Mathematics

Research article

Estimate for Schwarzian derivative of certain close-to-convex functions

Zhenyong Hu ${ }^{1}$, Xiaoyuan Wang ${ }^{1,2, *}$ and Jinhua Fan ${ }^{1}$
${ }^{1}$ Department of Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
${ }^{2}$ Institute of Sponge City Research, Pingxiang University, Pingxiang 337055, China

* Correspondence: Email: mewangxiaoyuan@163.com.

Abstract

Let $f(z)$ be analytic in the unit disk with $f(0)=f^{\prime}(0)-1=0$. For the following close-to-convex subclasses: $\mathfrak{R}\left\{(1-z) f^{\prime}(z)\right\}>0, \mathfrak{R}\left\{\left(1-z^{2}\right) f^{\prime}(z)\right\}>0, \mathfrak{R}\left\{\left(1-z+z^{2}\right) f^{\prime}(z)\right\}>0$ and $\mathfrak{R}\left\{(1-z)^{2} f^{\prime}(z)\right\}>0$, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of $f(z)$.

Keywords: analytic functions; univalent functions; close-to-convex; higher order Schwarzian derivative
Mathematics Subject Classification: 30C45

1. Introduction

Denote by $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}, \overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leq 1\}$ and $\mathbb{T}=\partial \mathbb{D}$. Let \mathcal{A} be the class of all analytic functions $f(z)$ in \mathbb{D} with $f(0)=f^{\prime}(0)-1=0$. Hence, for $f(z) \in \mathcal{A}$, they can be expanded as the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots . \tag{1.1}
\end{equation*}
$$

The subclass of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S}. Let \mathcal{P} be the class of analytic functions of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, z \in \mathbb{D}, \tag{1.2}
\end{equation*}
$$

having a positive real part.
An analytic function $f(z)$ is close-to-convex in \mathbb{D} if there exists a convex function $g(z)$ such that $\mathfrak{R} \frac{f^{\prime}(z)}{g^{\prime}(z)}>0$ holds for $z \in \mathbb{D}$. Each close-to-convex function is univalent (see [10]). Close-to-convex functions have been widely studied in recent years (see $[8,13,15,18,19,33,35,36]$). Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$ and \mathcal{F}_{4} be the subclasses of close-to-convex functions of \mathcal{S} satisfying

$$
\begin{equation*}
\mathfrak{R}\left\{(1-z) f^{\prime}(z)\right\}>0 \Leftrightarrow(1-z) f^{\prime}(z) \in \mathcal{P}, \tag{1.3}
\end{equation*}
$$

$$
\begin{align*}
\mathfrak{R}\left\{\left(1-z^{2}\right) f^{\prime}(z)\right\}>0 & \Leftrightarrow\left(1-z^{2}\right) f^{\prime}(z) \in \mathcal{P}, \tag{1.4}\\
\mathfrak{R}\left\{\left(1-z+z^{2}\right) f^{\prime}(z)\right\}>0 & \Leftrightarrow\left(1-z+z^{2}\right) f^{\prime}(z) \in \mathcal{P}, \tag{1.5}\\
\mathfrak{R}\left\{(1-z)^{2} f^{\prime}(z)\right\}>0 & \Leftrightarrow(1-z)^{2} f^{\prime}(z) \in \mathcal{P}, \tag{1.6}
\end{align*}
$$

respectively.
The conditions (1.3), (1.4) and (1.6) were introduced by Ozaki [28] as univalent criteria. Recall that the classes \mathcal{F}_{2} and \mathcal{F}_{4} have elegant geometric properties. Such functions in \mathcal{F}_{2} map univalently \mathbb{D} onto a convex domain in the direction of imaginary axis (see [12]). The function in \mathcal{F}_{4} maps univalently onto a convex domain in the direction of real axis (see [3]).
S. Ponnusamy [30] studied that the conditions on the parameters of the Gaussain Hypergeometric functions $F(a, b ; c ; z)$ are determined to show that the Alexander transform of $f(z)=z F(a, b ; c ; z)$ belongs to one of the above four families, in particular. A similar studies about Alexander transform are also considered in [29, 32]. Since the bounds of univalent functions or their subclasses are improtant, it is interesting to investigate these kinds of bounds for the subclasses. In this direction, recently, the subclasses of close-to-convex functions have been studied, in particular, the logarithmic coefficients, Fekete-Szegö problem and Hermitian-Toeplitz determinants for the subclasses of close-to-convex functions $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$ and \mathcal{F}_{4} of \mathcal{S} have been considered in [2,4,5,17,21-23].

The Schwarzian derivative of a locally univalent function $f(z)$ is defined by

$$
S_{f}(z)=\left(\frac{f^{\prime \prime}}{f^{\prime \prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

It is well known that $S_{f}(z)$ plays an important role in the study of univalent functions (see [1,2527,31,37]). Using Schwarzian derivatives, Nehari [25] proved that if $\left|S_{f}(z)\right|\left(1-|z|^{2}\right)^{2} \leq 2, z \in \mathbb{D}$, then $f(z)$ is univalent in \mathbb{D}. In addition, Nehari [25] proved that if $f(z) \in \mathcal{S}$, then $\left|S_{f}(z)\right|\left(1-|z|^{2}\right)^{2} \leq 6, z \in \mathbb{D}$. Following the papers [14,34], let $n \geq 3$, define $\sigma_{3}(f)(z)=S_{f}(z)$ and

$$
\begin{equation*}
\sigma_{n+1}(f)(z)=\sigma_{n}^{\prime}(f)(z)-(n-1) \sigma_{n}(f)(z) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{1.7}
\end{equation*}
$$

Harmelin [14] proved that the higher order Schwarzian derivatives $\sigma_{n}(f)$ satisfies $\sigma_{n}(T \circ f)=\sigma_{n}(f)$, where T denotes Möbius transformation. Note that the class of convex functions is linearly invariant, there is no loss in restricting consideration to $\sigma_{n}(f)(0)$. Dorff and Szynal [11] researched the bounds of $\sigma_{n}(f)(0)$ for convex functions. And then, Cho et al. [6] investigated the bounds of $\sigma_{n}(f)(0)(n=$ $3,4,5)$ in general forms of these classes consisting of Janowski classes: $\mathcal{S}^{*}[A, B]=\left\{f \in \mathcal{S}: \frac{z f^{\prime}(z)}{f(z)}<\right.$ $\left.\frac{1+A z}{1+B z}\right\}, \mathcal{K}^{*}[A, B]=\left\{f \in \mathcal{S}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{1+A z}{1+B z}\right\}$, where $-1 \leq B<A \leq 1$, which generalized the results in [11]. In particular, let $A=1$ and $B=-1, \mathcal{S}^{*}[A, B]$ is the class of starlike functions and $\mathcal{K}^{*}[A, B]$ is the class of convex functions. Recently, Kumar et al. [20] study the bounds on the first three consecutive higher order Schwarzian derivatives for the class: $\mathcal{S}_{B}^{*}=\left\{f \in \mathcal{S}: \frac{z f^{\prime}(z)}{f(z)}<e^{e^{z}-1}\right\}$. For more details about S_{B}^{*}, one can refer to [20].

Let $\sigma_{n}(f)(0)=\mathbf{S}_{n}$. Combining (1.1) with (1.7), we see that

$$
\begin{align*}
& \left|\mathbf{S}_{3}\right|=6\left|a_{3}-a_{2}^{2}\right|, \tag{1.8}\\
& \left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| . \tag{1.9}
\end{align*}
$$

Remark 1. By [16], we see that $\left|\mathbf{S}_{3}\right| \leq 5$ for $f \in \mathcal{F}_{1}$, but the constant 5 is not sharp. By Lemma 1 in [24], we know that the sharp inequality $\left|\mathbf{S}_{3}\right| \leq 6$ for $f \in \mathcal{F}_{2}$. According to [17], we have the sharp inequality $\left|\mathbf{S}_{3}\right| \leq 6$ for $f \in \mathcal{F}_{4}$. However, the sharp bounds of $\left|\mathbf{S}_{3}\right|$ for $f \in \mathcal{F}_{1}$ and $f \in \mathcal{F}_{3}$ are unknown.

In this paper, one of the aims is to consider the bounds of $\left|\mathbf{S}_{3}\right|$ for $f \in \mathcal{F}_{1}, f \in \mathcal{F}_{3}$ and the bounds of $\left|\mathbf{S}_{4}\right|$ for the four classes $f \in \mathcal{F}_{i}$, where $i=1,2,3,4$. We first consider a special case when a_{2} is real for $\mathcal{F}_{i}(i=1,2,3,4)$ in Theorem 1. Moreover, by Remark 1, on the upper bound of $\left|\mathbf{S}_{3}\right|$ we only consider the class \mathcal{F}_{1} or \mathcal{F}_{3}. Now we state our results as follows.
Theorem 1. Let $f(z) \in \mathcal{A}$ and $a_{2} \in \mathbb{R}$.
(1) If $f(z) \in \mathcal{F}_{1}$, then

$$
\begin{align*}
& \left|\mathbf{S}_{3}\right|=6\left|a_{3}-a_{2}^{2}\right| \leq \frac{14}{3} \tag{1.10}\\
& \left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 24 \tag{1.11}
\end{align*}
$$

(2) If $f(z) \in \mathcal{F}_{2}$, then

$$
\begin{equation*}
\left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 24 \tag{1.12}
\end{equation*}
$$

(3) If $f(z) \in \mathcal{F}_{3}$, then

$$
\begin{equation*}
\left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 36 \tag{1.13}
\end{equation*}
$$

(4) If $f(z) \in \mathcal{F}_{4}$, then

$$
\begin{equation*}
\left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 48 \tag{1.14}
\end{equation*}
$$

All estimates are sharp.
If we remove the condition $a_{2} \in \mathbb{R}$ in Theorem 1, we have the following theorem.
Theorem 2. Let $f(z) \in \mathcal{A}$.
(1) If $f(z) \in \mathcal{F}_{1}$, then

$$
\left|\mathbf{S}_{3}\right|=6\left|a_{3}-a_{2}^{2}\right| \leq \frac{8+\sqrt{2}}{2}, \quad\left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 12(1+\sqrt{2})
$$

(2) If $f(z) \in \mathcal{F}_{2}$, then

$$
\left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq \frac{32 \sqrt{6}}{3}
$$

(3) If $f(z) \in \mathcal{F}_{3}$, then

$$
\left|\mathbf{S}_{3}\right|=6\left|a_{3}-a_{2}^{2}\right| \leq 6,\left|\mathbf{S}_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 12\left(1+\frac{8 \sqrt{6}}{9}\right)
$$

The constant 6 is sharp.
Remark 2. According to Theorem 1 and Theorem 2, we see that $\left|\mathbf{S}_{3}\right| \leq 6$ for \mathcal{F}_{3} and $\left|\mathbf{S}_{3}\right| \leq \frac{14}{3}$ for \mathcal{F}_{1} when a_{2} is real. Also, we have $\left|\mathbf{S}_{3}\right| \leq \frac{8+\sqrt{2}}{2}$ for \mathcal{F}_{1}, which improves the corresponding case in [16]. Moreover, when a_{2} is real, we find the sharp upper bounds of $\left|\mathbf{S}_{4}\right|$ for \mathcal{F}_{i}, where $i=1,2,3,4$.

2. Preliminary

To prove our theorems, we need the following lemmas.
Lemma 1. $p \in \mathcal{P}$ is of the form (1.2), then

$$
\begin{gather*}
c_{1}=2 \zeta_{1} \tag{2.1}\\
c_{2}=2 \zeta_{1}^{2}+2\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}, \tag{2.2}\\
c_{3}=2 \zeta_{1}^{3}+4\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{1} \zeta_{2}-2\left(1-\left|\zeta_{1}\right|^{2} \overline{\zeta_{1}} \zeta_{2}^{2}+2\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right. \tag{2.3}
\end{gather*}
$$

for some $\zeta_{i} \in \overline{\mathbb{D}}$, where $i=1,2,3$.
(2.1) is due to Caratheodory [7]. (2.2) can be referred in [28]. In [5], Cho et al. showed the formula (2.3).

For $\zeta_{1} \in \mathbb{T}$, there is a unique function $p \in \mathcal{P}$ with c_{1} as in (2.1), i.e.,

$$
\begin{equation*}
p(z)=\frac{1+\zeta_{1} z}{1-\zeta_{1} z}, z \in \mathbb{D} . \tag{2.4}
\end{equation*}
$$

For $\zeta_{1} \in \mathbb{D}$ and $\zeta_{2} \in \mathbb{T}$, there is a unique function $p \in \mathcal{P}$ with c_{1} and c_{2} as in (2.1) and (2.2), i.e.,

$$
\begin{equation*}
p(z)=\frac{1+\left(\overline{\zeta_{1}} \zeta_{2}+\zeta_{1}\right) z+\zeta_{2} z^{2}}{1+\left(\overline{\zeta_{1}} \zeta_{2}-\zeta_{1}\right) z-\zeta_{2} z^{2}}, z \in \mathbb{D} . \tag{2.5}
\end{equation*}
$$

Lemma 2. ([9]) Let $Y(a, b, c)=\max _{z \in \mathbb{D}}\left(\left|a+b z+c z^{2}\right|+1-|z|^{2}\right)$. If $a c \geq 0$, then

$$
Y(a, b, c)= \begin{cases}|a|+|b|+|c|, & |b| \geq 2(1-|c|), \tag{2.6}\\ 1+|a|+\frac{b^{2}}{4(1-|c|}, & |b|<2(1-|c|) .\end{cases}
$$

If $a c<0$, then

$$
Y(a, b, c)= \begin{cases}1-|a|+\frac{b^{2}}{4(1-|c|}, & -4 a c\left(c^{-2}-1\right) \leq b^{2} ;|b|<2(1-|c|), \tag{2.7}\\ 1+|a|+\frac{b^{2}}{4(1+|c|}, & b^{2}<\min \left\{4(1+|c|)^{2},-4 a c\left(c^{-2}-1\right)\right\}, \\ R(a, b, c), & \text { otherwise },\end{cases}
$$

where

$$
R(a, b, c)= \begin{cases}|a|+|b|-|c|, & |c|(|b|+4|a|) \leq|a b|, \tag{2.8}\\ -|a|+|b|+|c|, & |a b| \leq|c|(|b|-4|a|), \\ (|a|+|c|) \sqrt{1-\frac{b^{2}}{4 a c}}, & \text { otherwise. }\end{cases}
$$

3. Proofs of main results

Let $f \in \mathcal{F}_{1}, f \in \mathcal{F}_{2}, f \in \mathcal{F}_{3}$ or $f \in \mathcal{F}_{4}$. Putting the series (1.1) and (1.2) into (1.3), (1.4), (1.5) or (1.6) by equating the coefficients, we respectively have

$$
\begin{equation*}
a_{2}=\frac{1}{2}\left(1+c_{1}\right), a_{3}=\frac{1}{3}\left(1+c_{1}+c_{2}\right), a_{4}=\frac{1}{4}\left(1+c_{1}+c_{2}+c_{3}\right), \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& a_{2}=\frac{1}{2} c_{1}, a_{3}=\frac{1}{3}\left(1+c_{2}\right), a_{4}=\frac{1}{4}\left(c_{1}+c_{3}\right), \tag{3.2}\\
& a_{2}=\frac{1}{2}\left(1+c_{1}\right), a_{3}=\frac{1}{3}\left(c_{1}+c_{2}\right), a_{4}=\frac{1}{4}\left(-1+c_{2}+c_{3}\right), \tag{3.3}\\
& a_{2}=\frac{1}{2}\left(2+c_{1}\right), a_{3}=\frac{1}{3}\left(3+2 c_{1}+c_{2}\right), a_{4}=\frac{1}{4}\left(4+3 c_{1}+2 c_{2}+c_{3}\right) . \tag{3.4}
\end{align*}
$$

By the condition $a_{2} \in \mathbb{R}$ in Theorem 1, we find that $\zeta_{1} \in[-1,1]$ from (3.1)-(3.4). Now using Lemma 1 and Lemma 2, we prove Theorem 1.

Proof of Theorem 1. (1) Let $f \in \mathcal{F}_{1}$ be of the form (1.1) with $a_{2} \in \mathbb{R}$. By (1.8) and (3.1), we calculate

$$
\begin{aligned}
\left|\mathbf{S}_{3}\right| & =6\left|a_{3}-a_{2}^{2}\right|=\frac{1}{2}\left|1-2 c_{1}+4 c_{2}-3 c_{1}^{2}\right|=\frac{1}{2}\left|1-4 \zeta_{1}-4 \zeta_{1}^{2}+8\left(1-\zeta_{1}^{2}\right) \zeta_{2}\right| \\
& \leq \frac{1}{2}\left(\left|1-4 \zeta_{1}-4 \zeta_{1}^{2}\right|+8\left(1-\zeta_{1}^{2}\right)\right)=: \psi\left(\zeta_{1}\right) .
\end{aligned}
$$

If $\zeta_{1} \in\left(\frac{\sqrt{2}-1}{2}, 1\right]$, then

$$
\psi\left(\zeta_{1}\right)=\frac{1}{2}\left(7+4 \zeta_{1}-4 \zeta_{1}^{2}\right) \leq \varphi\left(\frac{1}{2}\right)=4
$$

If $\zeta_{1} \in\left[-1, \frac{\sqrt{2}-1}{2}\right]$, then

$$
\psi\left(\zeta_{1}\right)=\frac{1}{2}\left(9-4 \zeta_{1}-12 \zeta_{1}^{2}\right) \leq \varphi\left(-\frac{1}{6}\right)=\frac{14}{3} .
$$

Obviously, we see that $\left|\mathbf{S}_{3}\right| \leq \frac{14}{3}$.
From above analysis, we see that the equality in (1.10) holds when $\zeta_{1}=-\frac{1}{6}$ and $\zeta_{2}=1$, combining (2.5), we conclude $p(z)=\frac{1-\frac{1}{3} z+z^{2}}{1-z^{2}}$, which implies that the extremal function of (1.10) is $f_{0}(z)=\int_{0}^{z} \frac{1-\frac{1}{3} t+t^{2}}{(1-t)^{2}(1+t)} d t$ by (1.3).

Substituting (3.1) into (1.9), and by Lemma 1, it follows that

$$
\begin{align*}
\left|\mathbf{S}_{4}\right| & =6\left|-c_{2}+c_{3}+c_{1}^{2}-2 c_{1} c_{2}+c_{1}^{3}\right| \\
& =12\left|\zeta_{1}^{2}+\zeta_{1}^{3}-\left(1-\zeta_{1}^{2}\right)\left(2 \zeta_{1}+1\right) \zeta_{2}-\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}^{2}+\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \\
& \leq 12\left(1-\zeta_{1}^{2}\right) \Psi(A, B, C), \tag{3.5}
\end{align*}
$$

where $\zeta_{1} \in[-1,1], \zeta_{2}, \zeta_{3} \in \overline{\mathbb{D}}$ and $\Psi(A, B, C)=\left|A+B \zeta_{2}+C \zeta_{2}^{2}\right|+1-\left|\zeta_{2}\right|^{2}$ with $A=\frac{\zeta_{1}^{2}+\zeta_{1}^{3}}{1-\zeta_{1}^{2}}, B=-2 \zeta_{1}-1$, $C=-\zeta_{1}$. When $\zeta_{1} \neq-1$, we have $A=\frac{\zeta_{1}^{2}}{1-\zeta_{1}}$.

So for $\zeta_{1}=-1$ and $\zeta_{1}=1$, we respectively have $\left|\mathbf{S}_{4}\right|=0$ and $\left|\mathbf{S}_{4}\right|=24$. Notice that $A C<0$ for $\zeta_{1} \in(0,1)$ and $A C \geq 0$ for $\zeta_{1} \in(-1,0]$. To prove that $\left|\mathbf{S}_{4}\right| \leq 24$, we divide it into five cases.

Case 1. If $\zeta_{1} \in\left(-\frac{3}{4}, 0\right]$, then $B^{2}<4(1-|C|)^{2}$, which implies that $|B|<2(1-|C|)$. In view of (2.6) and (3.5), it follows

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)\left(1+|A|+\frac{B^{2}}{4(1-|C|)}\right)=3\left(5+3 \zeta_{1}\right) \leq 15 .
$$

Case 2. If $\zeta_{1} \in\left(-1,-\frac{3}{4}\right]$, then $B^{2} \geq 4(1-|C|)^{2}$, which means that $|B| \geq 2(1-|C|)$. By (2.6) and (3.5), we get the following

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)(|A|+|B|+|C|)=12\left(4 \zeta_{1}^{3}+2 \zeta_{1}^{2}-3 \zeta_{1}-1\right) \leq \frac{33}{4}
$$

by the fact that $4 \zeta_{1}^{3}+2 \zeta_{1}^{2}-3 \zeta_{1}-1$ is increasing in $\zeta_{1} \in\left(-1,-\frac{3}{4}\right]$.
Case 3. If $\zeta_{1} \in\left(0, \frac{1}{4}\right)$, we get $B^{2}+4 A C\left(C^{-2}-1\right)=1>0$ and $|B|<2(1-|C|)$. So by (2.7) and (3.5), we can obtain

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)\left(1-|A|+\frac{B^{2}}{4(1-|C|)}\right)=15\left(1+\zeta_{1}\right)<\frac{75}{4}
$$

Case 4. If $\zeta_{1} \in\left[\frac{1}{4}, \frac{\sqrt{2}}{4}\right]$, then $|A B| \leq|C|(|B|-4|A|)$. Combining (2.8) and (3.5), it is easy to get

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)(-|A|+|B|+|C|)=12\left(-4 \zeta_{1}^{3}-2 \zeta_{1}^{2}+3 \zeta_{1}+1\right) .
$$

Notice that $-4 \zeta_{1}^{3}-2 \zeta_{1}^{2}+3 \zeta_{1}+1$ is increasing in $\zeta_{1} \in\left[\frac{1}{4}, \frac{\sqrt{2}}{4}\right]$, so

$$
\left|\mathbf{S}_{4}\right| \leq \frac{15 \sqrt{2}+18}{2}<24 .
$$

Case 5. If $\zeta_{1} \in\left(\frac{\sqrt{2}}{4}, 1\right)$, direct calculations lead that A, B, C satisfy the third case of (2.8), so

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)(|A|+|C|) \sqrt{1-\frac{B^{2}}{4 A C}}=6\left(1+\zeta_{1}\right) \sqrt{\frac{3 \zeta_{1}+1}{\zeta_{1}}}<24
$$

In fact, we find that $\left(3 \zeta_{1}+1\right)\left(1+\zeta_{1}\right)^{2}-16 \zeta_{1}<0$ for $\zeta_{1} \in\left(\frac{\sqrt{2}}{4}, 1\right)$. This means that $\left(1+\zeta_{1}\right) \sqrt{\frac{3 \zeta_{1}+1}{\zeta_{1}}}<4$ for $\zeta_{1} \in\left(\frac{\sqrt{2}}{4}, 1\right)$.

Therefore, we establish the inequality (1.11). Next, we prove the sharpness. Let $f(z)=\int_{0}^{z} \frac{1+t}{(1-t)^{2}} d t$. It is clear that $f(z)=\int_{0}^{z} \frac{1+t}{(1-t)^{2}} d t \in \mathcal{F}_{1}$. In this case, direct calculations give $\left|\mathbf{S}_{4}\right|=24$. The first part is complete.
(2) Let $f \in \mathcal{F}_{2}$ be of the form (1.1) with $a_{2} \in \mathbb{R}$. Using (1.9), (2.1)-(2.3) and (3.2), we get

$$
\begin{align*}
\left|\mathbf{S}_{4}\right| & =6\left|-c_{1}+c_{3}-2 c_{1} c_{2}+c_{1}^{3}\right|=12\left|-\zeta_{1}+\zeta_{1}^{3}-2\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}-\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}^{2}+\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \\
& \leq 12\left(1-\zeta_{1}^{2}\right) \Psi(A, B, C) \tag{3.6}
\end{align*}
$$

where $\zeta_{1} \in[-1,1], \zeta_{2}, \zeta_{3} \in \overline{\mathbb{D}}$ and $\Psi(A, B, C)=\left|A+B \zeta_{2}+C \zeta_{2}^{2}\right|+1-\left|\zeta_{2}\right|^{2}, A=\frac{-\zeta_{1}+\zeta_{1}^{3}}{1-\zeta_{1}^{2}}, B=-2 \zeta_{1}$, $C=-\zeta_{1}$. If $\zeta_{1} \neq \pm 1$, we find that $A=-\zeta_{1}$.

Taking $\zeta_{1}=-1$ and $\zeta_{1}=1$ into account, it respectively follows $\left|\mathbf{S}_{4}\right|=24$ and $\left|\mathbf{S}_{4}\right|=0$. Note that $A C \geq 0$ for $\zeta_{1} \in(-1,1)$. Applying Lemma 2 and (3.6), we have:

Case 1. If $\zeta_{1} \in\left(-\frac{1}{2}, 0\right)$, then $|B|<2(1-|C|)$, it follows that

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)\left(1+|A|+\frac{B^{2}}{4(1-|C|)}\right)=12\left(1-\zeta_{1}^{2}\right)\left(1-\zeta_{1}+\frac{\zeta_{1}^{2}}{1+\zeta_{1}}\right)=12\left(-\zeta_{1}+1\right)<18
$$

Case 2. If $\zeta_{1} \in\left(-1,-\frac{1}{2}\right]$, then $|B| \geq 2(1-|C|)$, and so we get

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)(|A|+|B|+|C|)=12\left(4 \zeta_{1}^{3}-4 \zeta_{1}\right) \leq \frac{32 \sqrt{3}}{3} .
$$

Case 3. If $\zeta_{1} \in\left[\frac{1}{2}, 1\right)$, then $|B| \geq 2(1-|C|)$, we obtain

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)(|A|+|B|+|C|)=12\left(1-\zeta_{1}^{2}\right) 4 \zeta_{1} \leq \frac{32 \sqrt{3}}{3}
$$

Case 4. If $\zeta_{1} \in\left[0, \frac{1}{2}\right)$, then $|B|<2(1-|C|)$, we conclude

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)\left(1+|A|+\frac{B^{2}}{4(1-|C|)}\right)=12\left(1-\zeta_{1}^{2}\right)\left(1+\zeta_{1}+\frac{\zeta_{1}^{2}}{1-\zeta_{1}}\right)=12\left(1+\zeta_{1}\right)<18
$$

Hence, the inequality (1.12) is true. Equality in (1.12) holds for the function given by (1.4), where $p(z)=\frac{1-z}{1+z}$ is given by (2.4) with $\zeta_{1}=-1$, namely for $f(z)=\int_{0}^{z} \frac{1}{(1+t)^{2}} d t=-\frac{1}{1+z}$. This completes the proof the second part.
(3) Let $f \in \mathcal{F}_{3}$ be of the form (1.1) with $a_{2} \in \mathbb{R}$. Using the equalities (1.9), (2.1)-(2.3) and (3.3), we have

$$
\begin{aligned}
\left|\mathbf{S}_{4}\right| & =6\left|c_{1}-c_{2}+c_{3}+c_{1}^{2}-2 c_{1} c_{2}+c_{1}^{3}\right| \\
& =12\left|\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{3}-\left(1-\zeta_{1}^{2}\right)\left(2 \zeta_{1}+1\right) \zeta_{2}-\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}^{2}+\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \\
& \leq 12\left(1-\zeta_{1}^{2}\right) \Psi(A, B, C),
\end{aligned}
$$

where $\zeta_{1} \in[-1,1], \zeta_{2}, \zeta_{3} \in \overline{\mathbb{D}}$ and $\Psi(A, B, C)=\left|A+B \zeta_{2}+C \zeta_{2}^{2}\right|+1-\left|\zeta_{2}\right|^{2}$ with $A=\frac{\zeta_{1}+\zeta_{\zeta}^{2}+\zeta_{\zeta}^{3}}{1-\zeta_{1}^{2}}, B=-2 \zeta_{1}-1$, $C=-\zeta_{1}$.

For $\zeta_{1}=-1$ and $\zeta_{1}=1$, we respectively have $\left|\mathbf{S}_{4}\right|=12$ and $\left|\mathbf{S}_{4}\right|=36$. In addition, $\zeta_{1}=0$, we have

$$
\left|\mathbf{S}_{4}\right|=6\left|c_{1}-c_{2}+c_{3}+c_{1}^{2}-2 c_{1} c_{2}+c_{1}^{3}\right|=12\left|-\zeta_{2}+\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \leq 12\left(\left|\zeta_{2}\right|+1-\left|\zeta_{2}\right|^{2}\right) \leq 15 .
$$

Note that $A C<0$ and $B^{2}+4 A C\left(C^{-2}-1\right)=-3<0$ for $\zeta_{1} \in(-1,1) \backslash\{0\}$. Moreover,

$$
B^{2}-4(1+|C|)^{2}= \begin{cases}12 \zeta_{1}-3, & \zeta_{1} \in(-1,0), \\ -4 \zeta_{1}-3, & \zeta_{1} \in(0,1),\end{cases}
$$

it follows that $B^{2}-4(1+|C|)^{2}<0$ for $\zeta_{1} \in(-1,1) \backslash\{0\}$.
Assume first that $\zeta_{1} \in(-1,0)$, then by (2.8) in Lemma 2, we obtain

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)\left(1-\frac{\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{3}}{1-\zeta_{1}^{2}}+\frac{4 \zeta_{1}^{2}+1+4 \zeta_{1}}{4\left(1-\zeta_{1}\right)}\right)=3\left(5+\zeta_{1}\right)<15 .
$$

Assume now that $\zeta_{1} \in(0,1)$, then using (2.8) in Lemma 2, we get

$$
\left|\mathbf{S}_{4}\right| \leq 12\left(1-\zeta_{1}^{2}\right)\left(1+\frac{\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{3}}{1-\zeta_{1}^{2}}+\frac{4 \zeta_{1}^{2}+1+4 \zeta_{1}}{4\left(1+\zeta_{1}\right)}\right)=3\left(5+7 \zeta_{1}\right)<36 .
$$

Thus, we have (1.13). Equality in (1.13) holds for the function $f(z)$ given by (1.5), where $p(z)=\frac{1+z}{1-z}$ is given by (2.4) with $\zeta_{1}=1$, i.e., for the function $f(z)=\int_{0}^{z} \frac{1+t}{(1-t)\left(1-t+t^{2}\right)} d t$. This completes the proof.
(4) Let $f \in \mathcal{F}_{4}$ with $a_{2} \in \mathbb{R}$. From (1.9), Lemma 1 and (3.4), we have

$$
\begin{aligned}
\left|\mathbf{S}_{4}\right| & =6\left|c_{1}-2 c_{2}+c_{3}+2 c_{1}^{2}-2 c_{1} c_{2}+c_{1}^{3}\right| \\
& =12\left|\zeta_{1}+2 \zeta_{1}^{2}+\zeta_{1}^{3}-2\left(1-\zeta_{1}^{2}\right)\left(\zeta_{1}+1\right) \zeta_{2}-\left(1-\zeta_{1}^{2}\right) \zeta_{1} \zeta_{2}^{2}+\left(1-\zeta_{1}^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \\
& \leq 12\left(1-\zeta_{1}^{2}\right) \Psi(A, B, C),
\end{aligned}
$$

where $\zeta_{1} \in[-1,1], \zeta_{2}, \zeta_{3} \in \overline{\mathbb{D}}$ and $\Psi(A, B, C)=\left|A+B \zeta_{2}+C \zeta_{2}^{2}\right|+1-\left|\zeta_{2}\right|^{2}$ with $A=\frac{\zeta_{1}+2 \zeta_{-}^{2}+\zeta_{1}^{3}}{1-\zeta_{1}^{2}}, B=-2 \zeta_{1}-2$, $C=-\zeta_{1}$. In particular, if $\zeta_{1} \neq-1$, then $A=\frac{\zeta_{1}\left(1+\zeta_{1}\right)}{1-\zeta_{1}}$.

Applying Lemma 2 and the processing methods in (1), (2) or (3), we can obtain that the inequality (1.14) is true, here we omit its details. The equality (1.14) holds when $\zeta_{1}=1$. By (2.4), we have $p(z)=\frac{1+z}{1-z}$, i.e., $f(z)=\int_{0}^{z} \frac{1+t}{(1-t)^{3}} d t=\frac{z}{(1-z)^{2}}$. This proof is completed.
Proof of Theorem 2. (1) If $f(z) \in \mathcal{F}_{1}$, by (2.1), (2.2) and (3.1), we calculate

$$
\begin{aligned}
\left|\mathbf{S}_{3}\right| & =6\left|a_{3}-a_{2}^{2}\right|=\frac{1}{2}\left|1-2 c_{1}+4 c_{2}-3 c_{1}^{2}\right|=\frac{1}{2}\left|1-4 \zeta_{1}-4 \zeta_{1}^{2}+8\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}\right| \\
& \leq \frac{1}{2}\left(\left|1-4 \zeta_{1}-4 \zeta_{1}^{2}\right|+8\left(1-\left|\zeta_{1}\right|^{2}\right)\right) .
\end{aligned}
$$

Let $\zeta_{1}=r e^{i \theta}$, where $r \in[0,1]$ and $\theta \in[0,2 \pi)$, then

$$
\left|1-4 \zeta_{1}-4 \zeta_{1}^{2}\right|^{2}=\phi(\cos \theta)=\phi(x)=-16 r^{2} x^{2}+8 r\left(4 r^{2}-1\right) x+16 r^{4}+24 r^{2}+1, x \in[-1,1] .
$$

$\phi^{\prime}(x)=0$ holds when $x=x_{0}=\frac{4 r^{2}-1}{4 r}$. It is obvious that $x_{0}<1$ for $r \in[0,1]$. So $\phi(x) \leq \phi\left(x_{0}\right)=$ $2\left(4 r^{2}+1\right)^{2}$. It follows that $\left|\mathbf{S}_{3}\right| \leq \frac{8+\sqrt{2}}{2}$.

Substituting (3.1) into (1.9), combining Lemma 1, it follows that

$$
\begin{aligned}
\left|\mathbf{S}_{4}\right| & =6\left|-c_{2}+c_{3}+c_{1}^{2}-2 c_{1} c_{2}+c_{1}^{3}\right| \\
& =12\left|\zeta_{1}^{2}+\zeta_{1}^{3}-\left(1-\left|\zeta_{1}\right|^{2}\right)\left(2 \zeta_{1}+1\right) \zeta_{2}-\left(1-\left|\zeta_{1}\right|^{2}\right) \overline{\zeta_{1}} \zeta_{2}^{2}+\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \\
& \leq 12\left(1+x^{3}+\left(1-x^{2}\right)(2 x+1) y-\left(1-x^{2}\right)(1-x) y^{2}\right)=F(x, y),
\end{aligned}
$$

where $\zeta_{1}, \zeta_{2}, \zeta_{3} \in \overline{\mathbb{D}}, x=\left|\zeta_{1}\right|$ and $y=\left|\zeta_{2}\right|$.
Note first that $x=1$, we have $F(1, y)=24$. For $x \in[0,1)$, we get

$$
\frac{\partial F}{\partial y}=12\left(1-x^{2}\right)(2 x+1-2(1-x) y)=0 \quad \Leftrightarrow \quad y=\frac{2 x+1}{2(1-x)}=: y_{0} .
$$

If $x \in\left[\frac{1}{4}, 1\right)$, then $y_{0} \geq 1$. it follows that $F(x, y) \leq F(x, 1)=12\left(1+3 x-2 x^{3}\right) \leq 12(1+\sqrt{2})$. If $x \in\left[0, \frac{1}{4}\right)$, then $y_{0}<1$, it follows that $F(x, y) \leq F\left(x, y_{0}\right)=15+15 x+24 x^{2}+24 x^{3}<\frac{165}{8}$. Hence, the inequality $\left|\mathbf{S}_{4}\right| \leq 12(1+\sqrt{2})$ holds.
(2) If $f(z) \in \mathcal{F}_{2}$, using (1.9), Lemma 1 and (3.2), we get

$$
\left|\mathbf{S}_{4}\right|=6\left|-c_{1}+c_{3}-2 c_{1} c_{2}+c_{1}^{3}\right|
$$

$$
\begin{aligned}
& =12 \mid-\zeta_{1}+\zeta_{1}^{3}-2\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{1} \zeta_{2}-\left(1-\left|\zeta_{1}\right|^{2}\right) \overline{\zeta_{1} \zeta_{2}^{2}+\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3} \mid} \\
& \leq 12\left(1+x-x^{2}+x^{3}+2\left(1-x^{2}\right) x y-\left(1-x^{2}\right)(1-x) y^{2}\right),
\end{aligned}
$$

where $\zeta_{1}, \zeta_{2}, \zeta_{3} \in \overline{\mathbb{D}}, x=\left|\zeta_{1}\right|$ and $y=\left|\zeta_{2}\right|$.
Similar to the processing methods in (1) of this theorem, it is easy to prove that $\left|\mathbf{S}_{4}\right| \leq \frac{32 \sqrt{6}}{3}$ is true.
(3) Let $f(z) \in \mathcal{F}_{3}$. Combining (2.1)-(3.3), and we have

$$
\begin{aligned}
\left|\mathbf{S}_{3}\right| & =6\left|a_{3}-a_{2}^{2}\right|=\frac{1}{2}\left|2 c_{1}+4 c_{2}-3 c_{1}^{2}-3\right|=\frac{1}{2}\left|-3+4 \zeta_{1}-4 \zeta_{1}^{2}+8\left(1-\left|\zeta_{1}\right|^{2}\right) \zeta_{2}\right| \\
& \leq \frac{1}{2}\left(\left|3-4 \zeta_{1}+4 \zeta_{1}^{2}\right|+8\left(1-\left|\zeta_{1}\right|^{2}\right)\right) \leq \frac{1}{2}\left(11+4\left|\zeta_{1}\right|-4\left|\zeta_{1}\right|^{2}\right) \leq 6 .
\end{aligned}
$$

Equality holds when $\zeta_{1}=-\frac{1}{2}$ and $\zeta_{2}=-1$, by (1.5) and (2.5), it follows that the extremal function $f(z)=\int_{0}^{z} \frac{1-t^{2}}{\left(1-t+t^{2}\right)\left(1+t+t^{2}\right)} d t$.

Substituting (3.3) into (1.9), by Lemma 1, it follows that

$$
\begin{aligned}
\left|\mathbf{S}_{4}\right| & =6\left|c_{1}-c_{2}+c_{3}+c_{1}^{2}-2 c_{1} c_{2}+c_{1}^{3}\right| \\
& =12\left|\zeta_{1}+\zeta_{1}^{2}+\zeta_{1}^{3}-\left(1-\left|\zeta_{1}\right|^{2}\right)\left(2 \zeta_{1}+1\right) \zeta_{2}-\left(1-\left|\zeta_{1}\right|^{2}\right) \overline{\zeta_{1} \zeta_{2}^{2}}+\left(1-\left|\zeta_{1}\right|^{2}\right)\left(1-\left|\zeta_{2}\right|^{2}\right) \zeta_{3}\right| \\
& \leq 12\left(1+x+x^{3}+\left(1-x^{2}\right)(2 x+1) y-\left(1-x^{2}\right)(1-x) y^{2}\right),
\end{aligned}
$$

where $\zeta_{1}, \zeta_{2}, \zeta_{3} \in \overline{\mathbb{D}}, x=\left|\zeta_{1}\right|$ and $y=\left|\zeta_{2}\right|$.
Similar to the processing methods in (1) of this theorem, it is easy to prove $\left|\mathbf{S}_{4}\right| \leq 12\left(1+\frac{8 \sqrt{6}}{9}\right)$. The proof is completed.

4. Conclusions

Higher order Schwarzian derivatives for normalized univalent functions were first considered by Schippers [34], and those of convex functions were considered by Dorff and Szynal [11]. In the present investigation, higher order Schwarzian derivatives for the close-to-convex subclasses: $\mathfrak{R}\left\{(1-z) f^{\prime}(z)\right\}>$ $0, \mathfrak{R}\left\{\left(1-z^{2}\right) f^{\prime}(z)\right\}>0, \mathfrak{R}\left\{\left(1-z+z^{2}\right) f^{\prime}(z)\right\}>0$ and $\mathfrak{R}\left\{(1-z)^{2} f^{\prime}(z)\right\}>0$ are considered, where $f(z)$ is analytic in the unit disk with $f(0)=f^{\prime}(0)-1=0$. The bounds for the first two consecutive derivatives are investigated, which can enrich the research field of univalent analytic function.

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 11871215). The first author is supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX21_0247). The second author is supported by Youth Science Fund Research Project of Pingxiang University (Grant No. 2019D0202) and the Scientific Research Fund of Jiangxi Provincial Department of Education (No. GJJ 191157).

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. D. Aharonov, U. Elias, Sufficient conditions for univalence of analytic functions, J. Anal., 22 (2014), 1-11.
2. M. F. Ali, A. Vasudevarao, On logarithmic coefficients of some close-to-convex functions, Proc. Amer. Math. Soc., 146 (2018), 1131-1142.
3. D. Bshouty, A. Lyzzaik, Univalent functions starlike with respect to a boundary point, Contemp. Math., 382 (2005), 83-87.
4. N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, On the third logarithmic coefficient in some subclasses of close-to-convex functions, RACSAM, 114 (2020), 52.
5. N. E. Cho, B. Kowalczyk, A. Lecko, Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, B. Aust. Math. Soc., 100 (2019), 86-96.
6. N. E. Cho, V. Kumar, V. Ravichandran, Sharp bounds on the higher order Schwarzian derivatives for Janowski classes, Symmetry, 10 (2018), 348.
7. C. Carathéodory, Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen, Math. Ann., 64 (1907), 95-115.
8. Y. L. Chung, M. H. Mohd, S. K. Lee, On a subclass of close-to-convex functions, Bull. Iran. Math. Soc., 44 (2018), 611-621.
9. J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan, 59 (2007), 707-727.
10. P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
11. M. Dorff, J. Szunal, Higher order Schwarzian derivatives of univalent functions, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2008, 7-11.
12. A. W. Goodman, Univalent functions, Tampa: Mariner, 1983.
13. S. P. Goyal, O. Singh, Certain subclasses of close-to-convex functions, Vietnam J. Math., 42 (2014), 53-62.
14. R. Harmelin, Aharonov invariants and univalent functions, Israel J. Math., 43 (1982), 244-254.
15. B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, B. Śmiarowska, The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc., 43 (2020), 3143-3158.
16. B. Kowalczyk, A. Lecko, Fekete-Szegö problem for a certain subclass of close-to-convex functions, Bull. Malay. Math. Sci. Soc., 38 (2015), 1393-1410.
17. B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl., 2014 (2014), 65.
18. B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-toconvex functions with respect to convex functions, Publi. I. Math.-Beograd, 101 (2017), 143-149.
19. J. Kowalczyk, E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett., 23 (2010), 1147-1151.
20. V. Kumar, N. E. Cho, V. Ravichandran, H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053-1064.
21. U. P. Kumar, A. Vasudevarao, Logarithmic coefficients for certain subclasses of close-to-convex functions, Monatsh. Math., 187 (2018), 543-563.
22. V. Kumar, Hermitian-Toeplitz determinants for certain classes of close-to-convex functions, Bull. Iran. Math. Soc., 2021, DOI: 10.1007/s41980-021-00564-0.
23. A. Lecko, B. Śmiarowska, Sharp bounds of the Hermitian Toeplitz determinants for some classes of close-to-convex cunctions, Bull. Malays Math. Sci. Soc., 2021, DOI: 10.1007/s40840-021-01122x.
24. W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the International Conference on Complex Analysis at the Nankai Institute of the Mathematics, 1992, 157-169.
25. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545-551.
26. Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc., 5 (1954), 700-704.
27. Z. Nehari, Univalence criteria depending on the Schwarzian derivative, Illinois J. Math., 23 (1979), 345-351.
28. S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 2 (1935), 167-188.
29. S. Ponnusamy, Univalence of Alexander transform under new mapping properties, Complex Var. Theory A., 30 (1996), 55-58.
30. S. Ponnusamy, Close-to-convexity properties of Gaussian hypergeometric functions, J. Comput. Appl. Math., 88 (1998), 327-337.
31. S. Ponnusamy, S. K. Sahoo, T. Sugawa, Radius problems associated with pre-Schwarzian and Schwarzian derivatives, Analysis, 34 (2014), 163-171.
32. S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for Gaussian Hypergeometric functions, Rocky Mountain J. Math., 31 (2001), 327-353.
33. D. Răducanu, P. Zaprawa, Second Hankel determinant for close-to-convex functions, CR. Math., 355 (2017), 1063-1071.
34. E. Schippers, Distorion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc., 128 (2000), 3241-3249.
35. K. Trabka-Wieclaw, P. Zaprawa, On the coefficient problem for close-to-convex functions, Turk. J. Math., 42 (2018), 2809-2818.
36. D. K. Thomas, On the logarithmic coefficients of close to convex functions, Proc. Amer. Math. Soc., 144 (2016), 1681-1687.
37. N. Tuneski, B. Jolevska-Tuneska, B. Prangoski, On existence of sharp univalence criterion using the Schwarzian derivative, Comptes rendus de I'Academie bulgare des sciences: sciences mathematiques et naturelles, 68 (2015), 569-576.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
