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1. Introduction

The Chebyshev inequality, which has a notable spot in inequality theory, creates limit values and
esteems for synchronous functions and assists in the reproduction of new variation inequalities of many
various sorts. The foundation for this inequality lies in the following Chebyshev functional (see [1]):

1 b 1 b 1 b
1(f,8) = f f(%)g(%)d%—(m f f(%)d%)(m f g(%)d%),

where T'(f, g) > 0 and f, g are integrable and synchronous functions on [a, b], i.e.

(fGer) — f(2)) (8(t1) — g(x2)) 2 0, for %y, %, € [a, b].

Many researchers have been done on the Chebyshev inequality and its generalizations, expansions,
iterations, and adjustments for different classes of functions. They have established wide utilization in
functional analysis, numerical analysis, and statistics; for these outcomes, we allude the reader to [1-3].
Another attractive and helpful inequality so-called the Pélya-Szegd inequality, which comprises the
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primary inspiration point in our investigation, which we can express as (see [4]):

[ Peoax [ gZ(md% ( \/m \/7)

( f(%)g(%)d%

where m < f(x) < M and n < g(»x) < N, for some m, M,n, N € R and for each x € [a, b].
The authors in [5] employed the P6lya-Szego inequality to prove the following inequality

(M = m)(N — f f
T(f, d d
IT(f, 2l < b — ap VTN fCodx | gGo)dx,

where 0 <m < f(x) <M <ooand 0 < n < g(x) < N < oo, for x € [a, b].
Ngo et al. [6] presented the following integral inequalities

1 1
W )dr > f ww(x)dx, (1.1)
0 0

and

1 1
W 0)dr > f 2w (%)dx, (1.2)
0

where u > 0 and w is a positive continuous function on [0, 1] with

1 1
f w(x)dx > f xdx, h € [0,1].
h h

Liu et al. [7] introduced the following inequality

b b
fw“”(%)dxzf(x—a)"wv(%)d% (1.3)

where u, v > 0 and w is a positive continuous function on J :=[a, b], with

b b
f w* ()dxn > f (% —a)dx

and ¢ = min(1,v), » € J. Now, we state the following results, which were established by Liu et al. [8].

Theorem 1.1. [8] Let w, w > 0 be continuous functions on J with w(x) < w(x) for all » € J and such
that 2 is a decreasing function and @ is an increasing function. Suppose that @ is a convex function
with ®(0) = 0. Then

[ @) f D(w())d
fabw(%)d% 7 d(wedx

Theorem 1.2. [8] Let @, z, w > 0 be continuous functions on J with w(x) < w(x) for all » € J and

such that 2 is a decreasing function and @, z are increasing functions. Assume that ® is a convex
function with ®(0) = 0. Then

fab @ (x)dx f O(w(x))z(x)dx
[} weydx f D(w())z(0)dx
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On the other hand, the area of fractional calculus (FC) is concerned with integrals and derivatives
of non-integer order. This field has a long-term history. The premise of it tends to be followed back to
the message among Leibniz and L’Hopital in 1695 [9]. Over the nears, many authors have dedicated
themselves to the improvement of the theories of FC [10-16]. Moreover, the applications of FC are
found in different fields [9, 10, 17]. In virtually, different types of fractional operators, e.g,
Riemann-Liouville (R-L), Caputo [15, 16], and Hilfer [17] were presented. Recently, many authors
have considered certain novel fractional operators and their potential applications in different fields of
sciences and engineering [18, 19]. Abdeljawad and Baleanu [20] have studied the monotonicity
results for difference fractional operators with discrete exponential kernels. They also have set up
fractional operators with exponential kernel and their discrete versions [21]. Caputo and Fabrizio [23]
distinguished by proposing a new fractional operator without a singular kernel. Atangana and
Baleanu [22] introduced a novel fractional operator with the non-singular and non-local kernel. Some
properties of these operators can be found in [24]. The generalized fractional operator generated by a
class of local proportional derivatives are introduced by Jarad et al. [25].

In this regard, the fractional operator inequalities and their applications have likewise a basic job in
applied mathematics, especially in the theory of differential equations. Countless a few of many
interesting integral inequalities are set up by the analysts and researchers, e.g., inequalities involving
R-L and generalized R-L integrals [26, 27], Griiss-type and weighted Griiss type inequalities
involving the generalized R-L integrals and fractional integration [28,29], some inequalities involving
the extended gamma function and confluent hypergeometric k-function [30], and generalizations of
the generalized Gronwall type inequalities associated with k-fractional derivatives [31]. Some recent
works on Chebyshev’s inequalities involving various types of fractional operators can be found
in [32-36].

For more survey of some recent and earlier expansions related to the Minkowski (Gronwall,
Hermite-Hadamard, Griiss) inequalities, we point the readers to see also [37—47].

Motivated by the above works, in this paper, we establish some new inequalities for convex
functions by applying the generalized proportional fractional (GPF) integral. These results are recent
and provide the generalizations of some reported results [8,48,49] by applying some special values to
the parameters.

2. Preliminaries

In this section, we provide some basic definitions and some properties of proportional fractional
integrals.

Definition 2.1. ( [15]). The R-L fractional integrals ,I* and I}} are respectively given by

(@) (%) = % f%(% - )" 'w()du, a < x, 2.1

and ,
(lw)(x) = % f (v —%)""'w(v)dv, % < b, (2.2)

where a € C, Re(a) > 0 and

I'@) ::f e “u"du.
0
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Definition 2.2. ( [50,51]). Let 3 C R and «, 8 € C with Re(a) > 0 and Re(B) > 0. Then the tempered
fractional integrals ,1°? and IZ’ﬁ are respectively given by

P (%) = e 3 w(x)) = ﬁ f% exp [-B80¢ — v)] ¢ — V) 'T(W)dv, a < x, (2.3)
and
b
(I @) () = e [ (P w(x)) = % f exp [-B(w — %)] (v — )" '@(w)dv, x < b. (2.4)

Definition 2.3. ( [25]). For 0 < p < 1 and a € C, Re(a) > 0, the left and right GPF integrals of a
function @w € L'(3J) are respectively given by

GPFI((YP),ZD.(%) _

f 0t — v)exp [p “ - v)] oW)dv, % €3, (2.5)
”F( ) p

al"( ) f (U %)a : CXP[

1) Ifweputp =1in Eq (2.5) and Eq (2.6), then Eq (2.1) and Eq (2.2) are obtained, respectively, i.e.,
the generalized proportional operators reduce to the R-L operators.

and

GPFII(;Y,D) () = (v - %)] w(v)dv, x € J. (2.6)

Remark 2.4.

2) If we replace pp%l with =B in Eq (2.5) and Eq (2.6), then we obtain the tempered fractional integral
operators (2.3) and (2.4) respectively.

Here are some important characteristics of GPF integrals.

Proposition 2.5. ( [25]). For any p € (0, 1], we have

(GPFI(a.D)e S5 (s — a)é—l)(%) s pe Tk — a)pr,
a) Lo _ 6 2= (pese o
(GPFI( 9 0 b= s)° 1)(%) par(((s 3_ > b=y — vt
where a,p € C, Re(a) > 0 and Re(p) > 0.
Proposition 2.6. ( [25]). For any continuous function @, we have
GPF Ic(ﬁ,p) GPF I(@p) (%) = GPF It(;wﬁ,p) @ (%),

where 0 < p < 1, Re(a) > 0 and Re(B) > 0.
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3. Main results

In this section, we provide some inequalities for convex functions by using the GPF integral.

Theorem 3.1. Let @w,w > 0 be continuous functions on J with w(x) < w(x) for all x € J and such
that Z is a decreasing function and @ is an increasing function on 3. Then for any convex function ©
with ®(0) = 0, the inequality
P @00l _ LY (@)
>
L (@] SPFLE [D(w())]

(3.1

holds for the GPF integral (2.5).

Proof. By the hypotheses of theorem, ®(x) is convex function with ®(0) = 0. Then ? is an increasing

function. Since w is an increasing function, thus (w) is an increasing function, too.

Since, Z is a decreasing function, therefore for each o € 3, we have

O(@(o) (o)) [wx) @(o)
o) @ )(w(x) ) w(a)) =0 G2
It follows that
O(w (o)) w(x) N Q@) w(o) (@) wx) P(w(0)) @) >0 (3.3)
(o) wk) w(®) w(o) w(®) w(x) w(o) wlo) '
Multiplying (3.3) by w(o)w(x), we obtain
()] () O(w ()]
Mw(%)w(a) Sl@(x) w(o)w(x )—ﬂ (w(o) — (W(O-))W(O')w(%) >0. (34
@ (o) @) w(x) @ (o)

Multiplying (3.4) by ar(a) ———(x—0)* exp [p (% — 0')] and integrating (3.4) with respect to o over [a, x],

a<x<b,we get
f (x — o) exp [;1(% _ 0')] (D(w—(O'))w(%)w(o_)dO_
P @ (o)

f - oV exp |22 — o) | 2ED o rwtordor
a Y | @(x)

fx(% — o) exp = 1(% - 0')— MW(%)w(O')dO'
a Y | @)

fx(% — o) exp P 1(% —-0) Mw(a)w(%)d(r > 0.
a | P | @)

(yl"(a,)

+par(a>

" pT(@)

~pT(a)

Hence

@ () FF Ié(z,p)(q)(w(%)) (x )) (q)(w(%))
(%) w (%)

w(x)) PP (@(0)) = w() O

( )) CPEL Y (w(x))

I(a .0) (D(ID'(%))
<\ @)

) (@(w(x))

w(x%)

w(%)) > 0. (3.5)
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Again, multiplying (3.5) by (% — 0)* ' exp [’%1(% — 0')] and integrating (3.5) with respect to o
over [a, %], a < ¥ < b, we obtain

GPFIL(ICf,P)w( )GPFI(ap)(q)(w((’;)) w( )) GPFIC(ICfP)( (w((;;)) ( )) GPFIC(lc:,p)(w(%))

>GPF ((1 ) ((I)(TD'(%))) GPFI(‘YP)(U(%) + GPF];?’/))(,()(%) GPFIf;fp) (q)(w(%)) .

Consequently, we have

GPFI[(;i’p)ZD'(%) GPFI(OI,P) ((D(ZD'(%)) (3 6)
(@p) (@p) ( D(@() ’ '
GPEL () — PP (B ()

o~

Since w(x) < w(x) for all ¥ € J and the function defined by » —

o €la,x],a <x < b, we have

@
% is an increasing, thus for

¢ (@(@) _ @ (w(0))
(o) =~ wlo)

(3.7)

Multiplying both sides of (3.7) by
to o over [a,x], a < x < b, we get

f " — o) exp [’%1(% - 0')] @) yoyder

”F(a) (x— o) exp [—(% - 0')] w(o), then integrating with respect

(@) @(0)
! f (¢ — o) exp [p — 1(% — 0')} O (w(o)) do, (3.8)
pT(@) Ja
In view of (2.5) we can write (3.8) as follows
GPFI(QP) ((D (W(%)) (,()(%)) < GPFI((VsP)q) ((,()(%)) (3 9)
“ T s | ‘
Hence from (3.6) and (3.9), we obtain (3.1). O

Remark 3.2.

i) When p = 1 in Theorem 3.1 we obtain [49, Theorem 3].

il) When « = p = 1 and »x = b in Theorem 3.1 we get Theorem 1.1.

Theorem 3.3. Let @w,w > 0 be continuous functions on J with w(x) < w(x) for all x € J and such
that Z is a decreasing function and @ is an increasing function on 3. Then for any convex function ©
with ©(0) = 0, the inequality

P (@0l 117 [D(we)] +9°7 12 [@(0)] " [ [0(w(x))]
GPELE [w(o)] O IR [D(@ ()] +97F 127 [w ()] 1 (D@ ()]

(3.10)

holds for the GPF integral (2.5).
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Proof. By virtue of assumptions of the theorem, ®(x) is convex function with ®(0) = 0. Thus, the
function (D( ) is an increasing. Moreover, from the increasingly of function @, the function @(w) is an
1ncreas1ng Since the function 2 is a decreasing, therefore, multiplying (3 5) by

pﬁ(ﬁ)(% - o lexp [p’%l(% - 0')] and integrating the resultant identity with respect to o over [a, x],
a<x<b,we get

GPFI((ﬁ,p)w(%)GPF Igf’p)(q)(w(%)) w( )) 4 GPF I(ﬁp)(ww(%)) GPFIl(lff,P)(w.(%))

() - ()
> GPF Ifﬁp) (d)(w-(%)) (%)) GPFIL(Z(f,p)(w(%))
@ (%)
+ GPFIa(/i,P)w( )GPFI(ap) ((D(W(O)‘)) (%))' G.11)
Hence, from (3.9) and (3.11), we obtain the relation (3.10). O
Remark 3.4. Put @ = 3 in Theorem 3.3 we get Theorem 3.1. Moreover, if p = 1 in Theorem 3.3

we get [49, Theorem 4].

Theorem 3.5. Let w,z, w > 0 be continuous functions on J with w(x) < w(x) for all » € J and such

that Z is a decreasing function and @, z are increasing functions. Assume that ® is a convex function
with ®(0) = 0. Then the inequality

GPFIL(;,P) [W(%)] GPFIl(lff,P) [(D(W(%))Z(%)]
GPELEP [w()] — OPFIL [D(w(6)2(2)]

holds for the GPF integral (2.5).

d)(x)

Proof. Since ®(x) is convex function with ®(0) = 0, the function is an increasing. Besides, from

the increasing property of the function @, the function (Df:(.())) 1s an 1ncreasmg Since the function w(())
is a decreasing, thus, for each o € [a, %] and a < % < b, we obtain
O(w (o)) O(w (%))
( o (o) — p— 2(x )) (w(x)w(o) — w(or)w(x)) > 0. (3.12)
It follows that
D D
(W(G))Z(G)w(%)w(g) N (W(%))Z(%)w(g)w(%)
w(o) @ (%)
D D
—Mw(%)w(a) - Mw(a)w(%) > 0. (3.13)
(%) @ (o)
Multiplying (3.13) by ar( )(% o) lexp [pp%l(x - 0')] and integrating the resulting inequality with

respect to o over [a, %], a < » < b, we obtain

f %(% — o) exp [/%l(x - 0')] Mw(%)w(a)z(a)da

@ (o)

f " — o) exp lp;l(x - a)] Q@) o yw)z)der
a p @ (%)

pT(a)

T oT(@)
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f " — o) exp [p;l(% - 0')] Q@) (o) Goder
a p @ (%)

f %(% — o) lexp lp;l(% - (7)] MW(U)w(%)Z(O')dO' > 0.
a p @ (o)

" pT(@)

~ p°T(@)

Consequently,

a0 129 (220 + (LT e 7 1 e

_ ((I)(w(%)) ()2 )) GPFIL(ff,p)(w(%)) — w() GPFIgf»P) (Mw(x)z(%))
o) o)

> 0. (3.14)

By the same arguments as before on the inequality (3.14), we get

()

010 (2T ) 1 o

> ML @@00)00)) T ()
+ LI ((0) LY (D(@())2(0))

GEL (@)L (M (%)z(%))

This follows that
PP m) PP (@@ (0zx) ais)
GPFIL(I‘f’P)w(%) GPFI(QP) ((DE;H(Z))(U(%)Z(%)) )
Moreover, since w(x) < w(x) for all ¥ € J, then using the fact that the function » — % 1S an
increasing, thus for o € [a, %] we can write
() 0]
(w(0)) < (w(a))_ (3.16)
w(o) w(o)
With the same technique as before, inequality (3.16) leads to
* -1 d
f (o — o) Lexp [p—(% - 0')] Ma)(O')z(O')a’O'
P (@) Ja p @(0)
% -1
< f (x — o) Lexp [p (x — 0')] O(w(0))z(o)do.
pT(@) J, P
In view of (2.5), the last inequality can be written as follows
()
arr [0 (W (z)z(%)) <O 99 (@ (@) 2(0) (3.17)
From (3.17) and (3.15), we get the desired result. |
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Remark 3.6.

1. If p = 1 in Theorem 3.5, we obtain the result in [49, Theorem 5].
2. Ifa=1,p=1andx = b in Theorem 3.5, we obtain Theorem 1.2.

Theorem 3.7. Let w,z, w > 0 be continuous functions on J with w(x) < w(x) for all »x € J and such
that Z is a decreasing function, and @, z are increasing functions on 3. Then for any convex function
@ with ©(0) = 0, the inequality
L Tl 1 [D(0))2)] +°7 12 Tl I (9w e0):60]
GPFLE (w0l 12 [D(@())200] +677 127 [w(0)] 7 117 [D(@()z(0)]

1 (3.18)

holds for the GPF integral (2.5).

Proof. Multiplying both sides of (3.14) by p%(ﬁ)(%—a)ﬁ‘l exp [’%1(% - 0')] then integrating the resulting
inequality with respect to o over [a, %], a < x < b, we obtain

GPF Ig(ﬁ’p) w_(%)GPF Igf’p) (Mw(%)z(%))

w(%)
4 GPF[B0) (M
a (%)

o 0
a @ (%)

w(%)z(x)) CPF 1P (wr())

\%

w(x)z(m) CPE [ (w(x))

O(w (%))
w(x%)

+

PF 78, PF y(a,
G It(frl))w(%) G I;‘i p) (

w(%)z(%)) . (3.19)

)
¥

Since @w(x) < w(x) for all x € J, then using the fact that the function » —
for o € [a,x] and % € J, we have

is an increasing, thus

¢ (@(@) _ @ (w0))
(o) ~  wlo)

(3.20)

Multiplying the last inequality by m(% — o) lexp [’%1(% - 0')] w(0)z(o), then integrating the
resulting inequality with respect to o over [a, %], a < » < b, we get

O (w(x))
w(x%)

By following similar arguments as previously mentioned, we obtain

N e ( w(%)z(%)) <O LI (@ () 2(0)). (3.21)

R e ) E e ) (3.22)
a ZD'(%) a
Hence, thanks to (3.19), (3.21) and (3.22), we get the desired inequality (3.18). O

Remark 3.8. If in Theorem 3.7 a = 3, then we obtain Theorem 3.5.
Remark 3.9. Ifin Theorem 3.7 p = 1, then we obtain [49, Theorem 5].
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4. Conclusions

In this work, we have established some inequalities for generalized proportional fractional integrals
by means of convex functions. As well as we have established many new special results by using the
relationship between the generalized proportional fractional integral and the R-L integral. The obtained
results cover the given results by Dahmani [48] for p = 1, and Liu et al. [8, Theorems 9 and 10] for
a=landp=1.

Besides, if we replaced the generalized proportional fractional integral with the tempered fractional
integral, then the acquired inequalities will reduce to the results of Rahman et al. [49].
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