Mathematics

Research article

Construction for trees without domination critical vertices

Ying Wang ${ }^{1}$, Fan Wang ${ }^{2}$ and Weisheng Zhao ${ }^{1, *}$
${ }^{1}$ Institute for Interdisciplinary Research, Jianghan University, Wuhan, Hubei 430056, China
${ }^{2}$ School of Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
* Correspondence: Email: weishengzhao101@aliyun.com.

Abstract

Denote by $\gamma(G)$ the domination number of graph G. A vertex v of a graph G is called fixed if v belongs to every minimum dominating set of G, and bad if v does not belong to any minimum dominating set of G. A vertex v of G is called critical if $\gamma(G-v)<\gamma(G)$. By using these notations of vertices, we give a construction for trees that does not contain critical vertices.

Keywords: tree; domination; critical vertex; fixed vertex; bad vertex
Mathematics Subject Classification: 05C05, 05C69

1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph with vertexset $V(G)$ and edge-set $E(G)$. A subset D of $V(G)$ is called a dominating set of G if every vertex of G is either in D or adjacent to a vertex of D. The domination number $\gamma(G)$ is the cardinality of a minimum dominating set of G.

The domination in graphs is so classic that it has been widely studied in networks theory, while the decision problem for the domination number of a general graph was proved to be NP-complete [8]. On the study of domination, there are three early textbooks compiled by Haynes et al. [13, 14] and Henning et al. [17]. Recently, Haynes, Hedetniemi and Henning [11, 12] edited two new books on this field once again.

Definition 1.1. [24] (1) A vertex $v \in V(G)$ is called γ-fixed if v belongs to every minimum dominating set of G. (2) A vertex $v \in V(G)$ is called γ-bad if v does not belong to any minimum dominating set of G. (For simplicity, we abbreviate " γ-fixed" and " γ-bad" to "fixed" and "bad" respectively in this paper.)
Definition 1.2. A vertex $v \in V(G)$ is called critical if $\gamma(G-v)<\gamma(G)$. In particular, we agree that the single vertex of a trivial graph is critical.

Remark for Definition 1.2: It is easy to see that $\gamma(G-v)<\gamma(G) \Leftrightarrow \gamma(G-v) \leq \gamma(G)-1 \Leftrightarrow$ $\gamma(G-v)=\gamma(G)-1$, where $\gamma(G-v) \leq \gamma(G)-1 \Rightarrow \gamma(G-v)=\gamma(G)-1$ holds because if not so, then $\gamma(G-v) \leq \gamma(G)-2$, and thus G would have a dominating set with cardinality $((\gamma(G)-2)+|v|)<\gamma(G)$, contradicting the minimality of $\gamma(G)$.

The terms of fixed and bad vertices of graphs were introduced by Samodivkin [24], which can help us to research the constructions of minimum dominating sets of a graph better and shorten the processes of our proofs [7, 22, 24, 25]. (In [28], fixed and bad vertices of a graph are also called universal and idle vertices, respectively.) The notions of domination critical, which include vertex-critical [4] and edge-critical [3, 27], are very important to domination of graphs. But in this paper, we are not going to discuss the topic of edge-critical.

Definition 1.3. A graph G is called vertex-critical if every vertex of G is critical.
There are lots of nice properties on domination vertex-critical graphs [1, 2, 19, 29, 30]. Many of them possess symmetry, and even vertex-transitivity. For example, the graph $C_{4} \cdot C_{4}$ obtained by identifying two vertices of two cycles of orders four, the Harary graph $H_{3,8}$ and the circulant graph $C_{12}\langle 1,5\rangle$ (See Figure 1.).

$C_{4} \cdot C_{4}$

$H_{3,8}$

$C_{12}\langle 1,5\rangle$

Figure 1. Three examples of vertex-critical graph.

Trees is a kind of basic graph class often applied to algorithm design. There are a good few results on the study of the constructions for special trees, such as trees with equal domination and total domination numbers [7], trees with equal domination and restrained domination numbers [6], trees with equal total domination and disjunctive domination numbers [18], trees with equal independent domination and weak domination numbers [10], trees with a minimum vertex cover also being a minimum total dominating set [5], trees with two disjoint minimum independent dominating sets [15], trees with the paired domination number being twice the matching number [26], trees without fixed vertices [31], trees without fixed vertices and critical vertices [23, 16], trees with unique minimum dominating sets [9, 34], trees with equal Roman \{2\}-domination and Roman domination numbers [21], and trees with total Roman domination number being equal to the sum of domination number and semitotal domination number [20].

Naturally, there are two such questions: Can we exhaustively characterize vertex-critical graphs, as well as graphs without critical vertices? It seems not easy to solve these two questions. Therefore, in this paper, we study on the latter one and focus on the graph class-trees. Via defining 3 operations of graphs, we get a constructive characterization of trees without critical vertices.

2. Preliminary

2.1. Notations and terminologies

For any $u, v \in V(G)$, denote by $d_{G}(u, v)$ the distance from u to v in G as well as $d_{G}(v), N_{G}(v), N_{G}[v]$ and $N_{G}^{2}(v)$ the degree, open neighborhood, closed neighborhood and 2-open neighborhood of vertex v in G respectively, where the 2-open neighborhood of vertex v in G is defined as $N_{G}^{2}(v)=\{x \in V(G) \mid$ $d(x, v)=2\}$. For any $\emptyset \neq X \subseteq V(G)$, let $G[X]$ denote the subgraph of G induced by X.

Denote by $\underline{M D S}(G)$ the set composed of all the minimum dominating sets of G. That is, $\underline{M D S}(G)=$ $\{D \mid D$ is a minimum dominating set of $G\}$. A vertex of degree one (resp. degree zero) in G is called an end-vertex (resp. isolated vertex) of G. Let g be a cut-vertex of G. If a component P of $G-g$ is a path and g is adjacent to an end-vertex of P in G, then we call P as a pendant path of G and say that g and P are linked with each other. A pendant path of G with order $l(l \geq 1)$ is called an l-pendant path of G. Let $P_{2 k+1}=v_{1} v_{2} \cdots v_{2 k+1}$ be a path of order $2 k+1$. Then v_{k+1} is the center of $P_{2 k+1}$.

Let r be a vertex, l and m be two non-negative integers with $l+m \geq 1$. Let $P_{3}^{1} \cong P_{3}^{2} \cong \ldots \cong P_{3}^{l} \cong P_{3}$ with $P_{3}^{i}=v_{i} u_{i} w_{i}, i=1,2, \ldots, l$, and $P_{2}^{1} \cong P_{2}^{2} \cong \cdots \cong P_{2}^{m} \cong P_{2}$ with $P_{2}^{j}=x_{j} y_{j}, j=1,2, \ldots, m$. For every $1 \leq i \leq l$, link r and u_{i} by an edge. For every $1 \leq j \leq m$, link r and x_{j} by an edge. Denote the resulting graph as $R_{l, m}$ and call r as the root of $R_{l, m}$ (See Figure 2).

Figure 2. The graph $R_{l, m}$.

2.2. Some useful results

Now, we give three observations and some known lemmas, which will support our proofs in the next section.

Observation 2.1. Let G be a graph. If G_{1} and G_{2} are vertex-induced subgraphs of G such that $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$, then $\gamma(G) \leq \gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)$ with the equality holding when G_{1} and G_{2} are two components of G.

Observation 2.2. Let $u \in V(G)$. If u is adjacent to two end-vertices v and w in G, then v and w are bad in G, and u is fixed in G.

Observation 2.3. Let u be an end-vertex of G with $N_{G}(u)=\{v\}$. Then u is non-fixed and v is non-bad in G, and $|\{u, v\} \cap D|=1$ for any $D \in \underline{M D S}(G)$.

Lemma 2.4. [3] For any nontrivial tree T and any $v \in V(T), v$ is a fixed vertex of T if and only if $\gamma(T-v)>\gamma(T)$.

Lemma 2.5. [32] Let G be a graph with minimum degree at least one. If x is a bad or fixed vertex of G, then all the elements of $N_{G}[x]$ are non-critical vertices of G.

Lemma 2.6. [33] Let G be a graph.
(a) If x is a non-fixed vertex of G, then $\gamma(G-x) \leq \gamma(G)$.
(b) If x is a bad vertex of G, then $\gamma(G-x)=\gamma(G)$.
(c) If x is a non-fixed and non-critical vertex of G, then $\gamma(G-x)=\gamma(G)$.

Lemma 2.7. [34] Let T be a tree containing only one vertex u of degree at least 3 . Then u is linked with $\left|N_{T}(u)\right|$ pendant paths in T.

Lemma 2.8. [34] Let T be a tree with at least two vertices of degree at least 3 and let $d_{T}(u, v)=$ $\max \left\{d_{T}(x, y) \mid\right.$ both x and y are vertices of degree at least 3 in $\left.T\right\}$. Then u is linked with $\left|N_{T}(u)\right|-1$ pendant paths in T.

Lemma 2.9. [34] Let G_{0} be a graph without any isolated vertices and possessing a fixed vertex. If G is a graph obtained via linking a fixed vertex of G_{0} and the single vertex of P_{1} by an edge, then $\gamma(G)=\gamma\left(G_{0}\right)$.

Lemma 2.10. [34] Let G_{0} be a graph without any isolated vertices and possessing a fixed vertex. If G is a graph obtained via linking a fixed vertex of G_{0} and the center of P_{3} by an edge, then $\gamma(G)=\gamma\left(G_{0}\right)+1$.

3. Trees without critical vertices

3.1. Nontrivial vertex-critical trees do not exist

We now ask a question: Is there a nontrivial tree only containing critical vertices? Unluckily, the answer to this question is no (See Lemma 3.1).

Lemma 3.1. If $d_{G}(u)=1$ and $v \in N_{G}(u) \cup N_{G}^{2}(u)$, then v is a non-critical vertex of G.
Proof. Suppose to the contrary that v is a critical vertex of G. If $v \in N_{G}(u)$, let $D_{1} \in \underline{M D S}(G-v)$. Then by Definition 1.2, we have $\left|D_{1}\right|=\gamma(G)-1$. Since u is an isolated vertex of $G-v$, it follows that u is fixed in $G-v$. Now, if we let $D_{2}=\left(D_{1}-\{u\}\right) \cup\{v\}$, then D_{2} is a dominating set of G with $\left|D_{2}\right|=\left|D_{1}\right|=\gamma(G)-1$, a contradiction.

If $v \in N_{G}^{2}(u)$, then $\left|D^{\prime}\right|=\gamma(G)-1$ for any $D^{\prime} \in \underline{M D S}(G-v)$. Let $N_{G}(u)=\{w\}$. Since u is still an end-vertex of $G-v$, it follows from Observation 2.3 that w is a non-bad vertex of $G-v$. Let $D_{1}^{\prime} \in \underline{M D S}(G-v)$ with $w \in D_{1}^{\prime}$. On one hand, we have $\left|D_{1}^{\prime}\right|=\gamma(G)-1$. But on the other hand, D_{1}^{\prime} is also a dominating set of G, which implies that $\left|D_{1}^{\prime}\right| \geq \gamma(G)$, a contradiction.

Lemma 3.1 tells us that if G is nontrivial and has an end-vertex, then G must have a non-critical vertex. Therefore, a tree is vertex-critical if and only if it is trivial.

3.2. To get larger graphs without critical vertices via operations of graphs

In this subsection, via several operations of graphs, we can get large graphs without critical vertices from small graphs without critical vertices step by step. In particular, these processes of operations are reversible for trees. (Here, large graph represents graph with large order while small graph represents graph with small order.) For a graph G_{0}, we define the following three operations.
Operation i. Link a fixed vertex of G_{0} and the single vertex of P_{1} by an edge. Denote the resulting graph by $G_{0} \sim P_{1}$. (Refer to Figure 3 (i)).

Operation ii. Link a fixed vertex of G_{0} and the center of P_{3} by and edge. Denote the resulting graph by $G_{0} \backsim P_{3}$. (Refer to Figure 3 (ii)).
Operation iii. Link an arbitrary vertex of G_{0} and the root of $R_{l, m}$ by and edge. Denote the resulting graph by $G_{0} \sim R_{l, m}$. (Refer to Figure 3 (iii)).
Remark. In fact, the resulting graph may be not unique. So, " $G=G_{0} \sim P_{1}$ " means that " G is obtained from G_{0} by Operation i".

Figure 3. Examples of $G_{0} \backsim P_{1}, G_{0} \backsim P_{3}$ and $G_{0} \backsim R_{l, m}$.

Lemma 3.2. Let G_{0} be a graph without any isolated vertices and possessing a fixed vertex, and let $G=G_{0} \sim P_{1}$. Then all the vertices of G_{0} are non-critical if and only if all the vertices of G are non-critical.

Proof. (\Rightarrow) Suppose that $V\left(P_{1}\right)=\left\{v_{1}\right\}$ and $g v_{1} \in E(G)$. From Lemma 2.9, we have $\gamma(G)=\gamma\left(G_{0}\right)=$ $\gamma\left(G-v_{1}\right)$. So by Definition 1.2, v_{1} is a non-critical vertex of G. Also, we have g is a non-critical vertex of G by Lemma 3.1. It remains to prove that x is a non-critical vertex of G for every $x \in V\left(G-v_{1}-g\right) \subseteq$ $V\left(G_{0}\right)$. Since all the vertices of G_{0} are non-critical, we have $\gamma\left(G_{0}-x\right) \geq \gamma\left(G_{0}\right)$. Since $d_{G-x}\left(v_{1}\right)=1$, we have v_{1} is a non-fixed vertex of $G-x$ by Observation 2.3. So there exists $D_{x}^{-} \in \underline{M D S}(G-x)$ such that $v_{1} \notin D_{x}^{-}$, and then $g \in D_{x}^{-}$. Thus $D_{x}^{-} \cap V\left(G_{0}-x\right)$ is a dominating set of $G_{0}-x$. Hence $\gamma(G-x)=\left|D_{x}^{-}\right|=\left|D_{x}^{-} \cap V\left(G_{0}-x\right)\right| \geq \gamma\left(G_{0}-x\right) \geq \gamma\left(G_{0}\right)=\gamma(G)$, which implies that x is a non-critical vertex of G. The necessity follows.
(\Leftarrow) Assume to the contrary that G_{0} has a critical vertex y_{0}. Since all the vertices of G are noncritical, we have $\gamma\left(G-y_{0}\right) \geq \gamma(G)$. Let $D_{0}^{-} \in \underline{M D S}\left(G_{0}-y_{0}\right)$. Then $\left|D_{0}^{-} \cup\left\{y_{0}\right\}\right|=\gamma\left(G_{0}-y_{0}\right)+1=\gamma\left(G_{0}\right)$, which implies that $D_{0}^{-} \cup\left\{y_{0}\right\} \in \underline{M D S}\left(G_{0}\right)$. By the definition of Operation i, g is a fixed vertex of G_{0}. So we have $g \in D_{0}^{-} \cup\left\{y_{0}\right\}$, and g is a non-critical vertex of G_{0} by Lemma 2.5. Thus $g \neq y_{0}$, and therefore $g \in D_{0}^{-}$, which implies that D_{0}^{-}is a dominating set of $G-y_{0}$. Hence $\gamma\left(G_{0}-y_{0}\right)=\left|D_{0}^{-}\right| \geq$ $\gamma\left(G-y_{0}\right) \geq \gamma(G)=\gamma\left(G_{0}\right)$, which contradicts the assumption that y_{0} is a critical vertex of G_{0}. The sufficiency follows.

Lemma 3.3. Let G_{0} and W be two graphs. Let G be a graph obtained via linking an arbitrary vertex of G_{0} and an arbitrary vertex of W by an edge. If $\gamma(G)=\gamma\left(G_{0}\right)+\gamma(W)$ and all the vertices of G are non-critical, then all the vertices of G_{0} are non-critical.
Proof. For any $y \in V\left(G_{0}\right)$, since all the vertices of G are non-critical, it follows that $\gamma(G-y) \geq \gamma(G)$. By Observation 2.1, we have $\gamma\left(G_{0}-y\right)+\gamma(W) \geq \gamma(G-y) \geq \gamma(G)=\gamma\left(G_{0}\right)+\gamma(W)$. Thus $\gamma\left(G_{0}-y\right) \geq \gamma\left(G_{0}\right)$, and so y is a non-critical vertex of G_{0}. The lemma follows.

Lemma 3.4. Let G_{0} be a graph without isolated vertices and possessing a fixed vertex, and $G=G_{0} \sim$ P_{3}.
(a) If all the vertices of G are non-critical, then all the vertices of G_{0} are non-critical.
(b) When G_{0} is a tree, (in order to avoid confusion,) we rewrite $T_{0}=G_{0}$ and $T=G$. If all the vertices of T_{0} are non-critical, then all the vertices of T are non-critical.

Proof. (a) Suppose that $P_{3}=v_{1} v_{2} v_{3}$ and $E(G)-E\left(G_{0}\right)-E\left(P_{3}\right)=\left\{g v_{2}\right\}$. Then g is fixed in G_{0}. From Lemma 2.10, we get $\gamma(G)=\gamma\left(G_{0}\right)+1$. Item (a) follows by Lemma 3.3.
(b) Firstly, by Observation 2.2, v_{2} is a fixed vertex of T. So by Lemma 2.5, v_{1}, v_{2}, v_{3} and g are non-critical vertices of T.

Secondly, we need to show that x is a non-critical vertex of T for every $x \in V(T-g)-V\left(P_{3}\right)$. That is, to prove $\gamma(T-x) \geq \gamma(T)$. Since T_{0} has no critical vertices, we have $\gamma\left(T_{0}-x\right) \geq \gamma\left(T_{0}\right)$. Let $D_{x}^{-} \in \underline{M D S}(T-x)$. If $g \in D_{x}^{-}$, then $D_{x}^{-} \cap V\left(T_{0}-x\right)$ is a dominating set of $T_{0}-x$, and so $\gamma(T-x)=\left|D_{x}^{-}\right|=$ $\left|D_{x}^{-} \cap V\left(T_{0}-x\right)\right|+\left|\left\{v_{2}\right\}\right| \geq \gamma\left(T_{0}-x\right)+1 \geq \gamma\left(T_{0}\right)+1=\gamma(T)$. If $g \notin D_{x}^{-}$, then $\left(D_{x}^{-} \cap V\left(T_{0}-x\right)\right) \cup\{x\}$ is a dominating set of $T_{0}-g$. By Lemma 2.4, we have $\left|\left(D_{x}^{-} \cap V\left(T_{0}-x\right)\right) \cup\{x\}\right| \geq \gamma\left(T_{0}-g\right) \geq \gamma\left(T_{0}\right)+1$, which implies that $\left|D_{x}^{-} \cap V\left(T_{0}-x\right)\right| \geq \gamma\left(T_{0}\right)$. So $\gamma(T-x)=\left|D_{x}^{-}\right|=\left|D_{x}^{-} \cap V\left(T_{0}-x\right)\right|+\left|\left\{v_{2}\right\}\right| \geq \gamma\left(T_{0}\right)+1=\gamma(T)$. Item (b) follows.

Note. In Lemma 3.4 (b), we restrict G_{0} to be a tree because if G_{0} is a general graph, then the result maybe not true. (See the following Example 3.5).

Example 3.5. Define G_{0} and G as shown in Figure 4. Then $G=G_{0} \sim P_{3}$. It is not hard to check that $\gamma\left(G_{0}\right)=2, h_{1}$ and g are fixed vertices of G_{0}, as well as $w_{1}, u_{1}, u_{2}, u_{3}, u_{4}$ and h_{2} are bad vertices of G_{0}. By Lemma 2.5, G_{0} has no critical vertices. However, since $\gamma(G)=\gamma\left(G_{0}\right)+1=3$, we can see that $\left\{h_{2}, v_{2}\right\} \in \underline{M D S}\left(G-w_{1}\right)$, which implies that w_{1} is a critical vertex of G.

Figure 4. Sketch of Example 3.5.

Lemma 3.6. Let G_{0} be a graph and $G=G_{0} \sim R_{l, m}$. Then
(a) $\gamma(G)=\gamma\left(G_{0}\right)+(l+m)$;
(b) all the vertices of G_{0} are non-critical if and only if all the vertices of G are non-critical.

Proof. Suppose that $E(G)-E\left(G_{0}\right)-E\left(R_{l, m}\right)=\{g r\}$. Set $U=\left\{u_{1}, u_{2}, \ldots, u_{l}\right\}, X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ and $Z=X \cup Y$.
(a) We can easily see that $\gamma\left(R_{l, m}\right)=l+m$. So $\gamma(G) \leq \gamma\left(G_{0}\right)+(l+m)$. It remains to prove $\gamma(G) \geq \gamma\left(G_{0}\right)+(l+m)$. Let $D \in \underline{M D S}(G)$. If $D \cap V\left(G_{0}\right)$ can dominate g in G, then $D \cap V\left(G_{0}\right)$ is a dominating set of G_{0}, and so $|D| \geq\left|D \cap V\left(G_{0}\right)\right|+|U|+|D \cap Z| \geq \gamma\left(G_{0}\right)+(l+m)$; if not, then $r \in D$
and $\left(D \cap V\left(G_{0}\right)\right) \cup\{g\}$ is a dominating set of G_{0}, and so $|D|=\left|D \cap V\left(G_{0}\right)\right|+|\{r\}|+|U|+|D \cap Z|=$ $\left|\left(D \cap V\left(G_{0}\right)\right) \cup\{g\}\right|+(l+m) \geq \gamma\left(G_{0}\right)+(l+m)$.
(b) (\Leftarrow) The sufficiency follows immediately by Item (a) and Lemma 3.3.
(\Rightarrow) We claim that r is a bad vertex of G. Otherwise, let $D_{r} \in \underline{M D S}(G)$ with $r \in D_{r}$. If $g \in D_{r}$, then $D_{r}-\{r\}$ is a dominating set of G, contradicting the minimality of $\left|D_{r}\right|$. So we have $g \notin D_{r}$, and then $D_{r} \cap V\left(G_{0}\right)$ is a dominating set of $G_{0}-g$. Thus $\gamma\left(G_{0}-g\right) \leq\left|D_{r} \cap V\left(G_{0}\right)\right|=\left|D_{r}\right|-|U|-\left|D_{r} \cap Z\right|-|\{r\}|=$ $\gamma(G)-(l+m)-1=\gamma\left(G_{0}\right)-1$, which implies that g is a critical vertex of G_{0}, contradicting the known condition that G_{0} has no critical vertices.

Now firstly, for every $1 \leq i \leq l$ and every $1 \leq j \leq m$, we have $u_{i}, v_{i}, w_{i}, r, g$ and x_{j} are non-critical vertices of G by Lemma 2.5.

Secondly, if there exists some $1 \leq j^{\prime} \leq m$ such that $\gamma\left(G-y_{j^{\prime}}\right)=\gamma(G)-1$, we can let $D^{-} \in$ $\underline{M D S}\left(G-y_{j^{\prime}}\right)$ with $r \in D^{-}$by Observation 2.3. But then $D^{-} \cup\left\{y_{j^{\prime}}\right\} \in \underline{M D S}(G)$ with $r \in D^{-} \cup\left\{y_{j^{\prime}}\right\}$, contradicting the claim that r is bad in G. So for every $1 \leq j \leq m$, we have $\gamma\left(G-y_{j}\right) \geq \gamma(G)$, which implies that y_{j} is non-critical in G.

Finally, it remains to show that $\gamma(G-x) \geq \gamma(G)$ for every $x \in V(G-g)-V\left(R_{l, m}\right) \subseteq V\left(G_{0}\right)$. Since all the vertices of G_{0} are non-critical, we have $\gamma\left(G_{0}-x\right) \geq \gamma\left(G_{0}\right)$. Let $D_{x}^{-} \in \underline{M D S}(G-x)$. If $D_{x}^{-} \cap V\left(G_{0}-x\right)$ can dominate g, then $D_{x}^{-} \cap V\left(G_{0}-x\right)$ is a dominating set of $G_{0}-x$, and so $\gamma(G-x)=$ $\left|D_{x}^{-}\right| \geq\left|D_{x}^{-} \cap V\left(G_{0}-x\right)\right|+|U|+\left|D_{x}^{-} \cap Z\right| \geq \gamma\left(G_{0}-x\right)+(l+m) \geq \gamma\left(G_{0}\right)+(l+m)=\gamma(G)$; if not, then we have $r \in D_{x}^{-}$and $\left(D_{x}^{-} \cap V\left(G_{0}-x\right)\right) \cup\{g\}$ is a dominating set of $G_{0}-x$, and so $\gamma(G-x)=\left|D_{x}^{-}\right|=\mid D_{x}^{-} \cap V\left(G_{0}-\right.$ $x)\left|+|\{r\}|+|U|+\left|D_{x}^{-} \cap Z\right|=\left|\left(D_{x}^{-} \cap V\left(G_{0}-x\right)\right) \cup\{g\}\right|+(l+m) \geq \gamma\left(G_{0}-x\right)+(l+m) \geq \gamma\left(G_{0}\right)+(l+m)=\gamma(G)\right.$. The necessity follows.

3.3. To construct trees only containing non-critical vertices

Since it is hard to obtain a constructive characterization of graphs without critical vertices, we only solve this problem partly by restricting the graph class to be trees in this subsection.

Theorem 3.7. A nontrivial tree T has no critical vertices if and only if T can be obtained from P_{2} or P_{3} by a finite sequence of Operations i-iii.

Proof. Let \mathcal{T} be the set of graphs obtained from P_{2} or P_{3} by a finite sequence of Operations i-iii. It suffices to prove that T has no critical vertices if and only if $T \in \mathcal{T}$.
(\Leftarrow) Assume that T is obtained by doing n times Operations i, ii and iii. We will prove that all the vertices of T are non-critical by induction on n. When $n=0$, we have $T=P_{2}$ or $T=P_{3}$, and the result is true clearly. Suppose that the result is true when $n=k(k \geq 0)$. Then from Lemmas 3.2, 3.4 (b), and 3.6 (b), we know that the result is also true when $n=k+1$. By the induction principle, the sufficiency follows.
(\Rightarrow) We are going to prove the necessity by induction on $|V(T)|$. When $|V(T)|=2$ or 3 , the result is true clearly. Suppose that the result is true when $|V(T)|<k(k \geq 4)$. We consider the case when $|V(T)|=k$ below.

Case 1. T has a pendant path of order at least 3.
Let P_{3} be a 3-pendant path of T and $T_{0}=T-V\left(P_{3}\right)$. Note that $P_{3} \cong R_{0,1}$. So $T=T_{0} \sim R_{0,1}$. By Lemma 3.6 (b), all the vertices of T_{0} are non-critical. Since $\left|V\left(T_{0}\right)\right|<|V(T)|=k$, we have $T_{0} \in \mathcal{T}$ by the induction hypothesis. Hence $T=T_{0} \sim R_{0,1} \in \mathcal{T}$.

Case 2. T has a vertex u adjacent to an end-vertex w in T and u is fixed in $T-w$.
Let $T_{0}=T-w$. Then $T=T_{0} \sim P_{1}$. By Lemma 3.2, T_{0} has no critical vertices. Since $\left|V\left(T_{0}\right)\right|=$ $k-1<k$, we have $T_{0} \in \mathcal{T}$. Hence $T=T_{0} \backsim P_{1} \in \mathcal{T}$.

Case 3. T has a vertex u of degree 3 which is adjacent to two end-vertices v, w of T and a fixed vertex g of $T-\{v, u, w\}$ in T.

Let $T_{0}=T-\{v, u, w\}$. Then $T=T_{0} \sim P_{3}$. By Lemma 3.4 (a), T_{0} has no critical vertices. So $T_{0} \in \mathcal{T}$, and hence $T \in \mathcal{T}$.

Case 4. T has a vertex u of degree at least 3 linked with $\left|N_{T}(u)\right|-1$ 2-pendant paths.
Let $P_{2}^{1}, P_{2}^{2}, \ldots, P_{2}^{m}$ be the 2-pendant paths linked with u in T, where $m=\left|N_{T}(u)\right|-1$. Then $T[\{u\} \cup$ $\left.\bigcup_{j=1}^{m} V\left(P_{2}^{j}\right)\right] \cong R_{0, m}$. Let $T_{0}=T-\left(\{u\} \cup \bigcup_{j=1}^{m} V\left(P_{2}^{j}\right)\right)$. Then $T=T_{0} \sim R_{0, m}$. As a consenquence, we have $T \in \mathcal{T}$.

Case 5. All of Cases 1-4 do not occur.
Since $|V(T)| \geq 4$ and Case 1 does not occur, T is not a path. So T has at least one vertex of degree at least 3 .

Claim 5.1. There does not exist a vertex u adjacent to three end-vertices in T.
Suppose not. Let v_{1} be an end-vertex which is adjacent to u in T and let $T_{0}=T-v_{1}$. By Observation 2.2, u is a fixed vertex of T_{0}, which is contrary to the supposition that Case 2 does not occur.

Claim 5.2. There does not exist a vertex u linked with one 1-pendant path P_{1} and one 2-pendant path P_{2} in T.

Suppose not. Let $V\left(P_{2}\right)=\{x, y\}$ with $u x \in E(T)$. By Observation 2.3, there exists $D_{u} \in \underline{M D S}(T)$ such that $u \in D_{u}$. Let $D_{u}^{*}=\left(D_{u}-\{x, y\}\right) \cup\{y\}$. Then $D_{u}^{*}-\{y\}$ is a dominating set of $T-y$, which implies that y is a critical vertex of T, contradicting the known condition that T has no critical vertices.

Claim 5.3. T has at least two vertices of degree at least 3 .
Suppose, to the contrary, that T has only one vertex c with $d_{T}(c) \geq 3$. By Lemma 2.7, c is linked with $\left|N_{T}(c)\right|$ pendant paths in T. Since Case 1 does not occur, it follows from Claims 5.2 and 5.1 that all of these $\left|N_{T}(c)\right|$ pendant paths are 2-pendant paths. But this contradicts the supposition that Case 4 does not occur.

Claim 5.4. If u and v are two vertices of degree at least 3 in T such that $d_{T}(u, v)=\max \left\{d_{T}(x, y) \mid\right.$ both x and y are vertices of degrees at least 3 in $T\}$, then $\left|N_{T}(u)\right|=3$ and u is adjacent to 2 end-vertices in T.

By Lemma 2.8, u is linked with $\left|N_{T}(u)\right|-1$ pendant paths in T. Since Cases 1 and 4 does not occur, it follows from Claims 5.2 and 5.1 that $\left|N_{T}(u)\right|=3$ and u is adjacent to 2 end-vertices in T.

Now, let u and v be two vertices of T satisfying the supposition of Claim 5.4. Suppose that v_{1} and w_{1} are two end-vertices which are adjacent to u in T and $N_{T}(u)-\left\{v_{1}, w_{1}\right\}=\{r\}$. By Claim 5.4, the equivalent status of v and u, and Observation 2.2, we get that v is a fixed vertex of $T-\left\{u, v_{1}, w_{1}\right\}$. Since Case 3 does not occur, we have $r \neq v$.

Let T_{v} be the component of $T-r$ such that $v \in V\left(T_{v}\right),\{z\}=N_{T}(r) \cap V\left(T_{v}\right), N_{T}(r)-\{z\}=$ $\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}$ (where $u_{1}=u$) and $T_{u_{1}}, T_{u_{2}}, \ldots, T_{u_{q}}$ be the components of $T-r$ such that $u_{i} \in V\left(T_{u_{i}}\right)$ for every $1 \leq i \leq q$. Furthermore, we may suppose without loss of generality that $T_{u_{1}}, T_{u_{2}}, \ldots, T_{u_{l}}$ are not pendant paths of T as well as $T_{u_{l+1}}, T_{u_{l+2}}, \ldots, T_{u_{l+m}}$ are pendant paths of T, where $1 \leq l \leq q$ and $l+m=q$.

Claim 5.5. $T_{u_{i}}$ is a 2-pendant path of T for every $l+1 \leq i \leq l+m$.

Suppose, to the contrary, that $T_{u_{i^{\prime}}}$ is a pendant path of T with $\left|V\left(T_{u_{i^{\prime}}}\right)\right| \neq 2$ for some $l+1 \leq i^{\prime} \leq$ $l+m$. By Lemma 3.1, r is a non-critical vertex of $T-V\left(T_{u_{i}}\right)$. Since Case 1 does not occur, we have $\left|V\left(T_{u_{i}}\right)\right|=1$. Let $V\left(T_{u_{i}}\right)=\{w\}$ and $T_{0}=T-\left\{u, v_{1}, w_{1}\right\}$. By Observations 2.2 and 2.3, one may let $D_{r} \in \underline{M D S}(T)$ with $u, r \in D_{r}$. We claim that $D_{r} \cap V\left(T_{0}\right) \in \underline{M D S}\left(T_{0}\right)$. Otherwise there exists $D_{0} \in \underline{M D S}\left(T_{0}\right)$ such that $\left|D_{0}\right|<\left|D_{r} \cap V\left(T_{0}\right)\right|$. But then $\{u\} \cup D_{0}$ would be a dominating set of T with $\left|\{u\} \cup D_{0}\right|<\left|\{u\} \cup\left(D_{u} \cap V\left(T_{0}\right)\right)\right|=\left|D_{r}\right|$, contradicting the minimality of $\left|D_{r}\right|$. Thus $\gamma(T)=\left|D_{r}\right|=|\{u\}|+\left|D_{r} \cap V\left(T_{0}\right)\right|=1+\gamma\left(T_{0}\right)$. Since Case 3 does not occur, r is not a fixed vertex of T_{0}. Let $\hat{D}_{0}^{r} \in \underline{M D S}\left(T_{0}\right)$ with $r \notin \hat{D}_{0}^{r}$. Then $w \in \hat{D}_{0}^{r}$ and $\{u\} \cup \hat{D}_{0}^{r} \in \underline{M D S}(T)$. Since $\left(\{u\} \cup \hat{D}_{0}^{r}\right)-\{w\}$ is a dominating set of $T-w$, it follows that w is a critical vertex of T, a contradiction.

Claim 5.6. For every $2 \leq i \leq l, u_{i}$ is the unique vertex of $V\left(T_{u_{i}}\right)$ satisfying $d_{T}\left(u_{i}\right) \geq 3$.
Firstly, since $T_{u_{i}}$ is not a pendant path of $T, T_{u_{i}}$ has a vertex with degree at least 3 in T. Secondly, we claim that for every $h \in V\left(T_{u_{i}}\right)-\left\{u_{i}\right\}, h$ is not a vertex of $V\left(T_{u_{i}}\right)$ with degree at least 3 in T. Otherwise, we have $d_{T}(h, v)=d_{T}\left(h, u_{i}\right)+d_{T}\left(u_{i}, v\right)>d_{T}\left(u_{i}, v\right)=1+d_{T}(r, v)=d_{T}(u, v)$, contradicting the selection of u and v. From these two observations, Claim 5.6 follows.

Since $d_{T}\left(u_{i}, v\right)=d_{T}\left(u_{1}, v\right)$, we have $\left|N_{T}\left(u_{i}\right)\right|=3$ and u_{i} is adjacent to 2 end-vertices in T for every $2 \leq i \leq l$ by Claim 5.4, which implies that

$$
T\left[\{r\} \cup \bigcup_{i=1}^{l} V\left(T_{u_{i}}\right) \cup \bigcup_{j=1}^{m} V\left(T_{u_{l+j}}\right)\right] \cong R_{l, m}
$$

(See Figure 5.) Let $T_{0}=T-\left(\{r\} \cup \bigcup_{i=1}^{l} V\left(T_{u_{i}}\right) \cup \bigcup_{j=1}^{m} V\left(T_{u_{l+j}}\right)\right)$. Then $T=T_{0} \sim R_{l, m}$. By Lemma 3.6 (b), T_{0} has no critical vertices. Thus we have $T_{0} \in \mathcal{T}$ by the induction hypothesis, and so $T \in \mathcal{T}$.

Figure 5. The sketch of Case 5.

In conclusion, the result is true when $|V(T)|=k$. The necessity follows.

4. Conclusions

We think that it is quite difficult to give a construction for graphs without critical vertices. For further studies, ones may consider to characterize unicyclic graphs without critical vertices, or graphs with domination number 3 and without critical vertices.

Acknowledgments

1. National Natural Science Foundation of China (no. 12061047);
2. Natural Science Foundation of Jiangxi Province (no. 20192BAB211002);
3. Undergraduate Innovation Training Project of Hubei Province (no. 202111072011);
4. Foundation of Cultivation of Scientific Institutions of Jianghan University (no. 06210033).

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References

1. N. Ananchuen, M. D. Plummer, Matchings in 3-vertex-critical graphs: The even case, Networks, 45 (2005), 210-213.
2. N. Ananchuen, M. D. Plummer, Matchings in 3-vertex-critical graphs: The odd case, Discrete Math., 307 (2007), 1651-1658.
3. D. Bauer, F. Harary, J. Nieminen, C. L. Suffel, Domination alteration sets in graphs, Discrete Math., 47 (1983), 153-161.
4. R. C. Brigham, P. Z. Chinn, R. D. Dutton, Vertex domination-critical graphs, Networks, 18 (1988), 173-179.
5. C. H. Cruz, M. Lemańska, R. Zuazua, A characterization of trees having a minimum vertex cover which is also a minimum total dominating set, Australas. J. Comb., 73 (2019), 334-345.
6. P. Dankelmann, J. H. Hattingh, M. A. Henning, H. C. Swart, Trees with equal domination and restrained domination numbers, J. Global Optim., 34 (2006), 597-607.
7. M. Dorfling, W. Goddard, M. A. Henning, C. M. Mynhardt, Construction of trees and graphs with equal domination parameters, Discrete Math., 306 (2006), 2647-2654.
8. M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NPcompleteness, San Francisco, Calif, USA: W. H. Freeman and Company, 1979.
9. G. Gunther, B. Hartnell, L. R. Markus, D. F. Rall, Graphs with unique minimum dominating sets, Congr. Numer, 101 (1994), 55-63.
10. J. H. Hattingh, M. A. Henning, Characterizations of trees with equal domination parameters, J. Graph Theory, 34 (2000), 142-153.
11. T. W. Haynes, S. T. Hedetniemi, M. A. Henning, Structures of domination in graphs, Springer Nature Switzerland AG, 2020.
12. T. W. Haynes, S. T. Hedetniemi, M. A. Henning, Topics in domination in graphs, Springer Nature Switzerland AG, 2020.
13. T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, New York: Marcel Dekker, 1998.
14. T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in graphs: Advanced topics, New York: Marcel Dekker, 1998.
15. T. W. Haynes, M. A. Henning, Trees with two disjoint minimum independent dominating sets, Discrete Math., 304 (2005), 69-78.
16. T. W. Haynes, M. A. Henning, Changing and unchanging domination: A classification, Discrete Math., 272 (2003), 65-79.
17. M. A. Henning, A. Yeo, Total domination in graphs, New York: Heidelberg Dordrecht London Springer, 2013.
18. M. A. Henning, S. A Marcon, A constructive characterization of trees with equal total domination and disjunctive domination numbers, Quaest. Math., 39 (2016), 531-543.
19. A. P. Kazemi, Every $K_{1,7}$ and $K_{1,3}$-free, 3-vertex critical graph of even order has a perfect matching, J. Discrete Math. Sci. Cryptogr., 13 (2010), 583-591.
20. A. C. Martínez, A. M. Arias, M. M. Castillo, A characterization relating domination, semitotal domination and total Roman domination in trees, Commun. Comb. Optim., 6 (2021), 197-209.
21. A. C. Martínez, I. G. Yero, A characterization of trees with equal Roman \{2\}-domination and Roman domination numbers, Commun. Comb. Optim., 4 (2019), 95-107.
22. C. M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory, 31 (1999), 163-177.
23. V. Samodivkin, Domination in graphs, God. Univ. Arkhit. Stroit. Geod. Sofiya, Svitk II, Mat. Mekh., 39 (1996-1997), 111-135.
24. V. Samodivkin, Changing and unchanging of the domination number of a graph, Discrete Math., 308 (2008), 5015-5025.
25. V. Samodivkin, The bondage number of graphs: Good and bad vertices, Discuss. Math. Graph Theory, 28 (2008), 453-462.
26. E. Shan, L. Kang, M. A. Henning, A characterization of trees with equal total domination and paired-domination numbers, Australas. J. Comb., 30 (2004), 31-39.
27. D. Sumner, P. Blitch, Domination critical graphs, J. Comb. Theory Ser. B, 34 (1983), 65-76.
28. U. Teschner, New results about the bondage number of a graph, Discrete Math., 171 (1997), 249259.
29. T. Wang, Q. L. Yu, Factor-critical property in 3-dominating-critical graphs, Discrete Math., 309 (2009), 1079-1083.
30. T. Wang, Q. L. Yu, A conjecture on k-factor-critical and 3- γ-critical graphs, Sci. China Math., 53 (2010), 1385-1391.
31. W. S. Zhao, X. L. Gao, H. P. Zhang, Construction for trees without vertices contained in all minimum dominating sets, Ars Combinatoria, 138 (2018), 3-16.
32. W. S. Zhao, H. P. Zhang, Upper bounds on the bondage number of the strong product of a graph and a tree, Int. J. Comput. Math., 95 (2017), 511-527.
33. W. S. Zhao, F. Wang, X. L. Gao, H. Li, Bondage number of the strong product of two trees, Discrete Appl. Math., 230 (2017), 133-145.
34. W. S. Zhao, F. Wang, H. P. Zhang, Construction for trees with unique minimum dominating sets, Int. J. Comput. Math.: Comput. Syst. Theory, 3 (2018), 204-213.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
