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1. Introduction

We consider characteristic equations, i.e., equations for eigenvalues and eigenfunctions of the class
of integral operators on the Hilbert space L2[−l, l] of the form

KM[w](x) =

∫ l

−l
GM(x, ξ)w(ξ) dξ, x ∈ [−l, l], w ∈ L2[−l, l], (1.1)

where GM is the Green function [1, 2] for the boundary value problem consisting of the fourth-order
linear differential equation

EI · u(4)(x) + k · u(x) = w(x), x ∈ [−l, l] (1.2)

and a well-posed two-point boundary condition

M ·
(
u(−l) u′(−l) u′′(−l) u′′′(−l) u(l) u′(l) u′′(l) u′′′(l)

)T
= 0. (1.3)

Here, M ∈ gl(4, 8,C) is called a boundary matrix, where gl(4, 8,C) is the set of 4 × 8 matrices with
complex entries. For example, the two-point boundary condition u(−l) = u′(−l) = u(l) = u′(l) = 0 can
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be expressed by (1.3) with

M =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 .
The differential equation (1.2) is the classical Euler–Bernoulli beam equation [3] which governs the

vertical downward deflection u(x) of a linear-shaped beam with finite length 2l resting horizontally on
an elastic foundation with spring constant density k. The constants E and I are the Young’s modulus
and the mass moment of inertia of the beam respectively, and w(x) is the downward load density applied
vertically on the beam. The beam deflection problem has been one of the central topics in mechanical
engineering with diverse and important applications [3–12].

Throughout this paper, we assume that l, E, I, k in (1.2) are positive constants and put
α =

4√k/(EI) > 0. When the boundary value problem consisting of (1.2) and (1.3) is well-posed or,
equivalently, when (1.2) and (1.3) has a unique solution, we call the boundary matrix M well-posed.
The set of well-posed boundary matrices is denoted by wp(4, 8,C). It was shown in [2] that, up to a
natural equivalence relation, wp(4, 8,C) is in one-to-one correspondence with the 16-dimensional
algebra gl(4,C) of 4 × 4 matrices with complex entries.

For M ∈ wp(4, 8,C), we denote by SpecKM the spectrum or, the set of eigenvalues, of the integral
operator KM in (1.1). Since KM[w] is the unique solution of the boundary value problem (1.2) and
(1.3) for every M ∈ wp(4, 8,C), analyzing the behavior of the integral operators KM is important in
understanding the beam deflection problem. In general, spectral analysis for integral operators arising
from various differential equations is crucial in many applications such as inverse problem [13] and
nonlinear problem [5, 6]. In contrast to this importance, there are few explicit spectral analyses for the
integral operators KM which arise from a most fundamental and basic differential equation (1.2) in the
history of mechanical engineering.

Choi [14] analyzed SpecKQ of a special integral operator KQ in detail, where

Q =


0 α2 −√2α 1 0 0 0 0√
2α3 −α2 0 1 0 0 0 0
0 0 0 0 0 α2

√
2α 1

0 0 0 0 −√2α3 −α2 0 1

 , (1.4)

which is in wp(4, 8,C) [2]. The Green function GQ(x, ξ) corresponding to Q is the restriction in [−l, l]×
[−l, l] of the Green function for the boundary value problem consisting of the infinite version EI ·
u(4)(x) + k · u(x) = w(x), x ∈ (−∞,∞) of (1.2) and the boundary condition limx→±∞ u(x) = 0.

For two positive sequences an, bn, we denote an ∼ bn if there exists N > 0 such that m ≤ an/bn ≤ M
for every n > N for some constants 0 < m ≤ M < ∞.

Proposition 1.1 ( [14]). For every l > 0, the spectrum SpecKQ of the operator KQ is of the form
{µn/k | n = 1, 2, 3, · · · } ∪ {νn/k | n = 1, 2, 3, · · · } ⊂ (0, 1/k), where 1 > µ1 > ν1 > µ2 > ν2 > · · · ↘ 0.
Each of µn and νn for n = 1, 2, 3, . . . is determined only by the intrinsic length L = 2lα of the beam.
µn ∼ νn ∼ n−4, and

1

1 +
{
h−1

(
2πn + π

2

)}4 < νn <
1

1 +
{
h−1 (2πn)

}4 < µn <
1

1 +
{
h−1

(
2πn − π

2

)}4 , n = 1, 2, 3, . . . ,
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1

1 +
{
h−1

(
2πn − π

2

)}4 − µn ∼ νn − 1

1 +
{
h−1

(
2πn + π

2

)}4 ∼ n−5e−2πn,

1

1 + 1
L4

(
2π(n − 1) − π

2

)4 − µn ∼ 1

1 + 1
L4

(
2π(n − 1) + π

2

)4 − νn ∼ n−6.

Here, h : [0,∞) → [0,∞) is the strictly increasing real-analytic function defined in
Supplementary D, with the properties h(0) = 0 and h−1 (an) ∼ an/L for any positive sequence an such
that an → ∞. See [14] for numerical computations of µn, νn with arbitrary precision.

Recently, Choi [2] derived explicit characteristic equations for the integral operator KM in (1.1) for
arbitrary well-posed M ∈ wp(4, 8,C), which are stated in more detail in Section 2. Although these
characteristic equations are expressed in terms of the explicit 4 × 4 matrices G(M), Xλ, Yλ, they still
involve determinants of full 4 × 4 matrices, which makes it hard to analyze the structure of SpecKM

for general well-posed boundary matrix M.
In this paper, we utilize some of the symmetries in the 4 × 4 matrices Xλ, Yλ to block-diagonalize

them with explicit 2 × 2 blocks X±λ , Y±λ , which enables us to obtain new and simpler forms of
characteristic equations for the integral operator KM for arbitrary well-posed boundary matrix
M ∈ wp(4, 8,C). In particular, the entries of the 2 × 2 blocks X±λ and Y±λ are represented explicitly
with the concrete holomorphic functions δ±(z, κ) and p±(z) introduced in Section 3.

Our results significantly reduce the complexity of dealing with determinants of 4 × 4 matrices and
facilitate to represent SpecKM for arbitrary M ∈ wp(4, 8,C) essentially as the zero set of one explicit
holomorphic function composed with the concrete functions δ±(z, κ). For example, Corollary 1 in
Section 3 states that 0, 1/k , λ ∈ SpecKQ if and only if λ is a zero of the holomorphic function
δ+ (αl, χ(λ)) · δ− (αl, χ(λ)), where χ is a 4th root transformation introduced in Section 2. In particular,
the holomorphic functions δ±(z, κ) unify the real-analytic functions which were analyzed in detail
in [14, 15] to obtain concrete results on SpecKQ such as Proposition 1.1. The fact that δ±(z, κ)
encapsulate condensed information on SpecKQ, and hence on SpecKM in general, is demonstrated in
Supplementary D by showing that the seemingly complex-looking conditions ϕ±(κ) = p(κ), which
were derived in [14] with the help of computer algebra systems, can be directly and elegantly
recovered from δ±(z, κ).

Our results open up practical ways to direct and concrete spectral analysis for the whole
16-dimensional class of the integral operators KM arising from arbitrary well-posed boundary value
problem of finite beam deflection on elastic foundation.

After introducing basic notations, definitions, and previous results relevant to our analysis in
Section 2, we state our main results Theorems 1, 2 and 3 in Section 3, which are proved in Sections 4,
5 and 6 respectively. Some remarks and future directions are given in Section 7. In Supplementary D,
the conditions ϕ±(κ) = p(κ) on SpecKQ in [14] are derived from our holomorphic functions δ±(z, κ).

2. Preliminaries

2.1. Basic notations and definitions

We denote i =
√−1. Denote by Z, R, and C, the set of integers, the set of real numbers, and the set

of complex numbers respectively. The set of m× n matrices with entries in C is denoted by gl(m, n,C).
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When m = n, we also denote gl(m, n,C) = gl(n,C). We write A =
(
ai, j

)
1≤i≤m, 1≤ j≤n

when the (i, j)th

entry of A ∈ gl(m, n,C) is ai, j. When m = n, we also write A =
(
ai, j

)
1≤i, j≤n

. For A ∈ gl(m, n,C),
we denote the (i, j)th entry of A by Ai, j. The complex conjugate, the transpose, and the conjugate
transpose of A ∈ gl(m, n,C) are denoted by A, AT , and A∗ respectively. For A ∈ gl(n,C), adj A is the
classical adjoint of A, so that, if A is invertible then A−1 = adj A/ det A.

Regardless of size, the identity matrix and the zero matrix are denoted by I and O respectively.
The zero column vector with any size is denoted by 0. The diagonal matrix with diagonal entries
c1, c2, · · · , cn is denoted by diag (c1, c2, · · · , cn).

Definition 2.1. Denoteω = ei
π
4 = 1√

2
+i

1√
2

andωn = i
n−1ω for n ∈ Z. DenoteΩ = diag (ω1, ω2, ω3, ω4)

and W0 =
(
ωi−1

j

)
1≤i, j≤4

.

ω1 = ω, ω2, ω3, ω4 are the primitive 4th roots of −1 and satisfy

ω = ω4 = −ω2 = −iω, ω3 = −ω, ωn = ω−1
n , n ∈ Z,

ω + ω =
√

2, ω − ω = i

√
2, ω2 = i, ωω = 1.

(2.1)

Definition 2.2. Denote ε1 = ε4 = 1, ε2 = ε3 = −1, and εn+4 = εn for n ∈ Z. Denote
E = diag (ε1, ε2, ε3, ε4) = diag(1,−1,−1, 1).

By Definitions 2.1, 2.2 and (2.1), we have

e−EΩz = diag
(
e−ω1z, eω2z, eω3z, e−ω4z) = diag

(
e−ωz, e−ωz, e−ωz, e−ωz

)
=

diag
(
e−ωz, e−ωz

)
O

O diag
(
e−ωz, e−ωz

) , z ∈ C. (2.2)

Definition 2.3. Denote

V =
1√
2

(
I I
−I I

)
=

1√
2


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

 , V̂ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Note that V and V̂ are orthogonal and

V−1 = VT , V̂−1 = V̂T = V̂, det V = 1, det V̂ = −1. (2.3)

Lemma 2.1. V
(
A B
B A

)
VT =

(
A + B O

O A − B

)
for A,B ∈ gl(2,C).

Proof. By Definition 2.3,

V
(
A B
B A

)
VT =

1√
2

(
I I
−I I

)
·
(
A B
B A

)
· 1√

2

(
I −I
I I

)
=

1
2

(
A + B A + B
−A + B A − B

) (
I −I
I I

)
=

(
A + B O

O A − B

)
. �
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By (2.2) and Lemma 2.1,

Ve−EΩzVT =

diag
(
e−ωz, e−ωz

)
+ O O

O diag
(
e−ωz, e−ωz

)
−O


=

diag
(
e−ωz, e−ωz

)
O

O diag
(
e−ωz, e−ωz

) = e−EΩz, z ∈ C. (2.4)

By (2.1),

det diag
(
e−ωz, e−ωz

)
= e−ωz · e−ωz = e−(ω+ω)z = e−

√
2z, z ∈ C. (2.5)

2.2. Previous results

Definition 2.4. For λ ∈ C \ {0, 1/k}, define χ(λ) to be the unique complex number satisfying χ(λ)4 =

1 − 1/(λk) and 0 ≤ Arg χ(λ) < π/2.

Note that χ is a one-to-one correspondence from C \ {0, 1/k} to the set
{
κ ∈ C | 0 ≤ Arg κ < π/2

} \
{0, 1}.
Definition 2.5. Let 0 , λ ∈ C and x ∈ R. For λ , 1/k, let κ = χ(λ). Denote

W(x) =
(
y(x) y′(x) y′′(x) y′′′(x)

)T
, Wλ(x) =

(
y(i−1)
λ, j (x)

)
1≤i, j≤4

,

where y(x) =
(
eω1αx eω2αx eω3αx eω4αx

)T
and yλ, j(x) =

{ 1
( j−1)! · x j−1, if λ = 1/k,
eω jκαx, if λ , 1/k,

j = 1, 2, 3, 4.

Denote Xλ(x) = diag(0, 1, 1, 0) ·W(−x)−1Wλ(−x)+diag(1, 0, 0, 1) ·W(x)−1Wλ(x). When det Xλ(x) , 0,
denote Yλ(x) = Xλ(−x)Xλ(x)−1 − I.

Definition 2.6. Define G : wp(4, 8,C)→ gl(4,C) by

G(M) =
{
M−W(−l) + M+W(l)

}−1 M+W(l)E − diag(1, 0, 0, 1),

where M−,M+ ∈ gl(4,C) are the 4×4 minors of M such that M =
(

M− M+
)
. Define ψ : gl(4,C)→

gl(4, 8,C) by

ψ(G) =
( {

diag(0, 1, 1, 0) −GE} W(−l)−1 {
diag(1, 0, 0, 1) + GE} W(l)−1

)
.

The map G in Definition 2.6 is well defined since, for M =
(

M− M+
)
∈ gl(4, 8,C),

M ∈ wp(4, 8,C) if and only of det {M−W(−l) + M+W(l)} , 0 [2, Lemma 3.1]. G(M) is denoted by
GM in [2]. Define the equivalence relation ≈ on wp(4, 8,C) by M ≈ N if and only if M = AN for
some invertible A ∈ gl(4,C).

Proposition 2.1. (a) ( [2, Lemma 6.1]) For M,N ∈ wp(4, 8,C), the following (i), (ii), (iii) are
equivalent: (i) M ≈ N, (ii) G(M) = G(N), (iii) KM = KN.

(b) ( [2, Eq 6.4]) For G ∈ gl(4,C), ψ(G) ∈ wp(4, 8,C) and G (ψ(G)) = G.
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wp(C) wp(4, 8,C) gl(4,C)

wp(4, 8,C)

Γ

PA

π

G

Γ−1

ψ

π G

Figure 1. The commutative diagram showing the one-to-one correspondence Γ between
gl(4,C) and the set wp(C) of all equivalent well-posed boundary matrices. wp(C) is also
in one-to-one correspondence with the set of all integral operators KM in (1.1). This
commutative diagram holds for any invertible A ∈ gl(4,C), where PA(M) = AM. π is the
canonical projection which maps a well-posed boundary matrix M to its equivalence class
[M] with respect to ≈. The maps G and ψ defined in Definition 2.6 are explicitly computable.

Denote by wp(C) the quotient set wp(4, 8,C)/ ≈ of wp(4, 8,C) with respect to the relation ≈. For
M ∈ wp(4, 8,C), denote by [M] the equivalence class in wp(4, 8,C)/ ≈ which contains M. Then we
have the canonical projection π : wp(4, 8,C) → wp(C) defined by π(M) = [M]. By Proposition 2.1,
the map π ◦ ψ : gl(4,C) → wp(C) is a one-to-one correspondence, and we denote its inverse by
Γ : wp(C) → gl(4,C). Thus we have the commutative diagram in Figure 1 which holds for any
invertible A ∈ gl(4,C). Here, the map PA : wp(4, 8,C)→ wp(4, 8,C) is defined by PA(M) = AM.

By Proposition 2.1, the set of integral operatorsKM in (1.1) is in one-to-one correspondence with the
set wp(C) of equivalent well-posed boundary matrices, and hence is also in one-to-one correspondence
with gl(4,C). Note that both of the maps G and ψ in Definition 2.6 are explicitly computable, hence Γ

and its inverse Γ−1 are explicitly computable. For the special boundary matrix Q in (1.4), we have [2, Eq
6.2]

G(Q) = O. (2.6)

Proposition 2.2. For M ∈ wp(4, 8,C) and λ ∈ C, the following (a) and (b) hold.

(a) ( [2, Theorem 1 and Corollary 1])KM[u] = λ ·u for some 0 , u ∈ L2[−l, l] if and only if λ , 0 and
u = cT yλ for some 0 , c ∈ gl(4, 1,C) such that [G(M) {Xλ(l) − Xλ(−l)} + Xλ(l)] c = 0. KQ[u] =

λ · u for some 0 , u ∈ L2[−l, l] if and only if λ , 0 and u = cT yλ for some 0 , c ∈ gl(4, 1,C) such
that Xλ(l)c = 0. In particular, 0 , λ ∈ SpecKQ if and only if det Xλ(l) = 0.

(b) ( [2, Corollary 2]) Let 0 , λ ∈ C\SpecKQ. Then λ ∈ SpecKM if and only if det {G(M)Yλ(l) − I} =

0.

3. Main results

3.1. Block-diagonalization of Xλ(x) for λ , 1/k

The following is well defined since the range χ (C \ {0, 1/k}) of χ in Definition 2.4 does not contain
1,−1, i,−i.

AIMS Mathematics Volume 6, Issue 10, 10652–10678.
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Definition 3.1. For λ ∈ C \ {0, 1/k} and x ∈ R, denote

X±λ (x) =
1 − κ4

4
· diag

(
e−ωz, e−ωz

)  eωκz
1−κ ± e−ωκz

1+κ
e−ωκz
1−iκ ± eωκz

1+iκ
e−ωκz
1+iκ
± eωκz

1−iκ
eωκz
1−κ ± e−ωκz

1+κ

 ,
where z = αx and κ = χ(λ).

The following is well defined, since(
1 + κ2

1 − κ2

)2

−
(

2κ
1 − κ2

)2

= 1, κ ∈ C \ {−1, 1},(
1 − κ2

1 + κ2

)2

+

(
2κ

1 + κ2

)2

= 1, κ ∈ C \ {−i, i}.

Definition 3.2. Denote by β(κ) any holomorphic branch in C \ {−1, 1} satisfying

cosh β(κ) =
1 + κ2

1 − κ2 , sinh β(κ) =
2κ

1 − κ2 ,

and denote by γ(κ) any holomorphic branch in C \ {−i, i} satisfying

cos γ(κ) =
1 − κ2

1 + κ2 , sin γ(κ) =
2κ

1 + κ2 .

For z ∈ C and κ ∈ C \ {1,−1, i,−i}, define

δ±(z, κ) = sinh
(√

2κz + β(κ)
)
± sin

(√
2κz + γ(κ)

)
.

β(κ) and γ(κ) are holomorphic branches of 2 arctanh κ and 2 arctan κ respectively, which, in turn, are
anti-derivatives of 2/

(
1 − κ2

)
and 2/

(
1 + κ2

)
respectively.

Definition 3.3. Define F : wp(4, 8,C) → gl(4,C) by F (M) = VG(M)VT and
φ : gl(4,C) → wp(4, 8,C) by φ(G) = ψ

(
VT GV

)
. F (M) is called the fundamental boundary matrix

corresponding to the well-posed boundary matrix M ∈ wp(4, 8,C).

Denote by SimVT ,SimV : gl(4,C)→ gl(4,C) the similarity transforms defined by SimVT G = VGVT

and SimV G = VT GV respectively, so that F = SimVT ◦G and φ = ψ◦SimV by Definition 3.3. By (2.3),
Sim−1

VT = SimV, hence, by Proposition 2.1 (b), F (φ(G)) = SimVT G (ψ (SimV G)) = SimVT SimV G = G
for G ∈ gl(4,C). Thus Definition 3.3 gives a new one-to-one correspondence Φ : wp(C) → gl(4,C)
defined by Φ = SimVT ◦Γ. See Figure 2 for a commutative diagram which expands the one in Figure 1
to incorporate Φ.

By Proposition 2.1 and Definition 3.3, the set of integral operators KM in (1.1) is in one-to-one
correspondence with the 16-dimensional algebra gl(4,C). Both of Φ and its inverse Φ−1 are explicitly
computable by using the maps F and φ in Definition 3.3.

Theorem 1. For λ ∈ C \ {0, 1/k}, the following (a) and (b) hold.
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wp(C) wp(4, 8,C) gl(4,C) gl(4,C)

wp(4, 8,C)

Γ

Φ

π

G
PA

ψ

SimVT

G

Γ−1

SimV

φ

F

Φ−1

π

F

Figure 2. Commutative diagram showing the one-to-one correspondence Φ between gl(4,C)
and the set wp(C) of all equivalent well-posed boundary matrices, which is also in one-to-
one correspondence with the set of all integral operators KM in (1.1). This commutative
diagram holds for any invertible A ∈ gl(4,C), and extends the one for the map Γ in Figure 1
to incorporate Φ. SimVT and SimV are the similarity transforms defined by SimVT G = VGVT

and SimV G = VT GV respectively. The maps F and φ defined in Definition 3.3 are explicitly
computable.

(a) For M ∈ wp(4, 8,C), KM[u] = λ · u for some 0 , u ∈ L2[−l, l] if and only if u = cT yλ for some
0 , c ∈ gl(4, 1,C) such that

{
F (M)

(
X+
λ (−l) − X+

λ (l) O
O X−λ (−l) − X−λ (l)

)
−

(
X+
λ (l) O
O X−λ (l)

)}
Vc = 0.

KQ[u] = λ · u for some 0 , u ∈ L2[−l, l] if and only if u = cT yλ for some 0 , c ∈ gl(4, 1,C) such

that
(
X+
λ (l) O
O X−λ (l)

)
Vc = 0.

(b) Let κ = χ(λ) and z = αx. Then, for x ∈ R,

det X±λ (x) =
e−
√

2zκ
(
1 − κ4

)
4

· δ±(z, κ),

det Xλ(x) = det X+
λ (x) det X−λ (x) =

e−2
√

2zκ2
(
1 − κ4

)2

16
· δ+(z, κ)δ−(z, κ).

The proof of Theorem 1 will be given at the end of Section 4.
By Proposition 1.1, 0, 1/k < SpecKQ for every l > 0. Note that κ , 0 and κ4 , 1 when κ = χ(λ)

and λ ∈ C \ {0, 1/k}. Thus, by Proposition 2.2 (a) and Theorem 1, the zero sets of the holomorphic
functions δ±(z, κ) in Definition 3.2 completely describe SpecKQ in Proposition 1.1.

Corollary 1. For every l > 0, λ ∈ C is in SpecKQ if and only if λ , 0, λ , 1/k, and δ+(αl, χ(λ)) ·
δ−(αl, χ(λ)) = 0.
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3.2. Block-diagonalization of X1/k(x)

Definition 3.4. For z ∈ C, denote pn(z) =
∑n

r=0
ωn−r

r! zr, n = 0, 1, 2, 3, where it is understood that 00 = 1,
and denote

P+(z) =

(
p0(z) p2(z)
p0(z) p2(z)

)
, P−(z) =

(−p1(z) −p3(z)
p1(z) p3(z)

)
.

For x ∈ R, denote

X+
1/k(x) =

1

2
√

2
diag

(
e−ωz, e−ωz

)
· P+(z) · diag

(
1, α−2

)
,

X−1/k(x) =
1

2
√

2
diag

(
e−ωz, e−ωz

)
· P−(z) · diag

(
α−1, α−3

)
,

where z = αx.

Definition 3.5. For z ∈ C, denote

p+(z) = 1 +
z√
2
, p−(z) = 1 +

√
2z + z2 +

z3

3
√

2
.

Theorem 2. The following (a) and (b) hold.

(a) For M ∈ wp(4, 8,C), KM[u] = 1
k · u for some 0 , u ∈ L2[−l, l] if and only if u = cT y1/k for some

0 , c ∈ gl(4, 1,C) such that{
F (M)

(
X+

1/k(−l) − X+
1/k(l) O

O X−1/k(−l) − X−1/k(l)

)
−

(
X+

1/k(l) O
O X−1/k(l)

)}
V̂c = 0.

(b) For x ∈ R,

det X+
1/k(x) =

ie−
√

2z

4α2 · p+(z), det X−1/k(x) = −ie−
√

2z

4α4 · p−(z),

det X1/k(x) = − det X+
1/k(x) det X−1/k(x) = −e−2

√
2z

16α6 · p+(z)p−(z),

where z = αx. det X±1/k(x) , 0 and det X1/k(x) , 0 for x > 0.

The proof of Theorem 2 will be given at the end of Section 5.

3.3. Block-diagonalization of Yλ(x)

Definition 3.6. For 0 , λ ∈ C and x ∈ R such that det X±λ (x) , 0, denote Y±λ (x) = X±λ (−x) ·X±λ (x)−1 − I.

Theorem 3. The following (a) and (b) hold.

(a) For M ∈ wp(4, 8,C) and 0 , λ ∈ C \ SpecKQ, λ ∈ SpecKM if and only if

det
{
F (M)

(
Y+
λ (l) O
O Y−λ (l)

)
− I

}
= 0.
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(b) Let 0 , λ ∈ C, x ∈ R, and z = αx. Suppose that det X±λ (x) , 0. If λ , 1/k, then

Y±λ (x) =
1

δ±(z, κ)

e2ωzδ±(−iz, κ) − δ±(z, κ) √
2ωe

√
2z s±(zκ)√

2ωe
√

2z s±(zκ) e2ωzδ±(iz, κ) − δ±(z, κ)

 ,
where κ = χ(λ) and s±(ζ) = sinh

(√
2ζ

)
± sin

(√
2ζ

)
for ζ ∈ C. Also,

Y±1/k(x) =
1

p±(z)

e2ωz p±(−iz) − p±(z) 1
2∓1ωe

√
2zz2∓1

1
2∓1ωe

√
2zz2∓1 e2ωz p±(iz) − p±(z)

 .
The proof of Theorem 3 will be given at the end of Section 6.

4. Block-diagonalization of Xλ(x) for λ , 1/k: proof of Theorem 1

Definition 4.1. For z, κ ∈ C, denote

X(z, κ) =
1
4

e−EΩz
{
diag(0, 1, 1, 0) ·W∗

0 · diag
(
1, κ, κ2, κ3

)
·W0e−Ωκz

+ diag(1, 0, 0, 1) ·W∗
0 · diag

(
1, κ, κ2, κ3

)
·W0eΩκz

}
.

Proposition 4.1. ( [2, Eq 7.9]) For λ ∈ C \ {0, 1/k} and x ∈ R, Xλ(x) = X(z, κ), where z = αx and
κ = χ(λ).

Definition 4.2. Denote D = C \ {0, 1,−1, i,−i}. For z ∈ C and κ ∈ D, denote

X̂(z, κ) =
1

1 − κ4

{
diag(0, 1, 1, 0) ·W∗

0 · diag
(
1, κ, κ2, κ3

)
·W0e−Ωκz

+ diag(1, 0, 0, 1) ·W∗
0 · diag

(
1, κ, κ2, κ3

)
·W0eΩκz

}
.

By Definitions 4.1 and 4.2, we have

X(z, κ) =
1 − κ4

4
· e−EΩz · X̂(z, κ), z ∈ C, κ ∈ D. (4.1)

Lemma 4.1. For z ∈ C and κ ∈ D, X̂(z, κ) =

(
eεiω jκz

1−ω j
ωi
κ

)
1≤i, j≤4

.

Proof. By Definition 2.1 and (2.1), W∗
0 =

(
ωi

j−1
)

1≤i, j≤4
=

(
ω

1− j
i

)
1≤i, j≤4

, hence

{
W∗

0 · diag
(
1, κ, κ2, κ3

)
·W0

}
i, j

=

4∑
r=1

ω1−r
i · κr−1 · ωr−1

j =

4∑
r=1

(
ω j

ωi
· κ

)r−1

=
1 − ω4

j

ω4
i
· κ4

1 − ω j

ωi
· κ =

1 − κ4

1 − ω j

ωi
κ

for 1 ≤ i, j ≤ 4. So by Definition 4.2, we have

X̂(z, κ) = diag(0, 1, 1, 0) ·
 1
1 − ω j

ωi
κ


1≤i, j≤4

· e−Ωκz + diag(1, 0, 0, 1) ·
 1

1 − ω j

ωi
κ


1≤i, j≤4

· eΩκz

= diag(0, 1, 1, 0) ·
 e−ω jκz

1 − ω j

ωi
κ


1≤i, j≤4

+ diag(1, 0, 0, 1) ·
 eω jκz

1 − ω j

ωi
κ


1≤i, j≤4

.

Thus the result follows by Definition 2.2. �
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Definition 4.3. For z ∈ C and κ ∈ D, denote

X̂±(z, κ) =

 eωκz
1−κ ± e−ωκz

1+κ
e−ωκz
1−iκ ± eωκz

1+iκ
e−ωκz
1+iκ
± eωκz

1−iκ
eωκz
1−κ ± e−ωκz

1+κ

 , X±(z, κ) =
1 − κ4

4
· diag

(
e−ωz, e−ωz

)
· X̂±(z, κ).

Note from Definitions 3.1 and 4.3 that

X±λ (x) = X±(z, κ), λ ∈ C \ {0, 1/k}, x ∈ R, (4.2)

where z = αx and κ = χ(λ).

Lemma 4.2. For z ∈ C and κ ∈ D, VX̂(z, κ)VT =

X̂+(z, κ) O
O X̂−(z, κ)

.
Proof. By (2.1), Definition 2.2 and Lemma 4.1,

X̂(z, κ)i+2, j+2 =
eεi+2ω j+2κz

1 − ω j+2

ωi+2
κ

=
e(−εi)(−ω j)κz

1 − (−ω j)
(−ωi)

κ
=

eεiω jκz

1 − ω j

ωi
κ

= X̂(z, κ)i, j,

X̂(z, κ)i+2, j =
eεi+2ω jκz

1 − ω j

ωi+2
κ

=
e(−εi)(−ω j+2)κz

1 − (−ω j+2)
(−ωi)

κ
=

eεiω j+2κz

1 − ω j+2

ωi
κ

= X̂(z, κ)i, j+2

for 1 ≤ i, j ≤ 2, which implies that X̂(z, κ) =

(
A B
B A

)
, where we put A =

{
X̂(z, κ)i, j

}
1≤i, j≤2

,B ={
X̂(z, κ)i, j+2

}
1≤i, j≤2

∈ gl(2,C). So by Lemma 2.1, we have

VX̂(z, κ)VT =

(
A + B O

O A − B

)
. (4.3)

By Lemma 4.1, we have

A ± B =
{
X̂(z, κ)i, j

}
1≤i, j≤2

±
{
X̂(z, κ)i, j+2

}
1≤i, j≤2

=

 eεiω jκz

1 − ω j

ωi
κ
± eεiω j+2κz

1 − ω j+2

ωi
κ


1≤i, j≤2

=


eε1ω1κz

1−ω1
ω1
κ
± eε1ω3κz

1−ω3
ω1
κ

eε1ω2κz

1−ω2
ω1
κ
± eε1ω4κz

1−ω4
ω1
κ

eε2ω1κz

1−ω1
ω2
κ
± eε2ω3κz

1−ω3
ω2
κ

eε2ω2κz

1−ω2
ω2
κ
± eε2ω4κz

1−ω4
ω2
κ

 ,
hence, by (2.1) and Definitions 2.2, 4.3,

A ± B =

 eωκz
1−κ ± e−ωκz

1+κ
e−ωκz
1−iκ ± eωκz

1+iκ
e−ωκz
1+iκ
± eωκz

1−iκ
eωκz
1−κ ± e−ωκz

1+κ

 = X̂±(z, κ).

Thus the lemma follows by (4.3). �

Lemma 4.3. For z ∈ C and κ ∈ D, VX(z, κ)VT =

(
X+(z, κ) O

O X−(z, κ)

)
.
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Proof. By (2.3), (2.4), (4.1) and Lemma 4.2,

VX(z, κ)VT = V
{

1 − κ4

4
· e−EΩz · X̂(z, κ)

}
VT =

1 − κ4

4
· Ve−EΩzVT · VX̂(z, κ)VT

=
1 − κ4

4
·
diag

(
e−ωz, e−ωz

)
O

O diag
(
e−ωz, e−ωz

) X̂+(z, κ) O
O X̂−(z, κ)


=

1 − κ4

4
·
diag

(
e−ωz, e−ωz

)
X̂+(z, κ) O

O diag
(
e−ωz, e−ωz

)
X̂−(z, κ)

 .
Thus the lemma follows by Definition 4.3. �

By Proposition 4.1, (4.2) and Lemma 4.3, we have

Xλ(x) = VT

(
X+
λ (x) O
O X−λ (x)

)
V, λ ∈ C \ {0, 1/k}, x ∈ R. (4.4)

Lemma 4.4. For z ∈ C and κ ∈ D, det X̂±(z, κ) = 4κ
1−κ4 · δ±(z, κ).

See Supplementary A for proof of Lemma 4.4.

Proof of Theorem 1. Let λ ∈ C \ {0, 1/k} and M ∈ wp(4, 8,C). By Proposition 2.2 (a), KM[u] = λ · u
for some 0 , u ∈ L2[−l, l] if and only if u = cT yλ for some 0 , c ∈ gl(4, 1,C) such that

0 = V [G(M) {Xλ(−l) − Xλ(l)} − Xλ(l)] c, (4.5)

since V is invertible by (2.3). Thus the first assertion in (a) follows, since (4.5) is equivalent to

0 =

[
VG(M)

{
VT

(
X+
λ (−l) O
O X−λ (−l)

)
V − VT

(
X+
λ (l) O
O X−λ (l)

)
V
}
− V · VT

(
X+
λ (l) O
O X−λ (l)

)
V
]

c

=

[
F (M)

(
X+
λ (−l) − X+

λ (l) O
O X−λ (−l) − X−λ (l)

)
−

(
X+
λ (l) O
O X−λ (l)

)]
Vc

by (4.4) and Definition 3.3. The second assertion in (a) follows from the first one, since F (Q) =

VG(Q)VT = O by (2.6) and Definition 3.3.
Let κ = χ(λ), x ∈ R, and z = αx. By (2.3) and (4.4), we have

det Xλ(x) = det
{

VT ·
(
X+
λ (x) O
O X−λ (x)

)
· V

}
= det VT · {det X+

λ (x) · det X−λ (x)
} · det V

= det X+
λ (x) · det X−λ (x). (4.6)

By (4.2) and Definition 4.3,

det X±λ (x) = det X±(z, κ) = det
{

1 − κ4

4
· diag

(
e−ωz, e−ωz

)
X̂±(z, κ)

}
=

(
1 − κ4

4

)2

· det diag
(
e−ωz, e−ωz

)
· det X̂±(z, κ),
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hence, by (2.5) and Lemma 4.4,

det X±λ (x) =

(
1 − κ4

)2

16
· e−

√
2z · 4κ

1 − κ4 δ
±(z, κ) =

e−
√

2zκ
(
1 − κ4

)
4

· δ±(z, κ).

So by (4.6), we have

det Xλ(x) =
e−
√

2zκ
(
1 − κ4

)
4

· δ+(z, κ) ·
e−
√

2zκ
(
1 − κ4

)
4

· δ−(z, κ) =
e−2

√
2zκ2

(
1 − κ4

)2

16
· δ+(z, κ)δ−(z, κ).

Thus we showed (b), and the proof is complete. �

5. Block-diagonalization of X1/k(x): proof of Theorem 2

Definition 5.1. For z ∈ C, denote

P(z) =


p0(z) p1(z) p2(z) p3(z)
p0(z) −p1(z) p2(z) −p3(z)
p0(z) −p1(z) p2(z) −p3(z)
p0(z) p1(z) p2(z) p3(z)

 .

Proposition 5.1. (a) ( [2, Eq 7.13]) X1/k(x) = 1
4e−EΩzP(z) · diag

(
1, α, α2, α3

)−1
for x ∈ R, where

z = αx.

(b) ( [2, Lemma B1]) For z ∈ C, VP(z)V̂ =
√

2
(
P+(z) O

O P−(z)

)
.

The result in Proposition 5.1 (b) was for z ∈ R in [2] originally, but it can immediately be extended
to z ∈ C.

By (2.3), we have

V̂T diag
(
1, α−1, α−2, α−3

)
V̂ = V̂ diag

(
1, α−1, α−2, α−3

)
V̂

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



1 0 0 0
0 α−1 0 0
0 0 α−2 0
0 0 0 α−3



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 0 α−2 0
0 α−1 0 0
0 0 0 α−3



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


= diag

(
1, α−2, α−1, α−3

)
=

diag
(
1, α−2

)
O

O diag
(
α−1, α−3

) . (5.1)

By Proposition 5.1 (a) and (2.3),

VX1/k(x)V̂ = V
{

1
4

e−EΩzP(z) · diag
(
1, α, α2, α3

)−1
}

V̂

=
1
4

Ve−EΩzVT · VP(z)V̂ · V̂T diag
(
1, α−1, α−2, α−3

)
V̂,
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hence, by (2.4), (5.1) and Proposition 5.1 (b),

VX1/k(x)V̂ =
1
4

diag
(
e−ωz, e−ωz

)
O

O diag
(
e−ωz, e−ωz

)
·
√

2
(
P+(z) O

O P−(z)

)
·
diag

(
1, α−2

)
O

O diag
(
α−1, α−3

) .
Thus, by (2.3) and Definition 3.4, we have

X1/k(x) = VT

(
X+

1/k(x) O
O X−1/k(x)

)
V̂, x ∈ R. (5.2)

By Definition 3.4 and (2.1), we have

p0(z) = 1,
p1(z) = ω + z,

p2(z) = ω2 + ωz +
1
2

z2 = i + ωz +
1
2

z2,

p3(z) = ω3 + ω2z +
1
2
ωz2 +

1
6

z3 = −ω + iz +
1
2
ωz2 +

1
6

z3.

(5.3)

Lemma 5.1. For z ∈ C, det P+(z) = 2i · p+(z) and det P−(z) = −2i · p−(z).

Proof. By Definitions 3.4, 3.5, (2.1) and (5.3),

det P+(z) = p0(z) · p2(z) − p0(z) · p2(z)

= 1 ·
(
i + ωz +

1
2

z2
)
− 1 ·

(
−i + ωz +

1
2

z2
)

= 2i +
√

2iz = 2i · p+(z),

det P−(z) = −p1(z) · p3(z) + p1(z) · p3(z)

= − (ω + z)
(
−ω + iz +

1
2
ωz2 +

1
6

z3
)

+ (ω + z)
(
−ω − iz +

1
2
ωz2 +

1
6

z3
)

=

{
−i −

√
2iz −

(
1
2

+ i

)
z2 −

(
ω

2
+
ω

6

)
z3 − 1

6
z4

}
+

{
−i −

√
2iz +

(
1
2
− i

)
z2 +

(
ω

2
+
ω

6

)
z3 +

1
6

z4
}

= −2i − 2
√

2iz − 2iz2 −
√

2i
3

z3 = −2i · p−(z). �

Proof of Theorem 2. Let M ∈ wp(4, 8,C). By Proposition 2.2 (a), KM[u] = 1
k · u for some 0 , u ∈

L2[−l, l] if and only if u = cT y1/k for some c ∈ gl(4, 1,C) such that

0 = V
[G(M)

{
X1/k(−l) − X1/k(l)

} − X1/k(l)
]
c, (5.4)

since V is invertible by (2.3). Thus (a) follows, since (5.4) is equivalent to

0 =

[
VG(M)

{
VT

(
X+

1/k(−l) O
O X−1/k(−l)

)
V̂ − VT

(
X+

1/k(l) O
O X−1/k(l)

)
V̂
}
− V · VT

(
X+
λ (l) O
O X−λ (l)

)
V̂
]

c
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=

[
F (M)

(
X+

1/k(−l) − X+
1/k(l) O

O X−1/k(−l) − X−1/k(l)

)
−

(
X+

1/k(l) O
O X−1/k(l)

)]
V̂c

by (5.2) and Definition 3.3.
Let x ∈ R and z = αx. By (2.3) and (5.2),

det X1/k(x) = det VT · det
(
X+

1/k(x) O
O X−1/k(x)

)
· det V̂ = − det X+

1/k(x) · det X−1/k(x). (5.5)

By (2.5), Definition 3.4 and Lemma 5.1,

det X+
1/k(x) =

(
1

2
√

2

)2

det diag
(
e−ωz, e−ωz

)
· det P+(z) · det diag

(
1, α−2

)
=

1
8

e−
√

2z · {2i · p+(z)
} · α−2 =

ie−
√

2z

4α2 · p+(z), (5.6)

det X−1/k(x) =

(
1

2
√

2

)2

det diag
(
e−ωz, e−ωz

)
· det P−(z) · det diag

(
α−1, α−3

)
=

1
8

e−
√

2z · {−2i · p−(z)
} · α−4 = −ie−

√
2z

4α4 · p−(z). (5.7)

By (5.5), (5.6), (5.7),

det X1/k(x) = −ie−
√

2z

4α2 · p+(z)

−ie−
√

2z

4α4 · p−(z)

 = −e−2
√

2z

16α6 · p+(z)p−(z).

It follows that det X±1/k(x) , 0 and det X1/k(x) , 0 for x > 0, since p±(z) > 0 for z > 0 by Definition 3.5.
Thus we showed (b), and the proof is complete. �

6. Block-diagonalization of Yλ(x): proof of Theorem 3

6.1. The case λ , 1/k

Denote R =

(
0 1
1 0

)
. For a, b, c, d ∈ C, we have

R
(
a b
c d

)
R =

(
0 1
1 0

) (
a b
c d

) (
0 1
1 0

)
=

(
d c
b a

)
. (6.1)

By Definition 4.3,

adj X̂±(z, κ) =

 eωκz
1−κ ± e−ωκz

1+κ
−

(
e−ωκz
1−iκ ± eωκz

1+iκ

)
−

(
e−ωκz
1+iκ
± eωκz

1−iκ
)

eωκz
1−κ ± e−ωκz

1+κ

 (6.2)

for z ∈ C and κ ∈ D. Note from Definition 4.2 that κ ∈ D if and only if κ ∈ D.

Lemma 6.1. For z ∈ C and κ ∈ D,{
X̂±(−z, κ) · adj X̂±(z, κ)

}
2,1

=
{
X̂±(−z, κ) · adj X̂±(z, κ)

}
1,2
,{

X̂±(−z, κ) · adj X̂±(z, κ)
}

2,2
=

{
X̂±(−z, κ) · adj X̂±(z, κ)

}
1,1
.
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Proof. Let z ∈ C and κ ∈ D. It can be checked from Definition 4.3 and (6.2) that

X̂±(z, κ)2,1 = X̂±(z, κ)1,2, X̂±(z, κ)2,2 = X̂±(z, κ)1,1, and
{
adj X̂±(z, κ)

}
2,1

=
{
adj X̂±(z, κ)

}
1,2

,{
adj X̂±(z, κ)

}
2,2

=
{
adj X̂±(z, κ)

}
1,1

, which, by (6.1), are equivalent to R · X̂±(z, κ) · R = X̂±(z, κ),

R · adj X̂±(z, κ) · R = adj X̂±(z, κ). So we have

R
{
X̂±(−z, κ) · adj X̂±(z, κ)

}
R =

{
R · X̂±(−z, κ) · R

} {
R · adj X̂±(z, κ) · R

}
= X̂±(−z, κ) · adj X̂±(z, κ) =

{
X̂±(−z, κ) · adj X̂±(z, κ)

}
,

since R2 = I. Thus the result follows by (6.1). �

Lemma 6.2. For z ∈ R and κ ∈ D,

X̂±(−z, κ) · adj X̂±(z, κ) =
4κ

1 − κ4

(
δ±(−iz, κ) √

2ω s±(zκ)√
2ω s±(zκ) δ±(iz, κ)

)
,

where s±(ζ) = sinh
(√

2ζ
)
± sin

(√
2ζ

)
for ζ ∈ C.

See Supplementary B for proof of Lemma 6.2.

Definition 6.1. For z ∈ C and κ ∈ D such that det X±(z, κ) , 0, denote Y±(z, κ) = X±(−z, κ) ·X±(z, κ)−1−
I.

By Definitions 3.6, 6.1 and (4.2),

Y±λ (x) = Y±(z, κ), λ ∈ C \ {0, 1/k}, x ∈ R, det X±λ (x) , 0, (6.3)

where z = αx and κ = χ(λ). Note from (2.1) that, for a, b, c, d, δ ∈ C, δ , 0,

1
δ

diag
(
eωz, eωz

) (a b
c d

)
diag

(
eωz, eωz

)
− I =

1
δ

e2ωza e
√

2zb
e
√

2zc e2ωzd

 − I =
1
δ

e2ωza − δ e
√

2zb
e
√

2zc e2ωzd − δ

 . (6.4)

Lemma 6.3. For z ∈ C and κ ∈ D such that det X±(z, κ) , 0,

Y±(z, κ) =
1

δ±(z, κ)

e2ωzδ±(−iz, κ) − δ±(z, κ) √
2ωe

√
2z s±(zκ)√

2ωe
√

2z s±(zκ) e2ωzδ±(iz, κ) − δ±(z, κ)

 ,
where s±(ζ) = sinh

(√
2ζ

)
± sin

(√
2ζ

)
for ζ ∈ C.

Proof. Let z ∈ C, κ ∈ D, and suppose that det X±(z, κ) , 0. By Definition 4.3,

X±(z, κ)−1 =

{
1 − κ4

4
· diag

(
e−ωz, e−ωz

)
X̂±(z, κ)

}−1

=
4

1 − κ4 · X̂±(z, κ)−1 diag
(
eωz, eωz

)
,

hence, by Definition 6.1,

Y±(z, κ) =

{
1 − κ4

4
· diag

(
e−ω(−z), e−ω(−z)

)
X̂±(−z, κ)

}{
4

1 − κ4 · X̂±(z, κ)−1 diag
(
eωz, eωz

)}
− I
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= diag
(
eωz, eωz

)
X̂±(−z, κ) · X̂±(z, κ)−1 diag

(
eωz, eωz

)
− I. (6.5)

By Lemmas 4.4 and 6.2,

X̂±(−z, κ) · X̂±(z, κ)−1 =
1

det X̂±(z, κ)
· X̂±(−z, κ) · adj X̂±(z, κ)

=
1

4κ
1−κ4 δ±(z, κ)

· 4κ
1 − κ4

(
δ±(−iz, κ) √

2ω s±(zκ)√
2ω s±(zκ) δ±(iz, κ)

)
,

hence, by (6.5),

Y±(z, κ) =
1

δ±(z, κ)
diag

(
eωz, eωz

) ( δ±(−iz, κ) √
2ω s±(zκ)√

2ω s±(zκ) δ±(iz, κ)

)
diag

(
eωz, eωz

)
− I.

Thus the lemma follows by (6.4). �

6.2. The case λ = 1/k and proof of Theorem 3

By Definition 3.4, we have

adj P+(z) =

 p2(z) −p2(z)
−p0(z) p0(z)

 , adj P−(z) =

 p3(z) p3(z)
−p1(z) −p1(z)

 , z ∈ C. (6.6)

Lemma 6.4. For z ∈ C, P±(−z) · adj P±(z) = ±2i
(

p±(−iz) 1
2∓1ωz2∓1

1
2∓1ωz2∓1 p±(iz)

)
.

See Supplementary C for proof of Lemma 6.4.

Lemma 6.5. Let x ∈ R, z = αx, and suppose that det X±1/k(x) , 0. Then

Y±1/k(x) =
1

p±(z)

e2ωz p±(−iz) − p±(z) 1
2∓1ωe

√
2zz2∓1

1
2∓1ωe

√
2zz2∓1 e2ωz p±(iz) − p±(z)

 .
Proof. By Definition 3.4,

X±1/k(x)−1 =

{
1

2
√

2
diag

(
e−ωz, e−ωz

)
· P±(z) · diag

(
α
−1±1

2 , α
−5±1

2
)}−1

= 2
√

2 · diag
(
α
−1±1

2 , α
−5±1

2
)−1 · P±(z)−1 diag

(
eωz, eωz

)
.

So by Definitions 3.4 and 3.6,

Y±1/k(x) =

{
1

2
√

2
diag

(
e−ω(−z), e−ω(−z)

)
P±(−z) · diag

(
α
−1±1

2 , α
−5±1

2
)}

·
{
2
√

2 · diag
(
α
−1±1

2 , α
−5±1

2
)−1 · P±(z)−1 diag

(
eωz, eωz

)}
− I

= diag
(
eωz, eωz

)
P±(−z)P±(z)−1 diag

(
eωz, eωz

)
− I. (6.7)
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By Lemmas 5.1 and 6.4,

P±(−z) · P±(z)−1 =
1

det P±(z)
· P±(−z) · adj P±(z) =

1
±2i · p±(z)

·
{
±2i

(
p±(−iz) 1

2∓1ωz2∓1

1
2∓1ωz2∓1 p±(iz)

)}
,

hence, by (6.7),

Y±1/k(x) =
1

p±(z)
diag

(
eωz, eωz

) ( p±(−iz) 1
2∓1ωz2∓1

1
2∓1ωz2∓1 p±(iz)

)
diag

(
eωz, eωz

)
− I.

Thus the lemma follows by (6.4). �

Let 0 , λ ∈ C and x ∈ R. Suppose that det Xλ(x) , 0, which is equivalent to det X+
λ (x) , 0 and

det X−λ (x) , 0 by (4.4) and (5.2). Let A =

{
VT , if λ , 1/k,
V̂, if λ = 1/k.

Then by Definition 2.5 and (2.3),

VYλ(x)VT = V
{
Xλ(−x) · Xλ(x)−1 − I

}
VT = VXλ(−x)A · A−1Xλ(x)−1VT − I

= VXλ(−x)A · {VXλ(x)A}−1 − I,

hence, by (2.3), (4.4) and (5.2),

VYλ(x)VT =

(
X+
λ (−x) O
O X−λ (−x)

) (
X+
λ (x) O
O X−λ (x)

)−1

− I

=

(
X+
λ (−x) O
O X−λ (−x)

) (
X+
λ (x)−1 O
O X−λ (x)−1

)
−

(
I O
O I

)
=

(
X+
λ (−x) · X+

λ (x)−1 − I O
O X−λ (−x) · X−λ (x)−1 − I

)
.

Thus, by (2.3) and Definition 3.6, we have

Yλ(x) = VT

(
Y+
λ (x) O
O Y−λ (x)

)
V, 0 , λ ∈ C, x ∈ R, det X±λ (x) , 0. (6.8)

Proof of Theorem 3. Let M ∈ wp(4, 8,C) and 0 , λ ∈ C \ SpecKQ. By Proposition 2.2 (b), λ ∈
SpecKM if and only if

det
[
V {G(M)Yλ(l) − I}VT

]
= 0, (6.9)

since V is invertible by (2.3). Thus (a) follows, since (6.9) is equivalent to

0 = det
{

VG(M) · VT

(
Y+
λ (l) O
O Y−λ (l)

)
V · VT − V · VT

}
= det

{
F (M)

(
Y+
λ (l) O
O Y−λ (l)

)
− I

}
by (6.8) and Definition 3.3.

Let 0 , λ ∈ C, x ∈ R, and z = αx. Suppose that det X±λ (x) , 0. (b) follows from (6.3) and
Lemma 6.3 when λ , 1/k, and from Lemma 6.5 when λ = 1/k. Thus the proof is complete. �
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7. Conclusions

The boundary conditions usually considered in practice are only a few in number, including
clamped, free, or hinged conditions at each end of the beam. An important aspect of our results is that
we have obtained explicit and manageable characteristic equations for the whole 16-dimensional class
of integral operators KM arising from arbitrary well-posed boundary value problem of the
Euler–Bernoulli beam equation.

In our characteristic equations in Theorems 1, 2, and 3, the explicit matrices X±λ and Y±λ are not
affected by specific boundary conditions. The effect of the boundary condition M is encoded separately
in the fundamental boundary matrixF (M). The set of equivalent well-posed boundary matrices wp(C),
and hence the set of integral operators KM in (1.1), is in one-to-one correspondence with the 16-
dimensional algebra gl(4,C) via the map Φ. Φ and its inverse Φ−1 are explicitly computable using the
maps F and φ in Definition 3.3. See Figure 2 in Section 3 for a commutative diagram showing the
details.

The 2 × 2 matrices X±λ and Y±λ themselves are pre-calculated in terms of the explicit functions
δ±(z, κ) and p±(z). Thus our characteristic equations have simple and manageable expressions with the
functions δ±(z, κ) and p±(z), which are amenable to concrete analysis similar to that in [14].

By inverting the 2 × 2 matrices Y±λ (l) in Theorem 3, we would have alternate forms of the
characteristic equations in Theorem 1 (a) and Theorem 2 (a) with matrix entries also explicitly
expressed by δ±(z, κ) and p±(z). However, these forms are suppressed in this paper due to the
nontrivial problem of identifying the zeros of det Y±λ (l) or det

{
X±λ (−l) − X±λ (l)

}
, which will be dealt in

future works.
Although our results are for boundary matrices with complex entries in general, boundary

conditions of practical importance are those represented by boundary matrices with real entries.
See [2] for the characterization of these real boundary conditions M in terms of G(M) by using the
R-algebra π(4) ⊂ gl(4,C).

An immediate application of our results would be spectral analysis for a few typical boundary
conditions encountered frequently in practice. Specifically, concrete spectral analysis for the following
combinations of clamped, free, and hinged boundary conditions at each end of the beam are now
possible, which will be performed in future works.

• clamped-clamped or bi-clamped.
• free-free or bi-free.
• hinged-hinged or bi-hinged.
• clamped-free or cantilevered.
• hinged-free.
• clamped-hinged.

In fact, it turns out that the fundamental boundary matrices F (M) corresponding to the first three
symmetric boundary conditions M above also have the following block-diagonal form with 2×2 blocks.

F (M) =

(F (M)+ O
O F (M)−

)
.

In these cases, our characteristic equations in Theorems 1, 2, and 3 are completely separable into 2× 2
blocks, resulting in further simplified forms which involve determinants of 2 × 2 matrices only.
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Supplementary

A. Proof of Lemma 4.4

By Definition 4.3 and (2.1),

det X̂±(z, κ) = X̂±(z, κ)1,1 · X̂±(z, κ)2,2 − X̂±(z, κ)2,1 · X̂±(z, κ)1,2

=

(
eωκz

1 − κ ±
e−ωκz

1 + κ

) (
eωκz

1 − κ ±
e−ωκz

1 + κ

)
−

(
e−ωκz

1 + iκ
± eωκz

1 − iκ

) (
e−ωκz

1 − iκ
± eωκz

1 + iκ

)
=

e
√

2κz

(1 − κ)2 +
e−
√

2κz

(1 + κ)2 ±
ei
√

2κz

1 − κ2 ±
e−i
√

2κz

1 − κ2 −
e
√

2κz

1 + κ2 −
e−
√

2κz

1 + κ2 ∓
ei
√

2κz

(1 − iκ)2 ∓
e−i
√

2κz

(1 + iκ)2

=

{
1

(1 − κ)2 −
1

1 + κ2

}
e
√

2κz +

{
1

(1 + κ)2 −
1

1 + κ2

}
e−
√

2κz

±
{

1
1 − κ2 −

1
(1 − iκ)2

}
ei
√

2κz ±
{

1
1 − κ2 −

1
(1 + iκ)2

}
e−i
√

2κz

=
2κ

(1 − κ)2 (
1 + κ2)e

√
2κz − 2κ

(1 + κ)2 (
1 + κ2)e−

√
2κz ∓ 2iκ(

1 − κ2) (1 − iκ)2 ei
√

2κz ± 2iκ(
1 − κ2) (1 + iκ)2 e−i

√
2κz

=
2κ(

1 − κ2)2 (
1 + κ2) {

(1 + κ)2e
√

2κz − (1 − κ)2e−
√

2κz
}

∓ 2iκ(
1 − κ2) (1 + κ2)2

{
(1 + iκ)2ei

√
2κz − (1 − iκ)2e−i

√
2κz

}
=

2κ(
1 − κ4) (1 − κ2) {

2
(
1 + κ2

)
sinh

(√
2κz

)
+ 4κ cosh

(√
2κz

)}
∓ 2iκ(

1 − κ4) (1 + κ2) {
2i

(
1 − κ2

)
sin

(√
2κz

)
+ 4iκ cos

(√
2κz

)}
=

4κ
1 − κ4

{
1 + κ2

1 − κ2 sinh
(√

2κz
)

+
2κ

1 − κ2 cosh
(√

2κz
)}

± 4κ
1 − κ4

{
1 − κ2

1 + κ2 sin
(√

2κz
)

+
2κ

1 + κ2 cos
(√

2κz
)}
.

Thus, by Definition 3.2,

det X̂±(z, κ) =
4κ

1 − κ4

{
sinh

(√
2κz

)
cosh β(κ) + cosh

(√
2κz

)
sinh β(κ)

}
± 4κ

1 − κ4

{
sin

(√
2κz

)
cos γ(κ) + cos

(√
2κz

)
sin γ(κ)

}
=

4κ
1 − κ4

{
sinh

(√
2κz + β(κ)

)
± sin

(√
2κz + γ(κ)

)}
=

4κ
1 − κ4 · δ±(z, κ).

B. Proof of Lemma 6.2

Let z ∈ C and κ ∈ D. By Definition 4.3, (2.1) and (6.2),{
X̂±(−z, κ) · adj X̂±(z, κ)

}
1,1

= X̂±(−z, κ)1,1 ·
{
adj X̂±(z, κ)

}
1,1

+ X̂±(−z, κ)1,2 ·
{
adj X̂±(z, κ)

}
2,1
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=

(
eωκ(−z)

1 − κ ±
e−ωκ(−z)

1 + κ

) (
eωκz

1 − κ ±
e−ωκz

1 + κ

)
−

(
e−ωκ(−z)

1 − iκ
± eωκ(−z)

1 + iκ

) (
e−ωκz

1 + iκ
± eωκz

1 − iκ

)
=

ei
√

2κz

(1 + κ)2 +
e−i
√

2κz

(1 − κ)2 ±
e
√

2κz

1 − κ2 ±
e−
√

2κz

1 − κ2 −
ei
√

2κz

1 + κ2 −
e−i
√

2κz

1 + κ2 ∓
e
√

2κz

(1 − iκ)2 ∓
e−
√

2κz

(1 + iκ)2

=

{
1

(1 + κ)2 −
1

1 + κ2

}
ei
√

2κz +

{
1

(1 − κ)2 −
1

1 + κ2

}
e−i
√

2κz

∓
{

1
(1 − iκ)2 −

1
1 − κ2

}
e
√

2κz ∓
{

1
(1 + iκ)2 −

1
1 − κ2

}
e−
√

2κz

= − 2κ
(1 + κ)2 (

1 + κ2)ei
√

2κz +
2κ

(1 − κ)2 (
1 + κ2)e−i

√
2κz

∓ 2iκ
(1 − iκ)2 (

1 − κ2)e
√

2κz ± 2iκ
(1 + iκ)2 (

1 − κ2)e−
√

2κz

= − 2κ(
1 − κ2)2 (

1 + κ2) {
(1 − κ)2ei

√
2κz − (1 + κ)2e−i

√
2κz

}
∓ 2iκ(

1 + κ2)2 (
1 − κ2) {

(1 + iκ)2e
√

2κz − (1 − iκ)2e−
√

2κz
}

= − 2κ(
1 − κ4) (1 − κ2) {

2i
(
1 + κ2

)
sin

(√
2κz

)
− 4κ cos

(√
2κz

)}
∓ 2iκ(

1 − κ4) (1 + κ2) {
2
(
1 − κ2

)
sinh

(√
2κz

)
+ 4iκ cosh

(√
2κz

)}
= − 4κ

1 − κ4

{
1 + κ2

1 − κ2 sinh
(
i

√
2κz

)
− 2κ

1 − κ2 cosh
(
i

√
2κz

)}
∓ 4κ

1 − κ4

{
1 − κ2

1 + κ2 sin
(
i

√
2κz

)
− 2κ

1 + κ2 cos
(
i

√
2κz

)}
,

hence, by Definition 3.2,{
X̂±(−z, κ) · adj X̂±(z, κ)

}
1,1

= − 4κ
1 − κ4

{
− sinh

(
−i
√

2κz
)

cosh β(κ) − cosh
(
−i
√

2κz
)

sinh β(κ)
}

∓ 4κ
1 − κ4

{
− sin

(
−i
√

2κz
)

cos γ(κ) − cos
(
−i
√

2κz
)

sin γ(κ)
}

=
4κ

1 − κ4

{
sinh

(
−i
√

2κz + β(κ)
)
± sin

(
−i
√

2κz + γ(κ)
)}

=
4κ

1 − κ4 · δ±(−iz, κ). (B.1)

By Definition 4.3, (2.1) and (6.2),{
X̂±(−z, κ) · adj X̂±(z, κ)

}
1,2

= X̂±(−z, κ)1,1 ·
{
adj X̂±(z, κ)

}
1,2

+ X̂±(−z, κ)1,2 ·
{
adj X̂±(z, κ)

}
2,2

= −
(
eωκ(−z)

1 − κ ±
e−ωκ(−z)

1 + κ

) (
e−ωκz

1 − iκ
± eωκz

1 + iκ

)
+

(
e−ωκ(−z)

1 − iκ
± eωκ(−z)

1 + iκ

) (
eωκz

1 − κ ±
e−ωκz

1 + κ

)
= − e

√
2κz

(1 + κ)(1 + iκ)
− e−

√
2κz

(1 − κ)(1 − iκ)
∓ ei

√
2κz

(1 + κ)(1 − iκ)
∓ e−i

√
2κz

(1 − κ)(1 + iκ)
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+
e
√

2κz

(1 − κ)(1 − iκ)
+

e−
√

2κz

(1 + κ)(1 + iκ)
± ei

√
2κz

(1 − κ)(1 + iκ)
± e−i

√
2κz

(1 + κ)(1 − iκ)

=

{
1

(1 − κ)(1 − iκ)
− 1

(1 + κ)(1 + iκ)

} (
e
√

2κz − e−
√

2κz
)

±
{

1
(1 − κ)(1 + iκ)

− 1
(1 + κ)(1 − iκ)

} (
ei
√

2κz − e−i
√

2κz
)

=
(1 + κ)(1 + iκ) − (1 − κ)(1 − iκ)

1 − κ4 · 2 sinh
(√

2κz
)

± (1 + κ)(1 − iκ) − (1 − κ)(1 + iκ)
1 − κ4 · 2i sin

(√
2κz

)
=

2(1 + i)κ
1 − κ4 · 2 sinh

(√
2κz

)
± 2(1 − i)κ

1 − κ4 · 2i sinh
(√

2κz
)

=

√
2ω · 4κ
1 − κ4

{
sinh

(√
2κz

)
± sin

(√
2κz

)}
=

4κ
1 − κ4 ·

√
2ω s±(zκ). (B.2)

By Lemma 6.1, (B.1), (B.2) and Definition 3.2,

{
X̂±(−z, κ) · adj X̂±(z, κ)

}
2,1

=

{
4κ

1 − κ4 ·
√

2ω s±(zκ)
}

=
4κ

1 − κ4 ·
√

2ω s±(zκ), (B.3)

{
X̂±(−z, κ) · adj X̂±(z, κ)

}
2,2

=

{
4κ

1 − κ4 · δ±(−iz, κ)
}

=
4κ

1 − κ4 · δ±(iz, κ). (B.4)

Thus the lemma follows from (B.1), (B.2), (B.3), (B.4).

C. Proof of Lemma 6.4

Let z ∈ C. By Definition 3.4 and (6.6), we have

P+(−z) · adj P+(z) =

p0(−z) p2(−z)
p0(−z) p2(−z)

  p2(z) −p2(z)
−p0(z) p0(z)


=

p0(−z)p2(z) − p0(z)p2(−z) −p0(−z)p2(z) + p0(z)p2(−z)
p0(−z)p2(z) − p0(z)p2(−z) −p0(−z)p2(z) + p0(z)p2(−z)

 , (C.1)

P−(−z) · adj P−(z) =

−p1(−z) −p3(−z)
p1(−z) p3(−z)

  p3(z) p3(z)
−p1(z) −p1(z)


=

−p1(−z)p3(z) + p1(z)p3(−z) −p1(−z)p3(z) + p1(z)p3(−z)
p1(−z)p3(z) − p1(z)p3(−z) p1(−z)p3(z) − p1(z)p3(−z)

 . (C.2)

So, by (2.1), (5.3) and Definition 3.5,

{
P+(−z) · adj P+(z)

}
1,1 = p0(−z)p2(z) − p0(z)p2(−z) = 1 ·

(
i + ωz +

1
2

z2
)
− 1 ·

(
i − ωz +

1
2

z2
)

= 2i +
√

2z = 2i
{

1 +
(−iz)√

2

}
= 2i · p+(−iz), (C.3)
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{
P+(−z) · adj P+(z)

}
2,1 = p0(−z)p2(z) − p0(z)p2(−z) = 1 ·

(
i + ωz +

1
2

z2
)
− 1 ·

(
i − ωz +

1
2

z2
)

= 2ωz, (C.4){
P−(−z) · adj P−(z)

}
1,1 = −p1(−z)p3(z) + p1(z)p3(−z)

= −(ω − z)
(
−ω + iz +

1
2
ωz2 +

1
6

z3
)

+ (ω + z)
(
−ω − iz +

1
2
ωz2 − 1

6
z3

)
=

{
−i −

√
2z +

(
−1

2
+ i

)
z2 +

(
ω

2
− ω

6

)
z3 +

1
6

z4
}

+

{
−i −

√
2z +

(
1
2

+ i

)
z2 +

(
ω

2
− ω

6

)
z3 − 1

6
z4

}
= 2

(
−i −

√
2z + iz2 +

1

3
√

2
z3

)
= −2i

{
1 +
√

2(−iz) + (−iz)2 +
1

3
√

2
(−iz)3

}
= −2i · p−(−iz), (C.5){

P−(−z) · adj P−(z)
}
2,1 = p1(−z)p3(z) − p1(z)p3(−z)

= (ω − z)
(
−ω + iz +

1
2
ωz2 +

1
6

z3
)
− (ω + z)

(
−ω − iz +

1
2
ωz2 − 1

6
z3
)

=

(
−1 − i

2
z2 − ω

3
z3 − 1

6
z4

)
+

(
1 +

i

2
z2 − ω

3
z3 +

1
6

z4
)

= −2ω
3

z3. (C.6)

Note from (C.1) and (C.2) that

{
P±(−z) · adj P±(z)

}
1,2 = −{P±(−z) · adj P±(z)

}
2,1,

{
P±(−z) · adj P±(z)

}
2,2 = −{P±(−z) · adj P±(z)

}
1,1.

So by (C.3), (C.4), (C.5), (C.6),

{
P+(−z) · adj P+(z)

}
1,2 = −{P+(−z) · adj P+(z)

}
2,1 = −(2ωz) = −2ωz, (C.7){

P+(−z) · adj P+(z)
}
2,2 = −{P+(−z) · adj P+(z)

}
1,1 = −{2i · p+(−iz)} = 2i · p+(iz), (C.8){

P−(−z) · adj P−(z)
}
1,2 = −{P−(−z) · adj P−(z)

}
2,1 = −

(
−2ω

3
z3

)
=

2ω
3

z3, (C.9){
P−(−z) · adj P−(z)

}
2,2 = −{P−(−z) · adj P−(z)

}
1,1 = −{−2i · p−(−iz)} = −2i · p−(iz). (C.10)

Thus, by (C.3), (C.4), (C.5), (C.6), (C.7), (C.8), (C.9), (C.10), we have

P+(−z) · adj P+(z) =

(
2ip+(−iz) −2ωz

2ωz 2ip+(iz)

)
= 2i

(
p+(−iz) ωz
ωz p+(iz)

)
,

P−(−z) · adj P−(z) =

(−2ip−(−iz) 2ω
3 z3

−2ω
3 z3 −2ip−(iz)

)
= −2i

(
p−(−iz) ω

3 z3

ω
3 z3 p−(iz)

)
,

and the proof is complete.
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D. The functions δ±(z, κ)

We start with some exotic definitions in [14]. For κ ≥ 0, let

p(κ) =
1 − √2κ + κ2

1 +
√

2κ + κ2
, ϕ±(κ) = eLκ · 1 ± sin h(κ)

cos h(κ)
. (D.1)

Here, L = 2lα is the intrinsic length of the beam and

h(κ) = Lκ − ĥ(κ), (D.2)

where ĥ : [0,∞)→ R is defined by

ĥ(κ) =



arctan
{

2
√

2κ(κ2−1)
κ4−4κ2+1

}
, if 0 ≤ κ <

√
3−1√

2
,

−π2 , if κ =
√

3−1√
2
,

−π + arctan
{

2
√

2κ(κ2−1)
κ4−4κ2+1

}
, if

√
3−1√

2
≤ κ ≤

√
3+1√

2
,

−3π
2 , if κ =

√
3+1√

2
,

−2π + arctan
{

2
√

2κ(κ2−1)
κ4−4κ2+1

}
, if κ >

√
3+1√

2
.

(D.3)

The branch of arctan here is taken such that arctan 0 = 0. ĥ is a strictly decreasing real-analytic
function with ĥ(0) = 0 and limκ→∞ ĥ(κ) = −2π, hence h : [0,∞) → R is a strictly increasing real-
analytic function with h(0) = 0 and limκ→∞ h(κ) = ∞.

Proposition D.1. ( [14, Eqs 8 and 25]) λ ∈ C is an eigenvalue of KQ = Kl,α,k if and only if λ = 1
k · 1

1+κ4

for κ > 0 such that ϕ+(κ) = p(κ) or ϕ−(κ) = p(κ).

Now we demonstrate how the seemingly ad hoc and complex conditions ϕ±(κ) = p(κ) in
Proposition D.1, which were practically unobtainable without help of computer algebra systems as
indicated in [14], can be derived so naturally and elegantly from our holomorphic functions δ±(z, κ).

By Definition 3.2,

eiγ(κ) = cos γ(κ) + i sin γ(κ) =
1 − κ2

1 + κ2 + i
2κ

1 + κ2 =
(1 + iκ)2

1 + κ2 =
1 + iκ

1 − iκ
, κ ∈ D, (D.4)

where D = C \ {0, 1,−1, i,−i} by Definition 4.2.

Lemma D.1. For κ ≥ 0, p(κ) = ei{γ(ωκ)−γ(ωκ)} and e−iĥ(κ) = ei{γ(ωκ)+γ(ωκ)}.

Proof. By (2.1), (D.1), (D.4),

ei{γ(ωκ)−γ(ωκ)} = eiγ(ωκ)e−iγ(ωκ) =
1 + iωκ

1 − iωκ
· 1 − iωκ

1 + iωκ
=

1 − ωκ
1 + ωκ

· 1 − ωκ
1 + ωκ

=
1 − √2κ + κ2

1 +
√

2κ + κ2
= p(κ).

By (2.1) and (D.4),

ei{γ(ωκ)+γ(ωκ)} = eiγ(ωκ)eiγ(ωκ) =
1 + iωκ

1 − iωκ
· 1 + iωκ

1 − iωκ
=

1 − ωκ
1 + ωκ

· 1 + ωκ

1 − ωκ =
1 + i

√
2κ − κ2

1 − i

√
2κ − κ2
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=

(
1 + i

√
2κ − κ2

)2(
1 − i

√
2κ − κ2

) (
1 + i

√
2κ − κ2

) =

(
1 − 4κ2 + κ4

)
+ i · 2√2κ

(
1 − κ2

)
(
1 − κ2)2

+ 2κ2
.

So we have

cos {γ (ωκ) + γ (ωκ)} =
1 − 4κ2 + κ4

1 + κ4 , sin {γ (ωκ) + γ (ωκ)} =
2
√

2κ
(
1 − κ2

)
1 + κ4 ,

hence

tan {γ (ωκ) + γ (ωκ)} =
2
√

2κ
(
1 − κ2

)
κ4 − 4κ2 + 1

.

Thus, by (D.3),

tan
{
−ĥ(κ)

}
= − tan ĥ(κ) =

2
√

2κ
(
1 − κ2

)
κ4 − 4κ2 + 1

= tan {γ (ωκ) + γ (ωκ)} .

It follows that e−iĥ(κ) = ei{γ(ωκ)+γ(ωκ)}, and the proof is complete. �

By (D.2) and Lemma D.1,

eih(κ) = ei{Lκ−ĥ(κ)} = eiLκe−iĥ(κ) = eiLκei{γ(ωκ)+γ(ωκ)} = ei{Lκ+γ(ωκ)+γ(ωκ)}.

So we have cos h(κ) = cos {Lκ + γ (ωκ) + γ (ωκ)}, sin h(κ) = sin {Lκ + γ (ωκ) + γ (ωκ)}, hence, by
(D.1),

ϕ±(κ) = eLκ · 1 ± sin {Lκ + γ (ωκ) + γ (ωκ)}
cos {Lκ + γ (ωκ) + γ (ωκ)} . (D.5)

By Definition 3.2,

eβ(κ) = cosh β(κ) + sinh β(κ) =
1 + κ2

1 − κ2 +
2κ

1 − κ2 =
(1 + κ)2

1 − κ2 =
1 + κ

1 − κ , κ ∈ D. (D.6)

Comparing (D.4) and (D.6), we have eiγ(κ) = eβ(iκ) for κ ∈ D, hence

eβ(ωκ) = eβ(i·(−iωκ)) = eiγ(ωκ), κ ∈ D, (D.7)

since −iω = ω by (2.1).
Now let λ = 1

k · 1
1+κ4 for κ > 0, and let z = lα so that

2κz = Lκ. (D.8)

By Definitions 2.1 and 2.4,

χ(λ) = 4

√
1 − 1(

1
k · 1

1+κ4

)
· k

=
4√−κ4 = ωκ,

hence δ± (lα, χ(λ)) = δ±(z, ωκ). So by Corollary 1, λ ∈ SpecKQ if and only if δ+ (z, ωκ) = 0 or
δ− (z, ωκ) = 0. By Definition 2.1,

√
2ω = 1 + i, hence, by Definition 3.2 and (D.7),

2δ±(z, ωκ) =
{
e
√

2ωκzeβ(ωκ) − e−
√

2ωκze−β(ωκ)
}
∓ i

{
ei
√

2ωκzeiγ(ωκ) − e−i
√

2ωκze−iγ(ωκ)
}
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=
{
eκzeiκzeiγ(ωκ) − e−κze−iκze−iγ(ωκ)

}
∓ i

{
e−κzeiκzeiγ(ωκ) − eκze−iκze−iγ(ωκ)

}
= eκz

{
eiκzeiγ(ωκ) ± ie−iκze−iγ(ωκ)

}
− e−κz

{
e−iκze−iγ(ωκ) ± ieiκzeiγ(ωκ)

}
.

So δ±(z, ωκ) = 0 if and only if

e−2κz =
eiκzeiγ(ωκ) ± ie−iκze−iγ(ωκ)

e−iκze−iγ(ωκ) ± ieiκzeiγ(ωκ)
=

eiκzeiγ(ωκ) ± ie−iκze−iγ(ωκ)

e−iκze−iγ(ωκ) ± ieiκzeiγ(ωκ)
· e−iκze−iγ(ωκ) ∓ ieiκzeiγ(ωκ)

e−iκze−iγ(ωκ) ∓ ieiκzeiγ(ωκ)

=
2 ∓ ie2iκzei{γ(ωκ)+γ(ωκ)} ± ie−2iκze−i{γ(ωκ)+γ(ωκ)}

e2iκzei2γ(ωκ) + e−2iκze−i2γ(ω)

=
2 ∓ i

{
e2iκzei{γ(ωκ)+γ(ωκ)} − e−2iκze−i{γ(ωκ)+γ(ωκ)}}

ei{γ(ωκ)−γ(ωκ)} {e2iκzei{γ(ωκ)+γ(ωκ)} + e−2iκze−i{γ(ωκ)+γ(ωκ)}}
= e−i{γ(ωκ)−γ(ωκ)} · 1 ± sin {2κz + γ (ωκ) + γ (ωκ)}

cos {2κz + γ (ωκ) + γ (ωκ)} ,

which is equivalent to p(κ) = ϕ±(κ) by Lemma D.1, (D.5) and (D.8). Thus we conclude that λ ∈
SpecKQ if and only if p(κ) = ϕ+(κ) or p(κ) = ϕ−(κ), which is exactly the condition in Proposition D.1.
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