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1. Introduction

We consider characteristic equations, i.e., equations for eigenvalues and eigenfunctions of the class
of integral operators on the Hilbert space L*[—1, [] of the form

!
Kmlwl(x) = f Gm(x, E)w(€) dé, x e [-L1], we L*}-L1], (1.1)
-l

where Gy is the Green function [1, 2] for the boundary value problem consisting of the fourth-order
linear differential equation

EL-u®(x) +k-u(x) =wx),  xe[-L]] (1.2)
and a well-posed two-point boundary condition
M- (u(—l) uw(=lh u=h u (=D ul) u'd) u’() u”’(l))T =0. (1.3)

Here, M € gl(4, 8, C) is called a boundary matrix, where gl(4, 8, C) is the set of 4 X 8 matrices with
complex entries. For example, the two-point boundary condition u(—I) = u’'(-1) = u(l) = u’(l) = 0 can
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be expressed by (1.3) with

1 0 0O 00 00
M:0100 0 000
0 0 0O 1 000
0 0 0O 01 00

The differential equation (1.2) is the classical Euler—Bernoulli beam equation [3] which governs the
vertical downward deflection u(x) of a linear-shaped beam with finite length 2/ resting horizontally on
an elastic foundation with spring constant density k. The constants £ and [ are the Young’s modulus
and the mass moment of inertia of the beam respectively, and w(x) is the downward load density applied
vertically on the beam. The beam deflection problem has been one of the central topics in mechanical
engineering with diverse and important applications [3—12].

Throughout this paper, we assume that /, E, I, k in (1.2) are positive constants and put
a = Vk/(EI) > 0. When the boundary value problem consisting of (1.2) and (1.3) is well-posed or,
equivalently, when (1.2) and (1.3) has a unique solution, we call the boundary matrix M well-posed.
The set of well-posed boundary matrices is denoted by wp(4, 8, C). It was shown in [2] that, up to a
natural equivalence relation, wp(4, 8,C) is in one-to-one correspondence with the 16-dimensional
algebra gl(4, C) of 4 X 4 matrices with complex entries.

For M € wp(4, 8, C), we denote by Spec Ky the spectrum or, the set of eigenvalues, of the integral
operator Ky in (1.1). Since Ky [w] is the unique solution of the boundary value problem (1.2) and
(1.3) for every M € wp(4, 8, C), analyzing the behavior of the integral operators Ky is important in
understanding the beam deflection problem. In general, spectral analysis for integral operators arising
from various differential equations is crucial in many applications such as inverse problem [13] and
nonlinear problem [5,6]. In contrast to this importance, there are few explicit spectral analyses for the
integral operators Ky which arise from a most fundamental and basic differential equation (1.2) in the
history of mechanical engineering.

Choi [14] analyzed Spec K, of a special integral operator K in detail, where

0 2 —V2a 1 0 0 0 0
V22 -a®? 0 1 0 0 0 0
= , 14
Q 0 0 0 0 0 @2 V2a 1 (14
0 0 0 0 V2 -a* 0 1

which is in wp(4, 8, C) [2]. The Green function G¢(x, &) corresponding to Q is the restriction in [/, [] X
[-1,[] of the Green function for the boundary value problem consisting of the infinite version EI -
u®(x) + k - u(x) = w(x), x € (=00, 00) of (1.2) and the boundary condition lim,_, ., u(x) = 0.

For two positive sequences a,, b,, we denote a,, ~ b, if there exists N > O such thatm < a,/b, < M
for every n > N for some constants 0 < m < M < oo,

Proposition 1.1 ( [14]). For every | > 0, the spectrum Spec ‘Kq of the operator ‘Kg is of the form
{/kln=1,2,3,---YU{v,/kln=1,2,3,---} € (0,1/k), where 1 > py > vy > pup > vy > --- Y\, O.
Each of u, and v, for n = 1,2,3,... is determined only by the intrinsic length L = 2la of the beam.
Up ~ Vv, ~n~4 and

1 1 1
7 <Vn < < M, < 7 n=1,2,3,...,

L+ [t (27m + 7)) 1+ (b @)} L+ |t (22m - %))

AIMS Mathematics Volume 6, Issue 10, 10652-10678.



10654

1 1 -5 —2mn
4 Mn ~ Vi — 4 ~n-e )
1+ {nt (270 - 5] 1+ {nt (27 + 5]
1 1 6
| 4 —Mn ~ ) 4 —Vy,~n
1+F(27T(n—1)—§) 1+L—4(27r(n—1)+g)
Here, h : [0,00) — [0,00) is the strictly increasing real-analytic function defined in

Supplementary D, with the properties 4(0) = 0 and #~' (a,) ~ a,/L for any positive sequence a, such
that @, — oo. See [14] for numerical computations of y,,, v, with arbitrary precision.

Recently, Choi [2] derived explicit characteristic equations for the integral operator Ky in (1.1) for
arbitrary well-posed M € wp(4, 8, C), which are stated in more detail in Section 2. Although these
characteristic equations are expressed in terms of the explicit 4 X 4 matrices G(M), X, Y, they still
involve determinants of full 4 X 4 matrices, which makes it hard to analyze the structure of Spec Ky
for general well-posed boundary matrix M.

In this paper, we utilize some of the symmetries in the 4 X 4 matrices X,, Y, to block-diagonalize
them with explicit 2 x 2 blocks X7, Y3, which enables us to obtain new and simpler forms of
characteristic equations for the integral operator Ky for arbitrary well-posed boundary matrix
M € wp(4,8,C). In particular, the entries of the 2 x 2 blocks X7 and Y7 are represented explicitly
with the concrete holomorphic functions 6*(z, k) and p*(z) introduced in Section 3.

Our results significantly reduce the complexity of dealing with determinants of 4 X 4 matrices and
facilitate to represent Spec Ky, for arbitrary M € wp(4, 8, C) essentially as the zero set of one explicit
holomorphic function composed with the concrete functions 6*(z, k). For example, Corollary 1 in
Section 3 states that 0,1/k # A € Spec Ko if and only if A is a zero of the holomorphic function
ot (al, x() - 6~ (al, x(A)), where y is a 4th root transformation introduced in Section 2. In particular,
the holomorphic functions 6*(z, k) unify the real-analytic functions which were analyzed in detail
in [14, 15] to obtain concrete results on Spec K¢ such as Proposition 1.1. The fact that 6*(z, k)
encapsulate condensed information on Spec K, and hence on Spec Ky in general, is demonstrated in
Supplementary D by showing that the seemingly complex-looking conditions ¢*(x) = p(k), which
were derived in [14] with the help of computer algebra systems, can be directly and elegantly
recovered from 6*(z, k).

Our results open up practical ways to direct and concrete spectral analysis for the whole
16-dimensional class of the integral operators Ky arising from arbitrary well-posed boundary value
problem of finite beam deflection on elastic foundation.

After introducing basic notations, definitions, and previous results relevant to our analysis in
Section 2, we state our main results Theorems 1, 2 and 3 in Section 3, which are proved in Sections 4,
5 and 6 respectively. Some remarks and future directions are given in Section 7. In Supplementary D,
the conditions ¢*(«) = p(k) on Spec Kq in [14] are derived from our holomorphic functions 6*(z, ).

2. Preliminaries

2.1. Basic notations and definitions

We denote 1 = V—1. Denote by Z, R, and C, the set of integers, the set of real numbers, and the set
of complex numbers respectively. The set of m X n matrices with entries in C is denoted by gl(m, n, C).
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When m = n, we also denote gl(m,n,C) = gl(n,C). We write A = (ai, j) when the (7, j)th

1<i<m, 1<j<n
<t jen For A € gl(m,n,C),
we denote the (7, j)th entry of A by A, ;. The complex conjugate, the transpose, and the conjugate
transpose of A € gl(m, n, C) are denoted by A, AT, and A* respectively. For A € gl(n, C), adj A is the
classical adjoint of A, so that, if A is invertible then A~! = adj A/ det A.

Regardless of size, the identity matrix and the zero matrix are denoted by I and O respectively.
The zero column vector with any size is denoted by 0. The diagonal matrix with diagonal entries
c1,C2,*+ ,C, 1s denoted by diag (cy, ca, - -+, Cp).

entry of A € gl(m,n,C) is a;;. When m = n, we also write A = (a,;j)

Definition 2.1. Denote w = ¢'7 = - +i-L and w, = i"'w for n € Z. Denote Q = diag (w, w,, W3, W4)

. V2 V2
and Wy = (wlj_l)lsi,jszt'

w1 = W, Wy, W3, Wy are the primitive 4th roots of —1 and satisfy

— -1

W=w4=—Wy = —1w, w3 = —w, Wy, =w, ,Nn€eEL, o0
wto=V2, w-w=iV2, W'=i, wo=1 '
Definition 2.2. Denote ¢¢ = ¢ = 1, & = ¢ = -1, and €,,4 = €, for n € Z. Denote
E= dlag (E], €, E3,€4) = dlag(l, —1, —1, 1)
By Definitions 2.1, 2.2 and (2.1), we have
e—SQZ — dlag (e—wlz’ewzz’ ew3z’ e—umz) — d1ag (e—wz, e—Bz’ e—wz’ e—@z)
di Wz emer (0
_ [diag (e e) o . zec (2.2)
(0] diag (e Wi “’Z)
Definition 2.3. Denote
1 0 1 0 1 0 0 O
V_LII_lOlOl /‘7_0010
\/5—11_\/5—1010’ 10 1 0 O
0O -1 0 1 0 0 0 1
Note that V and V are orthogonal and
VIi=Vl, V'=V'=V, detV=1, detV=-1. (2.3)
A B\., (A+B (0]
Lemma2.1.V(B A)V _( o A_B)forA,Begl(2,C).
Proof. By Definition 2.3,
VABVT_LII.AB.LI—I_1A+B A+B\(lI -1
B A _\/Q—II B A 211_2—A+BA—BII
_[A+B O -
IR0 A-B)
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By (2.2) and Lemma 2.1,

Ve EoyT _ diag (e—wZ, e‘wz) +0 (0] -
0] diag (e“"z, e“"z) -0
di —wz, -wz (8]
_ 1ag (e e ) ‘ ) = — €_SQZ, zeC. (24)
(0) diag (e wie ‘”Z)
By (2.1),
detdiag (¢, ¢ ™) = ¢ e = @D = Vx| zeC (2.5)

2.2. Previous results

Definition 2.4. For 1 € C \ {0, 1/k}, define y(A) to be the unique complex number satisfying y(1)* =
1 - 1/(Ak) and 0 < Arg (1) < 7/2.

Note that y is a one-to-one correspondence from C \ {0, 1/k} to the set {x € C|0 < Argk < /2} \
{0, 1}.

Definition 2.5. Let 0 # 1 € C and x € R. For A # 1/k, let k = y(1). Denote

’ ’7 177 r (l_l)
W = (@ ¥y y'@ y'0) . Wi =(4"0),, .
T L.l if A= 1/k,
where y(x) — (ewlax eLax  pw3ax ewulx) and y/l,j(x) - { éja:j?;x X if/li ljk ] = 1,2.3.4,

Denote X,,(x) = diag(0, 1, 1,0)- W(=x)"'W ,(—x) + diag(1, 0,0, 1)- W(x)~' W ,(x). When det X, (x) # 0,
denote Y, (x) = X ;(—0)X,;(x)"! - L

Definition 2.6. Define G : wp(4,8,C) — gl(4,C) by
GM) = M"W(-)) + M*W(l)}_l M*W()E - diag(1,0,0, 1),

where M~, M* € gl(4, C) are the 4 X4 minors of M such that M = ( M- ‘ M+ ) Define ¢ : gl(4,C) —
gl(4,3,C) by

¥(G) = ( {diag(0,1,1,0) - GE}W(-I)" | {diag(1,0,0,1) + GE}W()™" ).

The map G in Definition 2.6 is well defined since, for M = ( M~ |M* ) € gl(4,8,0),
M € wp(4,8,C) if and only of det{M~"W(-I) + M*W()} # 0 [2, Lemma 3.1]. G(M) is denoted by
Gy in [2]. Define the equivalence relation ~ on wp(4,8,C) by M ~ N if and only ift M = AN for
some invertible A € gl(4, C).

Proposition 2.1. (a) ( [2, Lemma 6.1]) For M,N € wp(4,8,C), the following (i), (ii), (iii) are
equivalent: (i) M = N, (ii) G(M) = G(N), (ii1) Kv = Kn.
(b) ([2, Eq6.4]) For G € gl(4,C), y(G) € wp(4, 8,C) and G (Y(G)) = G.

AIMS Mathematics Volume 6, Issue 10, 10652-10678.
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r
1—‘71

: v

e

wp(4,8,C)

Figure 1. The commutative diagram showing the one-to-one correspondence I between
gl(4,C) and the set wp(C) of all equivalent well-posed boundary matrices. wp(C) is also
in one-to-one correspondence with the set of all integral operators Ky in (1.1). This
commutative diagram holds for any invertible A € gl(4,C), where P,(M) = AM. 7 is the
canonical projection which maps a well-posed boundary matrix M to its equivalence class
[M] with respect to ~. The maps G and  defined in Definition 2.6 are explicitly computable.

Denote by wp(C) the quotient set wp(4, 8,C)/ ~ of wp(4, 8, C) with respect to the relation . For
M € wp(4, 8, C), denote by [M] the equivalence class in wp(4, 8, C)/ ~ which contains M. Then we
have the canonical projection 7 : wp(4,8,C) — wp(C) defined by (M) = [M]. By Proposition 2.1,
the map m o ¢ : gl(4,C) — wp(C) is a one-to-one correspondence, and we denote its inverse by
I' : wp(C) — gl(4,C). Thus we have the commutative diagram in Figure 1 which holds for any
invertible A € gl(4, C). Here, the map P, : wp(4,8,C) — wp(4, 8, C) is defined by PA(M) = AM.

By Proposition 2.1, the set of integral operators Ky in (1.1) is in one-to-one correspondence with the
set wp(C) of equivalent well-posed boundary matrices, and hence is also in one-to-one correspondence
with gl(4, C). Note that both of the maps G and ¢ in Definition 2.6 are explicitly computable, hence I
and its inverse I'"! are explicitly computable. For the special boundary matrix Q in (1.4), we have [2, Eq
6.2]

GQ) =0. (2.6)
Proposition 2.2. For M € wp(4, 8,C) and A € C, the following (a) and (b) hold.

(a) ([2, Theorem 1 and Corollary 1]) Kylu] = A-u for some 0 # u € L*[—1,1] ifand only if A # 0 and
u = cly, for some 0 # ¢ € gl(4,1,C) such that [GM) {X() — X (=D} + X (D] ¢ = 0. Kolul =
A-ufor some 0 # u € L*[-1,1] if and only if A # 0 and u = ¢"y, for some 0 # ¢ € gl(4,1,C) such
that X ()¢ = 0. In particular, 0 # A € Spec Ky if and only if det X,(I) = 0.

(b) ([2, Corollary 2]) Let 0 # A € C\Spec Kq. Then A € Spec ‘K if and only if det {GIM)Y (1) — 1} =
0.

3. Main results

3.1. Block-diagonalization of X,(x) for A # 1/k

The following is well defined since the range y (C \ {0, 1/k}) of y in Definition 2.4 does not contain
1,-1,1,—1.
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Definition 3.1. For 1 € C\ {0, 1/k} and x € R, denote

1 -«

Xi(x) =

— WKk WKZ
_ + — + £
: —wz -z -« = —ik
- diag (e ,e ) S S L
+ — +

where z = ax and k = y(A).

The following is well defined, since

1+&2\ 2%\’

- =1 -1,1
[ cecv
1 -2\ 2%\ .
(1+K2) +(1+K2) =1, k€ C\ {-1,1}.

Definition 3.2. Denote by (k) any holomorphic branch in C \ {—1, 1} satisfying

1+ «? 2
coshB(k) = 1_—;, sinh B(k) = 1_—KKz’

and denote by y(x) any holomorphic branch in C \ {-1, 1} satisfying

2

1-« ) 2K
cosy(k) = T2 siny(k) =

1 +x2

Forze Candk € C\ {1,-1,1, -1}, define
0*(z, k) = sinh ( V2kz + ,B(K)) + sin ( V2kz + y(K)) )

B(k) and y(k) are holomorphic branches of 2 arctanh x and 2 arctan « respectively, which, in turn, are
anti-derivatives of 2/ (1 - K2) and 2/ (1 + K2) respectively.

Definition 3.3. Define # : wp4,8,C) — gl4,C) by FM) = VGM)VT and
¢ : gli4,C) - wp4,8,C) by ¢(G) = w(VTGV). F (M) is called the fundamental boundary matrix
corresponding to the well-posed boundary matrix M € wp(4, 8, C).

Denote by Simyr, Simy : gl(4, C) — gl(4, C) the similarity transforms defined by Simyr G = VGV’
and Simy G = VI GV respectively, so that F = Simyr oG and ¢ = yoSimy by Definition 3.3. By (2.3),
Sim;% = Simy, hence, by Proposition 2.1 (b), ¥ (¢(G)) = Simyr G (¥ (Simy G)) = Simyr Simy G = G
for G € gl(4,C). Thus Definition 3.3 gives a new one-to-one correspondence ® : wp(C) — gl(4,C)
defined by ® = Simyr ol". See Figure 2 for a commutative diagram which expands the one in Figure 1
to incorporate .

By Proposition 2.1 and Definition 3.3, the set of integral operators Ky in (1.1) is in one-to-one
correspondence with the 16-dimensional algebra gl(4, C). Both of @ and its inverse @' are explicitly
computable by using the maps ¥ and ¢ in Definition 3.3.

Theorem 1. For A € C\ {0, 1/k}, the following (a) and (b) hold.

AIMS Mathematics Volume 6, Issue 10, 10652-10678.
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SimV
wp(C) <—— wp(4,8,C) —><g gl(4,C) —><S gl4,C)
/ 1mV1'

Figure 2. Commutative diagram showing the one-to-one correspondence @ between gl(4, C)
and the set wp(C) of all equivalent well-posed boundary matrices, which is also in one-to-
one correspondence with the set of all integral operators Ky in (1.1). This commutative
diagram holds for any invertible A € gl(4, C), and extends the one for the map I" in Figure 1
to incorporate ®. Simyr and Simy are the similarity transforms defined by Simyr G = VGV7
and Simy G = VI GV respectively. The maps F and ¢ defined in Definition 3.3 are explicitly
computable.

(a) For M € wp(4,8,C), Kmlul = A - u for some 0 # u € L*[-1,1] if and only if u = ¢'y, for some
0 # c e gl4,1,C) such that

b S CUED () o ) ~ (X;(Z) 0o )} _
{T(M)( o XD -X30 o X0 Ve=0.
Kolul = A - ufor some 0 # u € L*[-1,1] if and only if u = ¢'y, for some 0 # ¢ € gl(4,1,C) such
Xi) O\ _
that( 6 X;(l))vc_ 0.

(b) Let k = x(1) and z = ax. Then, for x € R,

e V=g (1 - K4)

det X*(x) = 4

- 6%(z, k),

6—2\/§zK2 (1 _ K4)2
16

det X (x) = det X (x) det X3 (x) = 07 (2,K)0 (2, K).
The proof of Theorem 1 will be given at the end of Section 4.

By Proposition 1.1, 0, 1/k ¢ Spec Kq for every [ > 0. Note that « # 0 and «* # 1 when x = y(2)
and 1 € C\ {0, 1/k}. Thus, by Proposition 2.2 (a) and Theorem 1, the zero sets of the holomorphic
functions 6*(z, ) in Definition 3.2 completely describe Spec K¢ in Proposition 1.1.

Corollary 1. For every [ > 0, A € Cis in Spec Kq if and only if 1 # 0, A # 1/k, and 6" (al, x(2)) -
o0 (al, x(1) =0.
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3.2. Block-diagonalization of X, jx(x)

Definition 3.4. For z € C, denote p,(z) = 3./, W
and denote

=0, 1,2, 3, where it is understood that 0° = 1,

P < [P0@ IT(Z)) - :(—17(2) —IT@).
© (PO(Z) p2(2)° @=p0 mo

For x € R, denote

Xi,(x) = dlag( EZ) -P*(z) - diag (1, a/_z) ,

1
\/5
X7,.(x) = —= diag (e %, ™) - P7(2) - diag (@', @ ?),
1/k ) \/§ g( ) g( )
where 7 = ax.

Definition 3.5. For z € C, denote

3

p+(z):l+%, p_(z):l+\/§z+z2+3\/§.

Theorem 2. The following (a) and (b) hold.

(a) For M € wp(4,8,C), Kulul = 1 - u for some 0 # u € L*[-1,1] if and only if u = "y, for some
0 # c e gl4,1,C) such that

(- l) () (0] ) (0) —~
1/k Xk 1/k _
{T(M)( Xm(—l)—X:/k(l)) ( 0 X;/ka))}“’ 0

(b) For x € R,

1e” v vV fe~ V%
det X{,(x) = -p(2), detX|,(x) = - e r (2),
6_2 V2z
det X (x) = — det X7 (x) det X7 (x) = — pT@p (2),

16a°
where 7 = ax. detX;'/k(x) # 0 and det X x(x) # 0 for x > 0.

The proof of Theorem 2 will be given at the end of Section 5.

3.3. Block-diagonalization of Y (x)
Definition 3.6. For 0 # A € C and x € R such that det X%(x) # 0, denote Y (x) = X¥(—x) - X¥(x)™' -

Theorem 3. The following (a) and (b) hold.
(a) ForM € wp(4,8,C) and 0 # A € C\ Spec Ky, A € Spec K if and only if

det {T(M) (Y%)(l) Yf)(l)) _ 1} _o.
A

AIMS Mathematics Volume 6, Issue 10, 10652-10678.
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(b) Let 0 # 1 € C, x € R, and z = ax. Suppose that det X35 (x) # 0. If 1 # 1/k, then

N
AT 55 (2, k) V2we V% s*(zk)

e2Yi5* (1z, k) — 0% (2, K)) ’
where k = x(A) and s*({) = sinh ( \/sz) + sin ( \/Qg“)for { e C. Also

+ 1 (e*p*(~iz) -
Yf/k(x) = pi(z) ( P 1z

V2we V= s* (zK)

p*(2)

2+1 L e V2z Z2¢1 )
2 -0 \fz 2F1 2wzp (IIZ) p* (Z)
The proof of Theorem 3 will be given at the end of Section 6

4. Block-diagonalization of X (x) for A # 1/k: proof of Theorem 1
Definition 4.1. For z, k € C, denote

X(z. k) = 7¢ %% diag(0, 1,1,0) - W - diag (1, k, &, &) - Woe <
+diag(1,0,0,1) - W - diag (1, x, &%, &) - Woe™<}.
Proposition 4.1. ( [2, Eq 7.9]) For A € C\ {0,1/k} and x € R, X, (x) = X(z,«), where z = ax and
Kk = x(A).
Definition 4.2. Denote D = C \ {0, 1

}. For z € C and x € D, denote
1
X(z,k) = —— {diag(0, 1, 1,0) - Wy - diag 1,k &%, &*) - Woe <

+diag(1,0,0,1) - W - diag (1, x, &%, &) - Woe™}
By Definitions 4.1 and 4.2, we have

1_ 4
X(z, k) = —— -

7 e % . X(z,k), z€C, keD. (4.1)
Lemmad4.1. Forz e Candk € D, X(z,x) = (;’w// ) .
« 1<i,j<4
Proof. By Definition 2.1 and (2.1), W; = (@'

) ( l_j)

Wi N (O ..
1<i,j<4 ! <i, j<
4

= E w}_’ K

{WS . diag(l,K, P s

w?
4 ST Qe e 4
r—1 wj w; -«
. cW; = — K = - = W
= ! ;(wi ) I—Z—j ko 1=7Z
for 1 <1i, j < 4. So by Definition 4.2, we have
—~ 1
X(z, k) = diag(0, 1, 1,0) - [ oy ]

1
< 4 diag(1,0,0, 1) ( — ) - e
N 1- -k
1<i,j<4 W, 1<i,j<4
e—ijZ
= diag(0,1,1,0) - —

. ea)jKZ
+ diag(1,0,0,1) -
- —tk) 1
Wi 1<i,j<4 1<i,j<4
Thus the result follows by Definition 2.2

@i
w;
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Definition 4.3. For z € C and k € D, denote

ewKZ i e—a)l(:’ e—w.KZ i ewl.(Z 1 _ 4 . e
X*(z,6) = ( s e e B ) X*(z,4) = —— - diag (7%, ) - X*(z, 0).
— + £ +
1+ik 1-ik 1-« 1+k
Note from Definitions 3.1 and 4.3 that
X3 (x) = X*(z, k), 1€ C\{0,1/k}, x e R, 4.2)

where z = ax and k = y(A).

— A+
Lemma 4.2. Forz € Cand k € D, VX(z, k)V' = (X (z,4) o )

0 X
Proof. By (2.1), Definition 2.2 and Lemma 4.1,

. eEir2Wj+2KT e(—fi)(_wj)/(z efivike —
X(Z, K)i+2,j+2 = T pe) = (_wj) = o = X(Za K)i,j»
ot L =gk "
_ WK eEN-wj)kz efiwjraKe =
X(z,K)is2,j = — = = o = X(2, K2
’ +2,] 1 _ w; K 1 (—CUJ‘-*-Z) 1 _ MK ’ L]
Wis2 T Cop K wi

for 1 < i,j < 2, which implies that X(z, k) = (A

B
B A/
{i(z, K)i. ]’+2} , € gl(2,C). So by Lemma 2.1, we have

where we put A = {i(z, K)i,j}]<ij<2,B =

1<i,j<
= A+B (0
T
VX(z,x)V' = ( o A_Bl “4.3)
By Lemma 4.1, we have
+ = L. + L.
AxB=X@ou) L+ (X
101K €1W3KZ £€1W2KZ £€1W4Kz
et eqivKe 1=2he T -2 1= T 1=
= 1 (,()/ i 1 w}+2 = eEzLL)lKZ eEzLL)3K2', eEZ(L}zKZ eEZ(u4KZ )
— _K — - —_
w; 1<i,j<2 I—Z—IK 1 —zk —Z—; ]—%K
hence, by (2.1) and Definitions 2.2, 4.3,
WK i WKL e—Ekz + eakz -
[ “ik - 141 +
AiB:(;5+gm I =Ko
1+ik — 1-ik 1-k = 1+«k
Thus the lemma follows by (4.3). O

.
Lemma 4.3. Forz e Candk € D, VX oVT = [X &K 0
0] X (z,K)
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Proof. By (2.3), (2.4), (4.1) and Lemma 4.2,

1- & - 1- & —
VX(z, V! =V {TK e Xz, K)} V7 = 4K Vet VT . VX(z, )V
_1—«* (diag (e“"z, e‘az) o X*(z,4) 0
T4 o diag(e %, e ™))l O X (21
_1-«* (diag (e, e ) X*(z.4) 0
T4 o) diag (e, ¢ %) X (z.4))°
Thus the lemma follows by Definition 4.3. O
By Proposition 4.1, (4.2) and Lemma 4.3, we have
X" (x) O
—vr Zl
X,(x)=V ( o X;(x)) V, A€ C\{0,1/k}, x e R. 4.4)

Lemma 4.4. Forz € Cand k € D, det /Xi(z, K) = 12((4 - 0%(z, k).
See Supplementary A for proof of Lemma 4.4.

Proof of Theorem 1. Let 1 € C\ {0, 1/k} and M € wp(4, 8, C). By Proposition 2.2 (a), Kylu] = 1-u
for some 0 # u € L*[—/, ] if and only if u = ¢"y, for some 0 # ¢ € gl(4, 1, C) such that

0 = VIGM) {Xa(=D) - Xa(D} = Xa(D] e, 4.5)

since V is invertible by (2.3). Thus the first assertion in (a) follows, since (4.5) is equivalent to

0:[V§(M){VT(X;(_Z) o )V—VT(XW) O)V}—V~VT(XW) O)V]c

0  Xi(-) 0 X0 0 X0
_ X;-D-X{) O I
_[?’(M)( "o ! X;(_z)—x;(b)_( 0 X;(D)]VC

by (4.4) and Definition 3.3. The second assertion in (a) follows from the first one, since 7 (Q) =
VG(Q)VT = O by (2.6) and Definition 3.3.
Let k = y(1), x € R, and z = ax. By (2.3) and (4.4), we have

Xix) O
0 X \(»
= det X (x) - det X3 (x). (4.6)

det X (x) = det {VT - ( ) : V} = det V7 - {det X} (x) - det X;(x)} - det V

By (4.2) and Definition 4.3,

1—«*

det X3 (x) = det X*(z, k) = det { - diag (€™, ™) X*(z, K)}

1 -k - <
:( 4") - detdiag (€™, &™) - det X*(z. ),
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hence, by (2.5) and Lemma 4.4,
4)? ) 4
(1—K> 4 e ZK(I—K)

X (x) = .
det X3 (x) T e —a

6*(z, k) = - 0%(z, k).

So by (4.6), we have

e VZk (1 - K4) e \@ZK(l - K4) e2V22 (1 - K4)2
6 (2,K) =

det X (x) = — T

. 6+(Z, K) .

<07 (2, K)0 (2, K).
Thus we showed (b), and the proof is complete. m|
5. Block-diagonalization of X ;(x): proof of Theorem 2

Definition 5.1. For z € C, denote

P2 p1@ P2 p3@)
po(@) —pi1(@) p2(2) —p32)
p@ -p@ p@ -p3@|
po(@ pi1(@ p2(2) p32)

P(z) =

Proposition 5.1. (a) ( [2. Eq 7.13]) Xju(x) = e ¥¥P(z) - diag (1. e, 012,013)_1 for x € R, where
= ax.

—~ +
(b) ([2, Lemma B1]) Forz € C, VP(2)V = V2 P*(z) f) '
0O P@
The result in Proposition 5.1 (b) was for z € R in [2] originally, but it can immediately be extended
toz e C.
By (2.3), we have

' diag(l,a_l, a?, cx_s)/\7 = Vdiag(l,a‘l,a‘z,a_3)v
1 0 0 (1 O 0 031 0 0 O 1 O 0 01 0 0O
10 0 1 Of]0 al 0 010 0 1T 0] |0 O a? 0|0 010
o1 00HO O a2 OO 1 0 Ol |0 ! 0 0110 1 0 0
000 1J\Oo O 0 a3Jl0 0 01 0 O 0 a3Jl0 0 01
di l,a™? (0)
— diag(l,a'_z,ofl,a_3) _ lag( (0% ) . ol (51)
(0) dlag(a ,a )

By Proposition 5.1 (a) and (2.3),

—

— 1 -
VX, 1 (x)V =V {Ze_SQZP(z) - diag (1, @, a?, oz3) 1} \Y

—

1 —_
= ZVe‘SQZVT VPV - V' diag(1,a™', 0%, a7)V,
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hence, by (2.4), (5.1) and Proposition 5.1 (b),

~ 1 (diag (e“"z, e‘wz) 0
VX0V = 1 [ o diag (e—a)z’ e—wz))
P'(x) O | (diag(l.a™?) o
' \/E( () P‘(z)) ' [ 0) diag (a‘l,a*)).

Thus, by (2.3) and Definition 3.4, we have

X' (x) 0O \-~
— vl [k
Xl/k(X) \'% ( 0 Xl_/k(x)) V, x eR. (52)
By Definition 3.4 and (2.1), we have
po(2) =1,
p1(@) = w+z,
1 1
p2(2) = W + wZ+ Ezz =1+ wz+ EZZ’ (5.3)
P32 =W + Wiz + Lo +1oo Grizetozs Lo
’ 2 6 2 6

Lemma 5.1. Forz € C, detP*(z) = 21 - p*(2) and detP~(z) = =21 - p~(2).
Proof. By Definitions 3.4, 3.5, (2.1) and (5.3),

detP*(2) = po@) - P2(2) — Po@) - P2(@)

1 1
:1-(ﬁ+wz+§z2)—1-(—1’1+61+§z2):21'1+ V2iz = 2i - p*(2),

detP (z) = —=p1(2) - p3(2) + p1(2) - p3(2)

2 6 2 6
B N TP g e ] PE
= Z 5 Z ) 6 Z 6Z

, (1N, (@ o\, 1,
+{]1 \/EJIZ+(2 H)Z +(2+6)Z +6Z}

1 1 1 1
:—(5+Z)(—5+ﬁz+—wzz+—z3)+(w+z)(—w—jz+—6z2+—Z3)

5
= —2i — 2V2iz - 2i7* - %23 ==21-p (2). o

Proof of Theorem 2. Let M € wp(4, 8,C). By Proposition 2.2 (a), Kylu] = % -u for some 0 # u €
L?[-1,1] if and only if u = ¢"y,; for some ¢ € gl(4, 1, C) such that

0 =V[GM) {X k(=) = XD} = Xy (D] ¢, (5.4)

since V 1is invertible by (2.3). Thus (a) follows, since (5.4) is equivalent to

_ (XD O )A_ T(Xf/k(l) o )A}_ . T(X;(l) o )A]
0 [VQ(M){V( o XI/k(—l)V vis Xf/k(DV V-V x|
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(- l) 0] 0 O 0 \|l=
— 1/k l/k 1/k
[77(M) ( XI/k(_l) - Xl_/k(l)) ( o XI/k(l))] Ve

by (5.2) and Definition 3.3.
Let x € R and z = ax. By (2.3) and (5.2),

X1 () 0]

det X, (x) = det VT - det
17k(%) ( 0 X;,(

) -detV = — det X, (x) - det X}, (x). (5.5)
By (2.5), Definition 3.4 and Lemma 5.1,

1 2
detXf/k(x):(ﬁ) det diag (™%, &™) - det P*() - det diag (1, a7?)

fe~ V2

eV 20 pr @) a7t = 1o P, (5.6)

_de” vV

eV 20 p @) et =

8
det X[, (x) = ( ! ) det diag (e‘“’Z e‘az) - detP(z) - detdiag (a‘l a‘3)
/ 242
1
8 -p(2). 5.7

By (5.5), (5.6), (5.7),

ie” V2z . ie” V22 e—2\fz .
detXyu(x) = === P @\~ P @D = —7e5 P @p @

It follows that det Xf/k(x) # 0 and det X, x(x) # O for x > 0, since p*(z) > 0 for z > 0 by Definition 3.5.
Thus we showed (b), and the proof is complete. O

6. Block-diagonalization of Y ,(x): proof of Theorem 3

6.1. The case A # 1/k

Denote R = ((1) (1)) Fora,b,c,d € C, we have

o AL [ [ O L P o

By Definition 4.3,
KT oWk o~ WK K
R 1-« + 1+« - ( 1-1k 1+]1K)
adj X*(z,0) = | /Jie o (6.2)
— + +
(1+ﬁk - l—ﬁk) 1-x = 14«

for z € C and « € D. Note from Definition 4.2 that k € D if and only if x € D.

Lemma 6.1. For z € Cand k € D,

(X200 adi Xz 0}, | = (X270 - adi X=E B}, .

(Xe(-20 - adi X 0}, , = (X270 - adi X*GR},|
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Proof. Let z € C and « € D. It can be checked from Definition 4.3 and (6.2) that
X520 = X*GRi2 Xk = X*@Ou, and {adjX*G o), = {adiX*@E 5

2,1
{adjX*(z.0)} = {adjX*E. 5|

2,2
R - adj X*(z,4) - R = adj X*(Z,%). So we have

1,2

which, by (6.1), are equivalent to R - X*(z,x) - R = X*(Z,%),

L

R{X*(~z.x) - adj X*(z.0)} R = {R - X*(~z. %) - R} {R - adj X*(z.%) - R}

= X*(-7,0) - adj X*Z. %) = {(X*(-2.0) - adj X* . 0,
since R? = 1. Thus the result follows by (6.1). O

Lemma 6.2. Forz € R and k € D,

X*(~z ) - adj X*(z, k) =

dr [ 8% (—iz,8)  V2ws*(zx)
1 -4\ V2ws*(zx)  6*(iz,k) )’
where s*({) = sinh ( V2¢) % sin ( V2¢) for { € C.

See Supplementary B for proof of Lemma 6.2.

Definition 6.1. For z € C and x € D such that det X*(z, ) # 0, denote Y*(z, k) = X*(—z, )-X*(z, k)" —
I

By Definitions 3.6, 6.1 and (4.2),
Y (x) = Y*(z, «), 1€ C\{0,1/k}, x e R, detX3(x) #0, (6.3)
where z = ax and « = y(1). Note from (2.1) that, for a,b,c,d,6 € C, 6 # 0,

1 (ezwza e‘ﬁzb] 1 (ez‘”za —5  eV%p

1 . wz oz a b . wz W _
5 diag (e ¢ Z) (C d) diag (e e Z) 1= 5leV2e 2y T o\ eVEe &g - 5)' ©

Lemma 6.3. For z € C and k € D such that det X*(z, k) # 0,

Qwz sk s oo V2z o+
Y(z.0) = 1 (e 0*(—1z,k) — 0*(z,K) V2we V% s (zv) )’

6%(z, K) V2we V% s*(zx) 2§55 (iz, k) — 6% (2, K)
where s*({) = sinh(\/i{) + sin(\/i{)for{ eC.
Proof. Let z € C, k € D, and suppose that det X*(z, k) # 0. By Definition 4.3,

1—«*

-1
o~ 4 _
X:(z, k)" = { - diag (e™, e X*(z, K)} = X*(z,6)" diag (e, ™),

hence, by Definition 6.1,

4

1- SO\ T 4 < _
Y*(z,0) = { 4K - diag (e—w(—z)’e—w(—z))xi(_z’ K)} {m - X*(z, k)" diag (EMZ,ewz)} 1
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= diag (e‘”z, ewz) ii(—z, K) - ii(z, k)" diag (e“’z, ewz) -L (6.5)
By Lemmas 4.4 and 6.2,
—~ —~ 1 —~ =
X*(=2,6) - X* (2,07 = —=——— - X*(=z,) - adj X*(z, )
det X*(z, «)
~ 1 4k ( 6% (-iz, k) V2w S+(ZK))
stz 1=k \V2ws* (k) 6% (iz,6) )

hence, by (6.5),

Y*(z, k) =

diag (¢**, ¢™) ( CCize Vi Si(ZK)) diag (¢, e™) - L

1
5%(z, K) V2wst(zk)  6%(iz, k)

Thus the lemma follows by (6.4). O

6.2. The case A = 1/k and proof of Theorem 3
By Definition 3.4, we have

adjp+(z):(pz<z> —pz@), adjp_(z):(m(z) 6] ] cec. 66)
—po(@)  po(@) —P1(@) —p1(@)

E 1 271
Lemma 6.4. For z € C, P*(—z) - adj P*(z) = +2i (’Z (712) - gy )
W2 p(z)

See Supplementary C for proof of Lemma 6.4.

Lemma 6.5. Let x € R, z = ax, and suppose that det Xli/k(x) # 0. Then

1 207 k(o) _ ot 1 V27 271
Y1, (%) = (e pr(-id) = pr@)  mwe T )

pi(Z) 21?56 \@zz2il eZEzpt(I'lZ) _ pi(Z)

Proof. By Definition 3.4,

-1
Xine™ = {ﬁ diag (¢, ) - P*(2) - diag(a T ,a T )}
=2V diag (0 aF) P! ding (e, 7).

So by Definitions 3.4 and 3.6,

1 — —1x1 =5x1
Y7, (x) = {—diag e 9 eI PE(—z) - diag (@2 ,a 2 }
1/k 2 \/z ( ) ( )

' {2 V2 - diag (a%l,(l%)_l -P*(z)”' diag (e“‘z, ewz)} .|
= diag (ewz’ eaz) Pi(—Z)Pi(Z)_l diag (ewz, ewz) -L (6.7)
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By Lemmas 5.1 and 6.4,

B 1 , 1 [ pE(—iz)  wzrT!
Pi(=2) - PE(2)! = P*(-7)-adiP*(x) = —— . {2 DA ,
(-2)-P(2) P (o) (—2) - adj P*(z) Q) {+ ﬂ(zilwzzn Pt (i2)

hence, by (6.7),

1 _ (7 L0271 B
Yin(x) = —— diag (ewz’ ewz) (1ZZ . 112?1 S ) diag (e“’z, ewz) -L

PE(2) W2 p(1z)
Thus the lemma follows by (6.4). O
Let 0 # A € C and x € R. Suppose that det X;(x) # 0, which is equivalent to det X7 (x) # 0 and
det X (x) # 0 by (4.4) and (5.2). Let A = { %T’ EZ:: i 17;’ Then by Definition 2.5 and (2.3),

VY (V" = V{Xy(-2) - X)) = IV = VX(-0A - A" X(0) 7'V - 1
= VXa(—0)A - {VX (0A} ! - 1,

hence, by (2.3), (4.4) and (5.2),

r (Xi=x) 0 (Xt o0\

VY@V =(", X;(—x))( 0 X;(x)) -1
(X (=x) (0 X (x)™! 0] (I O
0 Xj(-x 0] X! 01
(X(=x) - X0 -1 (0
- 0 X;(-x) - X507 1)

Thus, by (2.3) and Definition 3.6, we have

Yix) O

_vT
Yax) =V ( 0 Y.

)V, 0#1€C, xeR, detXj(x) #0. (6.8)

Proof of Theorem 3. Let M € wp(4,8,C) and 0 # 1 € C\ SpecKq. By Proposition 2.2 (b), 4 €
Spec K if and only if
det [VIGM)Y,() -} VT | = 0, (6.9)

since V is invertible by (2.3). Thus (a) follows, since (6.9) is equivalent to

_ YL 0 T o T VA Yi) O
O—det{Vg(M) A% ( 6 Y;(l))v vV V.-V }—det{T(M)( 6 Y;(l)) I}

by (6.8) and Definition 3.3.
Let 0 # 4 € C, x € R, and z = ax. Suppose that detX3(x) # 0. (b) follows from (6.3) and
Lemma 6.3 when A # 1/k, and from Lemma 6.5 when A = 1/k. Thus the proof is complete. O
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7. Conclusions

The boundary conditions usually considered in practice are only a few in number, including
clamped, free, or hinged conditions at each end of the beam. An important aspect of our results is that
we have obtained explicit and manageable characteristic equations for the whole 16-dimensional class
of integral operators Ky arising from arbitrary well-posed boundary value problem of the
Euler-Bernoulli beam equation.

In our characteristic equations in Theorems 1, 2, and 3, the explicit matrices Xj and Yj are not
affected by specific boundary conditions. The effect of the boundary condition M is encoded separately
in the fundamental boundary matrix ¥ (M). The set of equivalent well-posed boundary matrices wp(C),
and hence the set of integral operators Ky in (1.1), is in one-to-one correspondence with the 16-
dimensional algebra gl(4, C) via the map ®. ® and its inverse @' are explicitly computable using the
maps ¥ and ¢ in Definition 3.3. See Figure 2 in Section 3 for a commutative diagram showing the
details.

The 2 x 2 matrices X7 and Y7 themselves are pre-calculated in terms of the explicit functions
0*(z,«) and p*(z). Thus our characteristic equations have simple and manageable expressions with the
functions 6*(z, k) and p*(z), which are amenable to concrete analysis similar to that in [14].

By inverting the 2 X 2 matrices Y3(/) in Theorem 3, we would have alternate forms of the
characteristic equations in Theorem 1 (a) and Theorem 2 (a) with matrix entries also explicitly
expressed by 6%(z,k) and p*(z). However, these forms are suppressed in this paper due to the
nontrivial problem of identifying the zeros of det (/) or det {X¥(~I) - X*(1)}, which will be dealt in
future works.

Although our results are for boundary matrices with complex entries in general, boundary
conditions of practical importance are those represented by boundary matrices with real entries.
See [2] for the characterization of these real boundary conditions M in terms of G(M) by using the
R-algebra n(4) C gl(4,C).

An immediate application of our results would be spectral analysis for a few typical boundary
conditions encountered frequently in practice. Specifically, concrete spectral analysis for the following
combinations of clamped, free, and hinged boundary conditions at each end of the beam are now
possible, which will be performed in future works.

e clamped-clamped or bi-clamped.
o free-free or bi-free.

¢ hinged-hinged or bi-hinged.

e clamped-free or cantilevered.

e hinged-free.

e clamped-hinged.

In fact, it turns out that the fundamental boundary matrices ¥ (M) corresponding to the first three
symmetric boundary conditions M above also have the following block-diagonal form with 2x2 blocks.

FM)* 0]
0] FM)~

In these cases, our characteristic equations in Theorems 1, 2, and 3 are completely separable into 2 X 2
blocks, resulting in further simplified forms which involve determinants of 2 X 2 matrices only.

FM) = (
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Supplementary
A. Proof of Lemma 4.4

By Definition 4.3 and (2.1),
det 3Zi(Z, K) = ii(z» K)1,1 : 5Zi(Z, K)z,z - ii(Z, K)2,1 : 5Zi(Z, K)1,2

ewkz e—wkz ewkz e—EKz e—wKz ewkz e—Dkz eBKz
= + + |t —
1-x 1+«)J\l1-kx 1+« 1+ik 1-1k/\1—-1k 1+1«

V2xkz e V2kz eﬁ V2«z e—ﬁ V2«z e V2kz e 2Kz 3 eﬂ V2kz 3 e—ﬁ V2kz

e
= —+ =+ + — —
T-x2 (402 1R 1- 1+ 1+ (d-w?  (1+w)?

= 1 — 1 e‘/i’(z_i_ 1 _ 1 e—\/ikz
(1-x?% 1+« 1+x)? 1+«

+ 1 _ 1 el'l 2KZ+ 1 _ 1 e—ﬂ\/ikz
1 =-k2 (1 -1k)? 1=k (1 +1k)?

= 2k e\ﬁKZ _ 2k e 2Kz - 21k . i V2kz + 21k . e_],l ik
(1 -2 (1+42) (1+ 02 (1+4) (1-&2) (1 — ik)? TS

= (1 _ K2)22K(1 + K2) {( + K)2 V2xz —(1- K)Ze—\ﬁkz}
i} (1 - Kzi]zli —+ K2) {(1 + HK)Z n\/EKZ ( - I.IK)ze_].1 ZKZ}

= (1- ,(3’((1 —2) {2 (1 + K2) sinh ( \/EKZ) + 4k cosh ( \/EKZ)}
F = ,<42)ﬁ(K1 e {2]'1 (1 —~ K2) sin ( \/EKZ) + 4ik cos ( \/EKZ)}

= 1iKK4{itZ2 s1nh(\/_/<z) — 2 cosh(\/_Kz)}
+ liKK“{i;; sin(\/zkz)+ chos(\/ikz)}.

Thus, by Definition 3.2,

B —a {smh ( V2 KZ) cosh B(k) + cosh ( V2 KZ) sinh ﬁ(K)}
4k
-«

{smh ( V2kz +ﬁ(/<)) + sin ( V2xz + ’)/(K))} = 4— 0*(z, K).

det X*(z, &) =

i

{sin ( \/EKZ) cos y(k) + cos ( \/EKZ) sin y(K)}

4
-4
B. Proof of Lemma 6.2

Let z € C and k € D. By Definition 4.3, (2.1) and (6.2),
{i*(—z, K) - adj X*(z, K)}1 = X*(-z, K11 - {adj X*(z, K)}] ot X*(-z, K)12 - {adj X*(z, K)}21
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ewK(—z) N e—wK(—z) eBKz N e—EKz e—DK(—z) N eEK(—z) e~k . ewKe
A\ l—k " 14k )\1—-k" 1+« 1—ix = 1+ik)\1+ik~ 1—ik
eﬁ V2kz e—ﬁ V2kz e\EKZ e V2kz e e\/ikz 3 e V2kz

= + + + - - T
A+62 Q-2 1- 1-k 14 1+ (1-w?  (1+ip?

1 1 1V2kz 1 1 -1 V2kz
{(1+K)2 1+K2}e {(1—K)2 1+K2}e

(1 1) e [ 1 1) v
+{(1—1'u<)2 1—K2}e +{(1+fu<)2 1—K2}e

1V2kz —1V2«kz

e

- _ 2K en \/EKZ + 2K e_ﬁ \/§KZ
(1 +x)?(1+«3) (1 —x)>(1+«%)
2ik Vike Zi Ve

Ta-wr(-0)° Tad+wr(-0)°

- K2)22K(1 ye) (1= ket V2 — (1 + )P V2]
e KZ?U((l iy [+ 1022 = (1 - w)?e™ <)
= = (21 ) sin((VEk)  deceos (Vaic)
o K42)ﬁ(K1 ey (2 (1= ) sinh (V2xe) + dix cosh (Vi)
= - i - {i fg sinh (i V2xz) - - %"Kz cosh (i «/EKZ)}
- 2 {1 X sin (i Va) - 2 cos i @Z)},
hence, by Definition 3.2,
(X*(-2.0) - adj X*(z, K)}l’] = —1‘1—“/(4 {~ sinh (—i V2kz) cosh B(k) - cosh (i V2«z) sinh B(x)}
& i" = {~sin (= V2xz) cos y(x) — cos (~i V2«z) sin y(x)}
= i’( e {sinh (~i V2xz + B(0) + sin (=i V2kz + ()]
- f“ﬂ . 5%(=iz, K). (B.1)

By Definition 4.3, (2.1) and (6.2),

(Xt(=2,0) - adj X*(2, 0, = X* (=201 - {adi X (@ 0}, + X (=2, 0012 - {adi X* (2, 0)

1,2 1, 2,2
ewk(—z) e—wk(—z) e—mz eakz e—ak(—z) em(—z) et e WKz
= — + — + - + — + - +
1-« 1+ J\1—-1k 1+1k 1—-1« 1+ik)\l—-«x 1+«
e V2kz e 2Kz eil V2kz e—il V2kz

T T+ (d-nl-i0 (+00-1 (-0 +ix
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e V2xz e V2xz e]’l V2«z e—ﬁ V2«z

+ + + +
I-x)1-1k) (Q+x)(1+1x) (1-k)(1+1k) (1+x)(1-1k)

= 1 — 1 \/EKZ_ —V2kz
- {(1 -1 -1) I+l + ﬁk)}(e ¢ )

1 _ 1 1V2kz _ —1V2kz
i{(1—K)(1+1'u<) (1+K)(1—flk)}(e e )
A+ +i0) - (1 -1 —ik) . .

= 1‘_ p . ~251nh(\/§KZ)

, (L4 - 11/;)_—/541 S ARSI (Vi)

21 +ik . .
=1_a -251nh(\/§/<2)i
B V2w - 4k
1=

By Lemma 6.1, (B.1), (B.2) and Definition 3.2,

2(1 — 1)k

— K4

- 2i sinh ( Vaxz)

{sinh ( \/EKZ) + sin ( \/zkz)} = 1i—KK4 V2w s*(zk). (B.2)

(X* (2.0 - adj X"z, 0}, | = {1 ip 5 V2w si(z_K)} = 1‘1—14 V2w 5% (20, (B.3)
v+ N+ 4k — — 4k T+ .
{X_(—Z, k) - adj X7 (z, K)}z’2 = {1 i - 0*(—1z, K)} =1"a - 0*(1z, K). (B.4)

Thus the lemma follows from (B.1), (B.2), (B.3), (B.4).
C. Proof of Lemma 6.4

Let z € C. By Definition 3.4 and (6.6), we have

P (—2) - adi P (o) = [P0CD) Pz(—_z)][Pz(Z) —]T@)
O 2P D=0 mea)lm@  7d
_ [Po(=Dp2(2) = po@)p2(-2) —po(-D)p2@) +po<z>p2<—z>] c.n
Po(=2)p2(2) = po(2)p2(=2) —po(=2)p2(2) + po(2)p2(=2) ’ .
P (=) - adi P-(») = | P1(=2) —P3(—_Z))(P3(Z) Pﬂ)
CO2dP @=L o \en@ -me
_(~P(DP3@) + pi@ps(D) —pi(-D)ps@) + p;@px—a} ©2)
Pi(=9p3(2) = p1@p3(=2)  pi(=Dps@ - p1@Dp3(=2)
So, by (2.1), (5.3) and Definition 3.5,
(P*(=2) - adj P* (@)}, = po(=2)p2(2) — po(2)pa(-2) = 1 - (ﬁ +wz + %zz) ~1- (ﬁ — w7+ %zz)
=2i+ V27 =2i {1 + (:}?} = 2i - p*(~iz), (C.3)
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{P*(=2) - adj P*(2)},, = po(=2)p2(2) = po(2)pa(=2) = 1 - (ﬁ +wz + %zz) -1- (1’1 —wz+ %zz)

= 2wz, (C.4)

{P(=2)-adi P~ (2)},; = —p1(-2)p3(2) + p1(2)p3(-2)

1 1 1 1
—(w-7) (—a +1iz+ szz + 813) +(w+2) (—a — 17 + 56022 - 623)

) I\, (o w\; 1,
R e Y e
) I\, (0o w); 1,
+{ 1 \/§Z+(2+II)Z +(2 6)Z 62}

- 2(—1'1 —V2z+i + ﬁf) = -2i {1 + V2(-iz) + (-iz)* + Bl—ﬁ(—ﬁzf}
= 21 - p(-ig), (C.5)

{P™(=2) - adj P~ ()}, = p1(=2)p3(2) — p1(2)p3(=2)

1 1 1 1
= (w —z)(—5+ﬁz+ —w?® + 6z3) - (a)+z)(—6—1'1z+ szz - —z3)

2 6
1 w 1 1 w 1 2w
S D L e B 1412 Y3 4 2% .
( 2z 3z 6z)+( +2z 3z +6z) 31 (C.6)

Note from (C.1) and (C.2) that

{(P*(=2) - adjP*(2)} , = ~{P*(-=2) - adj P*@)},,,  {P*(=2) - adj P* (D)}, = —{P*(=2) - adj P* (D)}, ;.

So by (C.3), (C.4), (C.5), (C.6),

(P*(=2) - adj P* ()}, = —{P*(—2) - adj P* @)}y, = —(2w3) = —2az, (C.7)

{P*(=2) - adj P*(2)},, = —{P*(-2) - adj P*(2)}, ; = —{21 - p*(~i2)} = 21 - p*(i2), (C.8)
2 2%

(P (=2) - adj P (D)}, , = —(P~(—2) - adj P~ ()}, = —(—?w?) = ?“’z% (C.9)

(P(=2) - adj P~ ()}, = —(P~(—2) - adj P-@)},, = —1-2i - p (—i2)} = —2i - p~(iz). (C.10)

Thus, by (C.3), (C.4), (C.5), (C.6), (C.7), (C.8), (C.9), (C.10), we have

2wz 2ip*(iz) wz  pt(12)
Lo 2% —(_s w
—2ip~(—1iz) 2 ): o (p (—iz) %2° ),

P (—2)-adjP (z) = ( 2 —2ip~(iz) 27 p(i)

P+(—z)-ade+(z)=(2ﬁp+(_ﬁz> 2wz )zzﬁ(p%—ﬁz) wz )

and the proof is complete.
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D. The functions 6*(z, )

We start with some exotic definitions in [14]. For x > 0, let

1— V2k + &2 N . 1 %sinh)
plK) = ——, (k) = e ———— (D.1)
1+ V2« + &2 cos /(k)
Here, L = 2la is the intrinsic length of the beam and
h(k) = Lk — h(x), (D.2)
where & : [0, 00) — R is defined by
K KZ* . —
arctan {%} , if0<k< %,
= if k= =L,
~ K K2— .
hk)={ —nm+ arctan{%} , if % <k< ‘/\5}2’1 , (D.3)
=3 if k= B2,
—27r+arctan{2f_'<§—li_ll)}, if k > %

The branch of arctan here is taken such that arctanO = 0. / is a strictly decreasing real-analytic
function with 2(0) = 0 and lim,_, A(x) = —27, hence i : [0,00) — R is a strictly increasing real-
analytic function with 4(0) = 0 and lim,_, h(k) = co.

Proposition D.1. ([14, Eqs 8 and 25]) A € C is an eigenvalue of Kq = Kjx if and only if 1 = 1 - L5
for k > 0 such that ¢*(x) = p(k) or ¢~ (k) = p(k).

Now we demonstrate how the seemingly ad hoc and complex conditions ¢*(xk) = p(«) in
Proposition D.1, which were practically unobtainable without help of computer algebra systems as
indicated in [14], can be derived so naturally and elegantly from our holomorphic functions 6*(z, ).

By Definition 3.2,

-k | 2% (1+ik)? 1+ik
+1 = = —,
1+x2 1+« 1+« 1 -1k

e’ = cos y(k) + 1 siny(k) = keD, (D.4)

where D = C\ {0, 1, —1, 1, —1} by Definition 4.2.
Lemma D.1. For k > 0, p(k) = el"@07@0) gpg =) = ily@oty@o)
Proof. By (2.1), (D.1), (D.4),

l+iwk 1-iwk l-wk l-wk 1- V2k+&

AN@OY@) iy =iy @K _ , _ , _
Il —idwk 1+iwk 1+wk 1+wk 14 k442

= p(x).

By (2.1) and (D .4),

1 + 1wk 1+1'16K_ 1 - wk 1+a)/<_ 1+1V2k—«2

l—iwk 1—iok  l+ok l—wk | —iv2k— 2

IV wO+y (@} _ Liyv(w) Jiy(wK)
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(1+iV2k-2) (1 -4+ ) +-2V2c(1 - 42)
C(1-1Vak- ) (1+iV2k- &) (1 - k2) + 22 '
So we have
1 — 42+ 2V2k (1 - &2
cos {y (wk) + 7y (wK)} = # sin {y (wk) + 7y (wK)} = %
hence
2V2k (1 - &)
tan {’y ((UK) + 'y(aK)} = m
Thus, by (D.3),
) ) 2 V2« (1 —~ K2)
tan {—h(K)} = —tan h(K) = m = tan {’)/ (wk) + Y (ak)} .
It follows that e=#®) = ¢ilr@O+¥@a) and the proof is complete. O

By (D.2) and Lemma D.1,

oK — eﬂ{LK—iL(K)} — oilx e—ﬁﬁ(x) — ik @O+ @R} _ LKy (wR)+y (@)

So we have cos h(k) = cos{Lk + vy (wk) + 7y (wk)}, sinh(k) = sin{Lk + vy (wk) + v (wk)}, hence, by

(D.1),
Le 1 £ sin{Lk + v (wk) + v (wk)}

(k) = D.5
gl =e cos {Lk + vy (wk) + vy (wk)} (D-3)
By Definition 3.2,
1+« 2 l+x)? 1+
% = cosh B(k) + sinh B(k) = . K2 N . > = (1 Kz ol 5 k €D. (D.6)
—K - K —K - K
Comparing (D.4) and (D.6), we have ® = ¢#0% for x € D, hence
PO = Plirio0) iy @0), keD, (D.7)
since —1w = w by (2.1).
Now let A = - 715 for k > 0, and let z = la so that
2kz = Lk. (D.8)

By Definitions 2.1 and 2.4,

1 4
X(/l)zi/l—WZ —K* = wk,

hence ¢ (la, x(1)) = 6*(z,wk). So by Corollary 1, 4 € Spec Ky if and only if 6" (z,wk) = 0 or
0~ (z, wk) = 0. By Definition 2.1, V2w = 1 + 1, hence, by Definition 3.2 and (D.7),

5% (Z, U)K) — {6 \/jwkzeﬁ(wk) —e \/iwkze—ﬁ(wk)} Ti {eﬁ \/Ewkzeﬁy(wk) _ e—]'l ‘/inZe—ﬁ)’(wK)}
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= {e’“e

eKZ {enkzeny(wk) + ]-le—nkze—ny(wk)} _ e—Kz {e—nkze—ny(wk) + ﬁenkzeny(wk)} .

So 6*(z, wk) = 0 if and only if

oMKV (@K) | =iz p—iy(wK)

e—Kze—nKze—ny(wk)} Ti {e—Kzenkzeny(wk) _ eKZe—]lKZe—]l’y(wk)}

eile eﬂy(BK) +1 e—ﬂkz e—ﬁy(wk) e—ile e—ﬁy(@() i eﬂKZ eﬂy(wk)

e—ZKZ _

e—ikze—ﬁy(ak) + ]'leﬁkzeﬁy(wk) - e—ﬂkze—ﬂy(wk) + ]'leﬂkzeﬂy(wk) ’ e—ilkze—ﬂy(ak) F ]'leﬂkzeﬂy(wk)

2 F fe2ike ety @+y@R)} 4 jo=2ikz p=ily(wh)+y(@K)}

eZﬁKzeilZ'y(wK) + e—21'1Kze—1'12'y(6)

2F i {eZﬁKzeﬁ{y(wKHy(EK)} _ e—ZﬁKze—fl{y(wKHy(EK)}}

= eﬂ{y(wk)—y(wk)} {eZﬁKzeﬁ{y(wKHy(@K)} + e—ZﬁKze—fl{y(wKHy(wk)}}

= ¢ HrwO—y(@K)} |

1 + sin {2kz + ¥ (wk) + ¥ (wk)}

cos {2kz + ¥ (wk) + ¥ (wK)}

which is equivalent to p(k) = ¢*(x) by Lemma D.1, (D.5) and (D.8). Thus we conclude that A €
Spec Ky if and only if p(x) = ¢* (k) or p(«) = ¢~ (k), which is exactly the condition in Proposition D.1.
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