2β x(r) + β2 + 2)(n−r) dβ,

m̃s(t) =
1
k

∫ ∞

0

β3 r+a−2 (β t + β + 2)
(β t + β + 1) (β2 + 2)n e−β (b+s) (β2 x2

(r) + 2β x(r) + β2 + 2)(n−r) dβ,

Generally speaking, the ratio of the above integrals of all Bayes estimates of the parameter and
reliability characteristic is not to be achieved in a closed forms. Therefore, the next section focuses on
employing two famouse approximation techniques.

3.1. Lindley’s approximation

It may be noted that the above Bayes estimates takes a ratio of two integrals can’t be reduced to a
closed form. Lindley [10] introduced an alternative method to approximate these integrals into a finite
values. Consequently, suppose I(x), indicates the posterior exception of β and reliability characteristic
gathering with the posterior distribution, that is expressed in the following form:

I(x) =

∫
β

g(β) el(β)+ρ(β) dβ∫
β

el(β)+ρ(β) dβ
, (3.3)

here g(β) is any function of β. and ρ(β) = log π(β) and l(β) is the log-likelihood. Lindley’s
approximation schemas, I(x) becomes

I(x) = g(β̂) +
1
2

[(
ĝββ + 2 ĝβ ρ̂β

)
σ̂ββ + ĝβ σ̂2

ββ l̂βββ
]
,
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here gββ represents the second derivative of g(β) with respect to β and ĝββ denotes the expression
obtained for β = β̂. All other terms coming concerning I(x) can be addressed as

l̂ββ =
∂2l
∂β2

∣∣∣∣∣∣
β=β̂

= −
3 r
β̂2

+
2 n (β2 − 2)
(β2 + 2)2 −

(n − r)(2β2 x4
(r) + 4β2 x2

(r) + 4β x3
(r) + 4β x(r) + 2β2 − 4)

(β2 x2
(r) + 2β x(r) + β2 + 2)2

,

l̂βββ =
∂3l
∂β3

∣∣∣∣∣∣
β=β̂

=
6 r
β̂3
−

4 n β (β2 − 6)
(β2 + 2)3 −

(n − r)(4β x4
(r) + 8β x2

(r) + 4c3 + 4x(r) + 4β)

(β2 x2
(r) + 2β x(r) + β2 + 2)2

−
2(n − r)(2β2 x4

(r) + 4β2 x2
(r) + 4β x3

(r) + 4β x(r) + 2β2 − 4)(2β x2
(r) + 2 x(r) + 2 β)

(β2 x2
(r) + 2β x(r) + β2 + 2)3

,

σ̂ββ = −
1

l̂ββ
, ρ̂β =

(a − 1)
β̂

− b.

The corresponding Bayes estimate of β, we have

g(β) = β, gβ = 1, gββ = 0, β̃l = β̂ +

[
ρ̂β σ̂ββ + 0.5 σ̂2

ββ l̂βββ
]
.

Consequently, we use the square error loss function, to compute the Bayes estimates for reliability
characteristic in a similar manner.

We adopt the Metropolis-Hastings (MH) algorithm and derive Bayes estimates in the next part.
Focuses on Hastings [11] and Metropolis et al. [12].

3.2. Metropolis-Hastings algorithm

Therefore, in the following algorithm, we employ the well-known Metropolis-Hastings MH
algorithm gathering normal proposal distribution to generate samples from this distributions.
Step 1: Let initial value of the parameter to be β0 and set l=1.
Step 2: Generate βk using the proposal distribution N(βl−1, σ

2).
Step 3: Obtain λ =

π(βk |x)
π(βl−1 |x) .

Step 4: We obtain a sample α with the help of uniform distribution with parameter 0 and 1.
Step 5: If α ≤ λ then set

βl ← βk; otherwise βl ← βl−1.

Step 6: Repeat steps (2–5) B times and we get adequate number of replicates.
We are able to obtain sample from the posterior distribution of β by this way. Let us assume that B

represent the total number of generated sample and B0 represent the initial burn-in sample.
The Bayes estimate of β and R(t) against SELF are computed by:

β̃m =
1

B − B0

B∑
j=B0+1

β j,

R̂m(t) =
1

B − B0

B∑
j=B0+1

(β2
j + β j t + 1)

(β2
j + 1)

e−βi t.
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We get the Bayes estimates of h(t) and m(t) under square error loss function in a similar manner.
By the idea of Chen and Shao [13], we compute HPD interval of β using the sample generated from

the above algorithm. Order β1, β2, ..., βB, then consider the 100(1 − η)% symmetric credible interval is
computed as (β1, βb(1−η)B+1c)....(βbBηc, βB). Here, bδc represent the largest integer less than or equal to δ.
The shortest one in among all such credible intervals is the HPD interval.

4. Simulation study

The aim of the simulation is to discuss the properties of the derived estimators. Consequently, we
use Monte Carlo simulation study to compare the different estimators discussed in section 2 and section
3. The true value of parameter can be taken such as β = 1.5 and samples are generated from Akash
distribution under Type-II censoring. We carry out the simulation procedures for different combinations
of (n,r) and Monte-Carlo simulation study of 10000 samples. For n = 30 the r is 20, 24, 28, 30 and for
n = 50 the r is 40, 44, 48, 50. We calculated behavior of the MLE and Bayes estimates for different
combinations of n and r. The hyper-parameter assigned for the non prior density is a = 0 and b = 0
and prior density is a = 3 and b = 2. we set Q = 10000 replications to compute the Bayes estimates
and HPD interval utilizing MH algorithm.

The performances of the different estimators are compared regarding their average estimates and
their mean squared errors(MSEs) of β̂, β̃l, β̃m, based on 10000 simulated samples of Akash distribution
are written in Tables 1 and 2. Thus, based on the simulated sampes the coverage probabilities and
average lengths of CI and HPD interval Considering 95% of the true coverage probability obtained for
comparison purposes. In Table 9, the coverage probabilities and the corresponding average lengths are
computed. By the Tables 1–9, the following conclusions obtained based on calculated values of the
average estimates, estimated MSE, coverage probability and average length.

From the simulation of different estimates established in Tables 1–8, it can be seen that the MLE
and Bayes estimates of unknown parameters and the reliability characteristics of Akash distribution
are very good in terms of minimum MSEs of serval values for n and r. The Bayes estimates using
informative prior (IP) and non informative prior (NIP) are dscussed. The Bayes estimates using the
MH algorithm for gamma informative prior (IP) are preferable as they include prior information than
MLE. In most cases, it is noticed that the Bayes estimates using the MH algorithm have performance
better than Lindley estimates on the basis of minimum MSEs. For fixed n, the MSE of all estimates
become a little bit small by increasing r. That is, when sample size n is increase then expected MSE
values of all estimate decrease.

Table 1. Results of simulation study of average estimates and MSEs values for several values
of r and n = 30.

β̃l β̃m

β̂ NIP IP NIP IP

r EV MSE EV MSE EV MSE EV MSE EV MSE

20 1.53205 0.04037 1.53591 0.041629 1.53051 0.036926 1.52295 0.027582 1.51237 0.026748

24 1.52638 0.033763 1.53051 0.034599 1.52813 0.031367 1.51943 0.026091 1.50237 0.024648

28 1.52313 0.029556 1.52577 0.030213 1.52195 0.027746 1.51066 0.024752 1.49882 0.023551

30 1.52231 0.028092 1.52479 0.028684 1.52014 0.026459 1.50942 0.024922 1.50261 0.023342
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Table 2. Results of simulation study of average estimates and MSEs values for several values
of r and n = 50.

β̃l β̃m

β̂ NIP IP NIP IP

r EV MSE EV MSE EV MSE EV MSE EV MSE

40 1.52537 0.019118 1.52774 0.019419 1.51793 0.018704 1.50177 0.018136 1.50301 0.016349

44 1.51499 0.018777 1.5162 0.018027 1.51351 0.017455 1.50395 0.017684 1.50487 0.015001

48 1.51343 0.01668 1.51551 0.016897 1.51189 0.016136 1.50477 0.015685 1.50346 0.013733

50 1.51321 0.016337 1.51524 0.016541 1.50465 0.015819 1.50337 0.013476 1.50541 0.010477

Table 3. Results of simulation study of average estimates and MSEs values for several values
of r and T when n = 30.

T = 0.5 T = 1.25

R̃l(t) R̃m(t) R̃l(t) R̃m(t)

r R̂(t) NIP IP NIP IP R̂(t) NIP IP NIP IP

20 0.69285 0.692352 0.693274 0.701443 0.701602 0.40833 0.412488 0.413217 0.421595 0.421993

0.003816 0.003773 0.003373 0.002693 0.002617 0.006567 0.006294 0.005706 0.005245 0.005124

24 0.694112 0.693672 0.694332 0.702515 0.701554 0.408177 0.4118 0.412379 0.420086 0.420801

0.003231 0.003196 0.002912 0.002558 0.002419 0.005866 0.005643 0.005187 0.004923 0.004759

28 0.695335 0.694929 0.695429 0.702109 0.702647 0.41129 0.414505 0.414877 0.421179 0.420015

0.002854 0.002824 0.002603 0.002424 0.002316 0.005272 0.005104 0.004741 0.004703 0.004657

30 0.695235 0.694848 0.695315 0.700923 0.701451 0.411028 0.41412 0.414472 0.421004 0.419626

0.002721 0.002693 0.002492 0.002438 0.002291 0.005059 0.004901 0.004564 0.004669 0.004399

Table 4. Results of simulation study of average estimates and MSEs values for several values
of r and T when n = 50.

T = 0.5 T = 1.25

R̃l(t) R̃m(t) R̃l(t) R̃m(t)

r R̂(t) NIP IP NIP IP R̂(t) NIP IP NIP IP

40 0.697192 0.696904 0.697134 0.701623 0.701221 0.411659 0.413789 0.413984 0.418495 0.418666

0.002076 0.001864 0.001772 0.001875 0.001747 0.003564 0.003387 0.003225 0.003375 0.003021

44 0.697592 0.69732 0.697516 0.700929 0.700616 0.413274 0.415253 0.41539 0.418866 0.419011

0.001949 0.001738 0.001656 0.001740 0.001624 0.003311 0.003148 0.003007 0.003158 0.002812

48 0.697742 0.697484 0.697658 0.70064 0.701049 0.411356 0.413245 0.413408 0.418818 0.417977

0.001744 0.001634 0.001562 0.001643 0.001539 0.003263 0.002999 0.002872 0.003082 0.002526

50 0.6978 0.69755 0.697716 0.701074 0.700429 0.412884 0.414718 0.414843 0.416558 0.418149

0.001712 0.001602 0.001533 0.001604 0.001513 0.003195 0.002899 0.002781 0.002932 0.002234
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Table 5. Results of simulation study of average estimates and MSEs values of proposed
estimates of h(t) for several values of r and T when n = 30.

T = 0.5 T = 20

h̃l(t) h̃m(t) h̃l(t) h̃m(t)

n ĥ(t) NIP IP NIP IP ĥ(t) NIP IP NIP IP

20 1.05635 1.06123 1.05905 1.04273 1.04216 1.48506 1.48997 1.4866 1.45381 1.45269

0.029725 0.026146 0.023932 0.022619 0.021923 0.049293 0.040621 0.036032 0.027151 0.026473

24 1.05653 1.06102 1.0593 1.03947 1.04205 1.48356 1.48773 1.48516 1.45657 1.45454

0.02641 0.023837 0.021983 0.02137 0.020209 0.038342 0.035286 0.031945 0.025472 0.024598

28 1.05516 1.05923 1.0579 1.0405 1.03879 1.47473 1.47838 1.47661 1.45352 1.45612

0.025639 0.021992 0.02044 0.020313 0.019288 0.032497 0.030143 0.027722 0.024193 0.024244

30 1.05612 1.06005 1.05879 1.04391 1.04226 1.47491 1.47839 1.47674 1.45388 1.45642

0.023024 0.02137 0.019904 0.020466 0.019147 0.030399 0.028988 0.026753 0.024142 0.022825

Table 6. Results of simulation study of average estimates and MSEs values for several values
of r and T when n = 50.

T = 0.5 T = 20

h̃l(t) h̃m(t) h̃l(t) h̃m(t)

r ĥ(t) NIP IP NIP IP ĥ(t) NIP IP NIP IP

40 1.05215 1.05508 1.0543 1.04122 1.04232 1.46985 1.47223 1.47141 1.45743 1.45707

0.02057 0.015448 0.014647 0.015508 0.014397 0.022849 0.019149 0.018655 0.019043 0.018106

44 1.05117 1.0539 1.05324 1.04316 1.04398 1.46566 1.46787 1.46723 1.45622 1.45549

0.019271 0.014506 0.013806 0.014459 0.01341 0.020418 0.017656 0.016801 0.017521 0.016437

48 1.05083 1.05341 1.05282 1.04385 1.04267 1.46965 1.47175 1.47109 1.45589 1.45772

0.016786 0.013692 0.013271 0.013595 0.013061 0.019576 0.016802 0.016038 0.016733 0.015469

50 1.05077 1.05329 1.05272 1.04258 1.04442 1.46595 1.46798 1.46743 1.46097 1.45712

0.015886 0.013482 0.012885 0.013355 0.01236 0.018889 0.016085 0.015676 0.016012 0.015181

Table 7. Results of simulation study of average estimates and MSEs values for several values
of r and T when n = 30.

T = 0.5 T = 20

m̃l(t) m̃m(t) m̃l(t) m̃m(t)

n m̂(t) NIP IP NIP IP m̂(t) NIP IP NIP IP

20 0.868747 0.882565 0.883024 0.88823 0.888171 0.683928 0.69282 0.693223 0.699105 0.699429

0.020739 0.016366 0.014921 0.013875 0.013493 0.008495 0.007734 0.007043 0.006654 0.006501

24 0.869294 0.88136 0.881657 0.889799 0.886822 0.683318 0.691069 0.691391 0.697211 0.697778

0.018654 0.014137 0.013052 0.013253 0.012248 0.007671 0.006841 0.006308 0.006224 0.005982

28 0.870462 0.881351 0.881534 0.887861 0.888675 0.686337 0.693357 0.693504 0.698128 0.696764

0.01524 0.012652 0.011778 0.012118 0.011067 0.007079 0.006257 0.005823 0.005898 0.005786

30 0.869691 0.880141 0.880329 0.885346 0.885828 0.685875 0.692613 0.692761 0.697852 0.696091

0.014646 0.012006 0.011209 0.012108 0.010475 0.006283 0.005939 0.005542 0.005816 0.005412
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Table 8. Results of simulation study of average estimates and MSEs values for several values
of r and T when n = 50.

T = 0.1 T = 10

m̃l(t) m̃m(t) m̃l(t) m̃m(t)

n m̂(t) NIP IP NIP IP m̂(t) NIP IP NIP IP

40 0.870406 0.877636 0.877738 0.883827 0.882675 0.685461 0.690113 0.690211 0.694124 0.694373

0.009138 0.008312 0.007926 0.008282 0.007631 0.004926 0.003992 0.003806 0.004008 0.003491

44 0.870736 0.87751 0.877588 0.881893 0.881141 0.686999 0.691367 0.691416 0.694441 0.694465

0.008611 0.007767 0.007429 0.007746 0.007252 0.004636 0.003705 0.003544 0.003689 0.002922

48 0.87063 0.877041 0.87711 0.880719 0.881794 0.684863 0.688983 0.68907 0.694191 0.693233

0.008182 0.00732 0.007019 0.007268 0.006831 0.004461 0.003506 0.003361 0.004053 0.002659

50 0.87062 0.876888 0.876954 0.881611 0.880187 0.686416 0.690454 0.690505 0.691706 0.693321

0.008045 0.007176 0.006887 0.007038 0.006207 0.004244 0.003399 0.003262 0.003254 0.002338

Table 9. Estimated CP (in %) and AL of interval estimates of β for several values of n and r.
HPD

Asy CI NIP IP

n r CP AL CP AL CP AL
30 20 0.75196 0.744171 0.7638 0.313666 0.9076 0.311396

24 0.75132 0.691009 0.7818 0.309595 0.9194 0.306128
28 0.78176 0.653071 0.8092 0.303242 0.9572 0.303592
30 0.80374 0.639791 0.8328 0.304515 0.9842 0.303166

50 40 0.75178 0.529169 0.7802 0.292102 0.9276 0.28978
44 0.75168 0.511364 0.8134 0.28818 0.9434 0.286294
48 0.8516 0.497134 0.8604 0.285026 0.9798 0.284143
50 0.85118 0.491318 0.8912 0.285257 0.9854 0.283814

In Table 9, we have calculated several 95% interval estimates of β for several values of n and r. The
asymptotic intervals, informative and noninformative HPD intervals of the unknown parameter have
been derived. By Table 9 we can say that informative HPD intervals have a better results compared to
the other intervals in terms of the average length (AL) of these intervals. In addition, the asymptotic
intervals compete good when compared with noninformative HPD intervals. Also observed that the
ALs of all intervals tend to be decreased as n increases. For all intervals, the Coverage probabilities
(CP) is reasonably vary about the nominal level.

Therefore, the Bayes estimate of Akash distribution of the parameter and reliability characteristics
with MH algorithm are recommended.

5. Relief times of patients data

This section focuses on a data set from Gross and Clark [14]. The observed data of the lifetimes
data relating to relief times (in minutes) of patients receiving an analgesic are 1.4, 1.3, 1.9, 2.2, 1.1,
1.7, 2.7, 1.7, 1.8, 1.5, 1.2, 1.6, 1.4, 4.1, 3.0, 1.8, 1.7, 2.3, 1.6, 2.0.

This data is related to 20 patents and also recently considered by Shanker et al. [2]. In this paper
the author fitted this real data to Akash distribution and obtain that this data is best fit for Akash
distribution. They also computed mathematical and inference problems for this distribution. Based
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on several combinations of (n, r), we considered different Type-II censoring schemes and obtained all
estimates. We Obtained MLEs and Bayes estimates with SELF using Lindley’s approximation and MH
algorithm of β and reliability characteristic. Because there is no prior infromation so we considered
the non-infromative prior (NIP), i.e., a=b=0. In Table 10, the MLEs and Bayes estimates of β and
reliability characteristic are computed. In Table 11, based on true coverage probability of 95%, we
derived the approximate CI and non informative HPD intervals. We found that all the estimates the
parameter β and reliability characteristic are close to each other in Table 10. By the Table 11, we can
see that among all the intervals, HPD interval performs better in respect of length.

Table 10. Point estimates of β,R(t), h(t) and m(t) for different choices of r and t from real
data.

r = 10 r = 15 r = 20

MLE LI MH MLE LI MH MLE LI MH

β 0.935317 0.934252 0.936705 1.08922 1.09025 1.10583 1.15692 1.1586 1.1527

R(0.5) 0.877947 0.876016 0.876284 0.832351 0.83072 0.826337 0.811294 0.809901 0.811675

h(0.1) 0.474309 0.476356 0.476982 0.593698 0.596849 0.608663 0.647851 0.651193 0.646741

m(0.1) 1.59613 1.64777 1.62246 1.33576 1.36631 1.33592 1.2447 1.26754 1.2791

R(2) 0.541957 0.547095 0.531825 0.436647 0.442626 0.439404 0.394519 0.400149 0.385593

h(20) 0.890005 0.888994 0.907152 1.04359 1.04466 1.04773 1.11119 1.11289 1.13335

m(20) 1.12095 1.15243 1.1117 0.956548 0.975131 0.967881 0.898533 0.91242 0.891254

Table 11. Interval estimation for β based on generated Type-II censored samples from real
data.

r Asy CI HPD

10 (0.646794, 1.22384) (0.476982, 1.62246)

15 (0.795101, 1.38333) (0.608663, 1.33592)

20 (0.871638, 1.44221) (0.646741, 1.2796)

6. Conclusions

This paper discussed the classical and Bayesian inferential methods for the Type-II censored data
from Akash distribution. Both MLE and Bayes estimates are provided. Also we have derived the CIs
and HPD interval of the parameter and reliability characteristic. we calculated numerical MLE and
Bayes estimators of parameter β and reliability characteristic and compared these estimates in terms

AIMS Mathematics Volume 6, Issue 10, 10789–10801.



10800

of their MSE by using Monte Carlo simulation. Although the consequences have been derived under
the Type-II censoring scheme, similar methods can be applied to the rest of censoring schemes. We
believe that more work can be done in these contexts. Therefore, additional research is needed.

Remarks: We can use Tierney-Kadane’s [15] approximation rather than Lindley’s method to obtain
Bayes estimates with minor mean squared errors, see Abdel-Hamid and AL-Hussaini [16].
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