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study of FFTS. Under the Lyapunov stability theory, FFTS of fuzzy-based CNNs with interaction and
proportional delay terms can be achieved using controllers. Moreover, the upper bound of the settling
time of FFTS is obtained. In view of settling points, the theoretical results on the considered neural
network models of this article are more general as compared to the fixed time synchronization (FTS).
The effectiveness and reliability of the theoretical results are shown through two numerical examples
for different particular cases.
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1. Introduction

The chaotic systems have become interesting topic among the researchers, scientists and engineers
during last few years. In dynamical system, chaotic character is introduced by highly sensitivity to its
initial conditions with variations of parameters. Chua and Yang [1] have first introduced cellular
neural networks (CNNs). At that time basic CNN was structured in three types, first one is the
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traditional CNN [1] and it explains analogical computational network along with analog weights,
states, inputs and outputs. Second one is CNN with delay term [2], which is slightly different from
traditional CNN consists of delayed weights with inputs, outputs states and analogue weights and last
one is the CNN in discrete-time [3] which includes analog weights, inputs, digital outputs and states.
Due to immense applications in the areas of image processing, classification of patterns, quadratic
optimization,associative memories, those have been broadly introduced by the researchers. Yang and
Yang [4] have studied forward FCNNs, which link fuzzy logic into CNN and maintain all aspects and
local connectedness among cells. So far, some different types of synchronization schemes on fuzzy
neural networks and also control of the same networks have been introduced, viz., finite-time
synchronization, adaptive control, lag and exponential lag synchronization , etc. [5–7]. Duan et al. [8]
have considered discontinuous activation functions to show synchronization in finite-time of
time-delayed FCNNs and Tang et al. [9] have also studied non-chattering quantized controllers for
finite-time cluster synchronization of FCNNs. Abdurahman et al. [10] have shown synchronization in
finite-time for FCNNs which include the time-varying delay terms, using finite-time stability theory.
Mani et al. [11] have considered the adaptive control of fuzzy chaotic CNNs in fractional order and
also showed its applications in image encryption. Based on the Lyapunov method and graph theory,
the finite-time synchronization criteria have been obtained for FCNNs with stochastic perturbations
and mixed delays by constructing appropriate state feedback controllers in [12]. The FCNN has fuzzy
logic between its templates of input and output. It has potential applications in pattern recognition and
image processing. Therefore, it is very important to analyze dynamical behaviors, stability analysis
and synchronization of FCNNs in the aspects of theoretical and application points of view. The study
of dynamical behavior of synchronization of FCNNs is also important. In the last few years, in the
area of the neural network and other applied dynamical systems, many researchers have studied the
stability problems [13–20].

The stability analysis for a neural network is also employed in synchronization problems. So the
synchronization problems of neural networks are often changed to a the stability problem of a error
system , which is obtained from master and response systems. Synchronization of the neural networks
model is addressed to the synchronization of the master-response chaotic systems having different
initial values and it was first investigated by Pecora and Carroll [21]. In the literature review, it is
found that a few researchers have studied stability and synchronization analyses for some different
problems, viz. [22–28]. The synchronization problems of the neural networks mainly include
finite-time, fixed-time and asymptotic synchronizations. The asymptotically synchronization is
different from the FFTS because asymptotic synchronization does not give us the time interval or
fixed time for synchronization while the FFTS is achieved after a fixed time or a finite-time interval
between the master-response systems. The asymptotic synchronization is another area of research
interest in which the synchronization error asymptotically vanishes under limiting conditions.
Although it is not a realistic as machines and human beings having a limited life span. The limitations
of asymptotic stabilization overcome by finite time protocol. The article [29] shows various
parameters are appeared during control methods. Finite-time synchronization is studied during last
few years by the researchers [30, 31]. Applications in wireless sensor networks and secure
communication have been studied using finite-time synchronization communication. If we compare
asymptotic synchronization and finite-time synchronization, then the later can be realized at a
particular moment and hence may be controlled. The fixed-time method is first studied by
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Polyakov [32] in which he has stabilized the systems in the finite-time considering that the settling
time does not depend on initial values of the systems. This is a better method compared to other finite
time methods. Some notable fixed time control works are investigated by the researchers from time to
time like [33–35] by using neural networks as well as complex networks. The finite-time
synchronization is introduced using finite-time stability analysis by Kamenkov [36]. It is seen from
the definition, fixed-time stability analysis is the particular case of finite-time stability analysis and in
both stability analyses, the trajectories will converge over a finite-time interval. In the finite-time
stability the convergence time or settling time of the trajectories depends on the initial conditions of
the model and in fixed-time stability analysis, the settling time of the trajectories has a uniform upper
bound for all initial conditions within the domain which is not dependent on the initial conditions.
This is the main difference between finite time and fixed time stability analyses. In these types of
synchronization control problems and the estimation of time are the key features for the stability
analyses. From the literature review, so many practical systems are formed such as power systems,
traffic signals [37, 38]. These problems are controlled using fixed-time interval. The initial conditions
are rarely be given for many real practical problems. Polyakov [39] has studied the finite-time
stability by using nonlinear feedback design of linear control system. In this point of view, the
fixed-time synchronization (FTS) has more advantages compared to finite-time synchronization
because FTS has nothing to do with initial conditions of error systems. Many synchronization
problems have been done by the researchers on finite-time synchronization of FCNNs. But the study
on FTS is few [40]. By designing state feedback controller and discontinuous activation function, the
fixed time synchronization problem for FCNNs with time-varying delay have been discussed in [41].
Under the differential inclusion theory and discontinuous state feedback control technique, Sun and
Liu [42] have investigated the fixed-time synchronization of fractional-order memristor-based FCNNs
with time-varying delays by defining appropriate Laypunov functional. By constructing delay
dependent controllers with or without fuzzy terms and using matrix analysis method, fixed time
synchronization criteria have been discussed for delayed markovian jump FCNNs in the presence of
stochastic disturbance in [43]. To study the significance of the control and synchronization in delayed
FCNNs, Ding and Han [44] have studied synchronization on delayed FCNNs by using adaptive
control method with unknown parameters, in which control functions are designed using
Lyapunov-Lasall principle and some other synchronization conditions. The global exponential
synchronization on delayed FCNNs using Lyapunov-like stability theory with some other criteria has
been studied by Feng et al. [45]. From literature review it is confirmed that the researchers were only
focused on synchronization problems of FCNNs with time-varying delay corresponding to finite-time
problems [46–51]. The study on FTS is still in a primal stage. In the year 2015, Polyakov et al. [52]
have studied the FFT stability of robust stabilization of nonlinear systems using the new nonlinear
control laws and implicit lyapunov function. Wan et al. [53] have investigated the robust FTS for
CGNNs by using Lyapunov stability theory, Liu and Chen [54] have also introduced the finite-time
cluster and fixed-time cluster synchronizations in presence or absence of pinning control law.

Based on the above analysis, the authors have motivated to study FFTS of FCNNs with interaction
and proportional delay terms. In real-time, the interactions [55, 56] of two networks are diverted
through the nonlinear signals, mutual connections, or by the hub nodes. The proportional delay [57–59]
has wide existence in the real-world such as routing decision and web quality of service [60]. The
dynamical nature of the neural networks include proportional delays term have been introduced by the
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researchers and most of the works concerning synchronizations of neural networks include proportional
delays term are asymptotic. This implies synchronization of neural networks is achieved when time
becomes large. In this article a drive has been taken to study FFTS in which the error model of networks
will be convergent in an estimated time domain. The main contributions of this article are summarized
as:

(1) Almost all works in references [61,62] are related to study on FNNs assuming that the continuous
activation functions are time varying-delays or smooth, and Lipschitz continuous. In this article,
the main focus is given on the study of synchronization of FCNNs with continuous activation
function having interaction and proportional delay terms.

(2) Simple controller is designed for FFTS of considered FCNN models by using some new algebraic
criteria and some sufficient conditions which confirm that the both master and response systems
can be synchronized in finite and fixed time, and also it gives a range of domain of time for FFTS.

(3) In this article, the settling time can easily be estimated. The settling time of the fixed-time
synchronization is bounded for any initial states. Furthermore, as compared to the classical
results, our proposed estimation bound of the settling time is more effective and accurate.

(4) Two examples are considered to show the effectiveness, reliability and the accuracy of the
proposed numerical scheme of FFTS.

The organization of the article is as follows. Some preliminaries in which system description, some
definitions, lemmas, assumptions, and problem formulation are introduced in section 2. Two control
laws for the FFTS are designed in the section 3. Two examples have been taken to validate, the
reliability, effectiveness and efficiency of the results given in section 4. The overall conclusions of the
article are discussed in the section 5.

2. Some preliminaries and system description

2.1. Preliminaries

Notations

In this section the symbols
∨

and
∧

are used to denote the fuzzy OR operation and fuzzy AND
operation respectively. p is used for positive integer, ‖.‖ denotes the vector norm and ‖.‖p is the
representation of p-norm. C([−τ, 0],Rn) is taken in Banach space, where τ stands for delay term in
time. f j(.) and h j(.) are taken as activation function and interaction function between two neurons,
respectively.

Suppose p ≥ 1 be a positive integer and Rn is the real column vectors of n-dimensional space and
z = (z1, z2, ..., zn)T , then ‖z‖ represents vector norm and is defined as

‖z‖ =

( n∑
i=1

|zi|
p
) 1

p

.

Lemma 2.1. [10] Assume z and w are two state variables, then we have following inequalities as∣∣∣ n∧
j=1

αi j f j(z j) −
n∧

j=1

αi j f j(w j)
∣∣∣ ≤ n∑

j=1

|αi j|| f j(z j) − f j(w j)|,
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∣∣∣ n∨
j=1

βi j f j(z j) −
n∨

j=1

βi j f j(w j)
∣∣∣ ≤ n∑

j=1

|βi j|| f j(z j) − f j(w j)|, i = 1, 2, ..., n.

Lemma 2.2. Suppose 0 < s < 1 and c, d ∈ R, then the following condition

(|c| + |d|)s ≤ |c|s + |d|s

is satisfied.

Lemma 2.3. Consider n ∈ N and 0 < i < j, i, j ∈ R, then the following condition holds

|c1|
i + |c2|

i + ... + |cn|
i ≥ (|c j

1| + |c
j
2| + ... + |c j

n|)
i
j .

2.2. Systems’ description

Let us consider n-dimensional FCNNs with interaction and proportional delay terms as drive system
given by

żi(t) = − cizi(t) +

n∑
j=1

ai j f j(z j(t)) +

n∑
j=1

bi j f j(z j(rt)) +

n∑
j=1

qi jv j +

n∧
j=1

Ti jv j

+

n∧
j=1

αi j f j(z j(rt)) +

n∨
j=1

βi j f j(z j(rt)) +

n∨
j=1

S i jv j + ε

n∑
j=1

di jh j(w j(t)) + Ii, (2.1)

with initial conditions zi(s) = ψi(s), s ∈ [−τ, 0], where i ∈ I , {1, 2, ..., n}, zi(t) represents the i-th unit
state variable at time t. ai j and bi j represent the elements of feedback templates , ci denotes the passive
decay rate of the ith unit state, qi j is taken for the feed-forward template and αi j and βi j respectively
represent fuzzy feedback templates of MIN and MAX, Ti j and S i j respectively denote fuzzy feed-
forward templates of MIN and MAX. vi and Ii represent input of neuron and bias of neuron at i-th
iteration respectively. The proportional delay term is r ∈ (0, 1) and rt = t − (1− r)t, with τ(t) = (1− r)t
is a continuous time varying function which satisfies (1 − r)t → +∞ as t → +∞. di j, d̄i j denote the
interaction structures. f j and h j are the activation and interaction functions between the networks,
respectively, ε is outer interaction strength. Here ψ(s) = (ψ1(s), ψ2(s), ..., ψn(s))T ∈ C([−τ, 0],Rn)
represents the Banach space of all continous functions with p-norm defined as

‖ψ‖p =

[
sups∈[−τ,0]

n∑
i=1

|ψi(s)|p
] 1

p

,

where p > 0 is an even integer.
Now, we consider the following assumptions as (H1) ∃ real constants Li, N i and positive real

numbers Li, N i such that

Li ≤
fi(z1) − fi(z2)

z1 − z2
≤ Li,∀z1, z2 ∈ R, z1 , z2 and i ∈ I,

N i ≤
hi(z1) − hi(z2)

z1 − z2
≤ N i,∀z1, z2 ∈ R, z1 , z2 and i ∈ I.
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(H2) The neuron activation function fi and interaction function hi are bounded then ∃ Li > 0 and Ni > 0
for each i, such that

| fi(z)| ≤ Li,∀z ∈ R,

|hi(z)| ≤ Ni,∀z ∈ R.

Let the response system is

ẇi(t) = − ciwi(t) +

n∑
j=1

ai j f j(w j(t)) +

n∑
j=1

bi j f j(w j(rt)) +

n∑
j=1

qi jv j +

n∧
j=1

Ti jv j +

n∧
j=1

αi j f j(w j(rt))

+

n∨
j=1

βi j f j(w j(rt)) +

n∨
j=1

S i jv j + ε

n∑
j=1

d̄i jh j(z j(t)) + Ii + ui(t), i ∈ I, (2.2)

where wi(s) = ξi(s), s ∈ [−τ, 0], ξi(s) ∈ C([−τ, 0],R) is the initial conditions and ui(t) is the coupling
control.

Let us consider zi(t),wi(t) are state variables of the systems (2.1) and (2.2), and ψi, ξi are initial
conditions respectively. Assuming that ei(t) = wi(t) − zi(t), i ∈ I and f j(e j(t)) = f j(w j(t)) − f j(z j(t)), we
get the error system as

ėi(t) = − ciei(t) +

n∑
j=1

ai j f j(e j(t)) +

n∑
j=1

bi j f j(e j(rt)) +

n∧
j=1

αi j f j(e j(rt))

+

n∧
j=1

βi j f j(e j(rt)) + ε

n∑
j=1

d̄i jh j(z j(t)) − ε
n∑

j=1

di jh j(w j(t)) + ui(t), t ≥ 0. (2.3)

Definition 2.1. [10] The systems (2.1) and (2.2) are synchronized in a finite time after appropriate
design of the controller ui(t), if ∃ a constant T > 0 s.t.

limt→T |zi(t) − wi(t)| = 0
and |zi(t) − wi(t)| = 0 f or t > T, i ∈ I.

Definition 2.2. [63] The considered system (2.1) achieves FTS with response system (2.2) if ∃ a
settling time function T (e0(θ)) and a fixed time Tmax such that

lim
t→T (e0(θ))

‖e(t)‖ = 0,

e(t) = 0, f or all t ≥ T (e0(θ)),
T (e0(θ)) ≤ Tmax, f or all e0(θ) ∈ Cn[−τ, 0],

where ‖.‖ represents the Euclidean norm.

Definition 2.3. [64] If f(t) is differentiable on R, then the upper Dini derivative of | f (t)| is given by
D+(| f (t)|)= ˙( f (t))sgn( f (t)) for f (t) , 0.

Lemma 2.4. [10] Suppose V1(t) is a continuous and positive-definite function, then it satisfies

D+V1(t) ≤ −βVµ
1 (t), ∀t ≥ t0, V1(t0) ≥ 0,
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where 0 ≤ µ < 1, β ≥ 0 are constants.
Then, for given t0, the following inequalities hold for V1(t).

V1−µ
1 (t) ≤ V1−µ

1 (t0) − β(1 − µ)(t − t0), t0 ≤ t ≤ T

and

V1(t) ≡ 0, ∀t ≥ T,

with T is given by

T = t0 +
V1−µ

1 (t0)
β(1 − µ)

.

Remark. In the view of Lemma 2.4, the system (2.3) is fixed-time stable at origin and the settling time
is obtained as

T (e(t0)) ≤ Tmax =

(1
β

)( 1
1 − µ

)
.

3. Main results

3.1. Finite-time synchronization

Suppose that the activation functions fi are bounded, then we define the control law in the following
form as

ui(t) = −ηiei(t) − σi sgn(ei(t)) − k sgn(ei(t))|ei(t)|θ, i ∈ I, (3.1)

where ei(t) = zi(t) − wi(t), with ηi, k are the parameters.

Theorem 3.1. Assuming H1 and H2 are satisfied, then the drive system (2.1) will be finite-time
synchronized with response system (2.2) with the help of controller (3.1) if the conditions
ηi ≥ −ci + λi + wi + vi and ρi − σi ≤ 0 are satisfied,
where wi = 1

p

∑n
j=1, j,i

∑p−1
i=1 |ai j|

pγli j Lpδli j

j + 1
p

∑n
j=1, j,i |a ji|

pγpi j Lpδpi j

i

and vi = ε
p

∑n
j=1, j,i

∑p−1
i=1 |di j|

pγli j N pδli j

j + ε
p

∑n
j=1, j,i |d ji|

pγpi j N pδpi j

i .

Proof. Let the Lyapunov functional is

V1(t) =

n∑
i=1

|ei(t)|p (3.2)

In view of (2.3), calculating the upper right-hand Dini derivative of Eq (3.2), we have

D+V1(t) =

n∑
i=1

p sgn(ei(t))|ei(t)|p−1ėi(t)

=

n∑
i=1

p sgn(ei(t))|ei(t)|p−1
[
− ciei(t) +

n∑
j=1

ai j f j(e j(t)) +

n∑
j=1

bi j f j(e j(rt)) +

n∧
j=1

αi j f j(e j(rt))
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+

n∨
j=1

βi j f j(e j(rt)) + ε

n∑
j=1

d̄i jh j(z j(t)) − ε
n∑

j=1

di jh j(w j(t)) + ui(t)
]

=

n∑
i=1

p sgn(ei(t))|ei(t)|p−1
[
− ciei(t) +

n∑
j=1

ai j f j(e j(t)) +

n∑
j=1

bi j f j(e j(rt))

+

n∧
j=1

αi j f j(e j(rt)) +

n∨
j=1

βi j f j(e j(rt)) + ε

n∑
j=1

d̄i jh j(z j(t)) − ε
n∑

j=1

di jh j(w j(t))

− ηi(ei(t)) − σi sgn(ei(t)) − k sgn(ei(t))|ei(t)|θ
]
. (3.3)

From H1,H2 and Lemma 2.1, we obtain

L j|e j(t)| ≤ | f j(e j(t))| ≤ L j|e j(t)| ≤ L j|e j(t)|

N j|e j(t)| ≤ |h j(e j(t))| ≤ N j|e j(t)| ≤ N j|e j(t)|∣∣∣ n∧
j=1

αi j f j(e j(rt))
∣∣∣ ≤ n∑

j=1

|αi j|| f j(e j(rt))| ≤
n∑

j=1

|αi j|M j (3.4)

∣∣∣ n∨
j=1

βi j f j(e j(rt))
∣∣∣ ≤ n∑

j=1

|βi j|| f j(e j(rt))| ≤
n∑

j=1

|βi j|M j,

where L j = max{|L j|, |L j|}, N j = max{|N j|, |N j|}, then from Eqs (3.3) and (3.4), we get

D+V1(t) =

n∑
i=1

p sgn(ei(t))|ei(t)|p−1
[
− (ci + ηi)ei(t) +

n∑
j=1

ai j f j(e j(t)) +

n∑
j=1

bi j f j(e j(rt))

+

n∧
j=1

αi j f j(e j(rt)) +

n∨
j=1

βi j f j(e j(rt)) +

n∑
j=1

εdi j(h j(z j(t)) − h j(w j(t)))

− σi sign(ei(t)) − k sgn(ei(t))|ei(t)|θ
]

≤ −

n∑
i=1

p(ci + ηi − λi)|ei(t)|p +

n∑
i=1

n∑
j=1, j,i

p|ai j|L j|ei(t)|p−1|e j(t)| +
n∑

i=1

n∑
j=1

pµi j|ei(t)|p−1M j

+

n∑
i=1

n∑
j=1, j,i

pε |di j|N j|ei(t)|p−1|e j(t)| −
n∑

i=1

pσi|ei(t)|p−1 −

n∑
i=1

pk|ei(t)|(p−1+θ), (3.5)

where λi is given by

λi =

aiiLi, i f aii ≥ 0,
aiiLi, i f aii < 0

and µi j = |bi j| + |αi j| + |βi j| and q = p + θ − 1 > 0 . Assume that γli j, δli j ≥ 0 are real numbers and
satisfy

∑p
l=1 γli j = 1,

∑p
l=1 δli j = 1. Then applying the condition pc1c2...cp ≤ cp

1 + cp
2 + ... + cp

p, where
ci > 0 for i = 1, 2, ..., p, we get
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n∑
j=1, j,i

p|ai j|L j|ei(t)|p−1|e j(t)| =
n∑

j=1, j,i

p
[ p−1∏

l=1

(|ai j|
γli j Lδli j

j |ei(t)|)
]
(|ai j|

γpi j Lδpi j

j |e j(t)|)

≤

n∑
j=1, j,i

p−1∑
l=1

|ai j|
pγli j Lpδli j

j |ei(t)|p +

n∑
j=1, j,i

|ai j|
pγpi j Lpδpi j

j |e j(t)|p, (3.6)

with
wi = 1

p

∑n
j=1, j,i

∑p−1
l=1 |ai j|

pγli j Lpδli j

j + 1
p

∑n
j=1, j,i |a ji|

pγpi j Lpδp ji

i .
Similarly,

n∑
j=1, j,i

p|di j|N j|ei(t)|p−1|e j(t)| ≤
n∑

j=1, j,i

p−1∑
l=1

|di j|
pγli j N pδli j

j |ei(t)|p +

n∑
j=1, j,i

|di j|
pγpi j N pδpi j

j |e j(t)|p, (3.7)

with
vi = ε

p

∑n
j=1, j,i

∑p−1
l=1 |di j|

pγli j N pδli j

j + ε
p

∑n
j=1, j,i |d ji|

pγpi j N pδp ji

i ,
ρi =

∑n
j=1 µi jM j, i ∈ I.

Using Eqs (3.6) and (3.7) in Eq (3.5), we get

D+V1(t) ≤ −
n∑

i=1

p(ci − λi + ηi − wi − vi)|ei(t)|p +

n∑
i=1

p(ρi − σi)|ei(t)|p−1

−

n∑
i=1

pk|ei(t)|(p−1+θ).

Choosing ηi such that ηi ≥ −ci + λi + wi + vi and (ρi − σi) ≤ 0, we get using Lemma 2.3,

D+V1(t) ≤ −pk
n∑

i=1

|ei(t)|(p+θ−1) ≤ − pk
( n∑

i=1

|ei(t)|p
) q

p

= − pkV
q
p

1 (t),

Hence from Lemma 2.4, the systems (2.1) and (2.2) will be synchronized in the finite-time T1 =
V

1−θ
p

1 (0)
k(1−θ) .

Also the control law (3.1) and the system (2.3) will converge to zero within time T1. �

Note. If p = 2, γli j = δli j = 1
2 for l = 1, 2, then

w̄i =
∑n

j=1, j,i
(|ai j |L j+|a ji |Li)

2 , ρ̄i =
∑n

j=1 M j(|bi j| + |αi j| + |βi j|), i ∈ I.

3.2. Fixed-time synchronization

Let us define controller as

ui(t) = sgn(ei(t))(σi − ηiei(t) − k|ei(t)|θ), (3.8)

where σi, ηi, i = 1, 2, ...n. and k are parameters.
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Theorem 3.2. If we consider H1 and H2 hold, then systems (2.1) and (2.2) will be synchronized in the
fixed time with the help of controller (3.8).

The settling time Tmax is estimated as

Tmax =

( 1
pk

)( p
p − q

)
.

Proof. Assume that Lyapunov function as

V1(e(t)) =

n∑
i=1

|ei(t)|p

In view of (2.3), calculating the upper right-hand Dini derivative of V1(t), we get

D+V1(t) =

n∑
i=1

p sgn(ei(t))|ei(t)|p−1ėi(t)

=

n∑
i=1

p sgn(ei(t))|ei(t)|p−1
[
− ciei(t) +

n∑
j=1

ai j f j(e j(t)) +

n∑
j=1

bi j f j(e j(rt)) +

n∧
j=1

αi j f j(e j(rt))

+

n∨
j=1

βi j f j(e j(rt)) + ε

n∑
j=1

d̄i jh j(z j(t)) − ε
n∑

j=1

di jh j(w j(t)) + ui(t)
]

=

n∑
i=1

p sgn(ei(t))|ei(t)|p−1
[
− ciei(t) +

n∑
j=1

ai j f j(e j(t)) +

n∑
j=1

bi j f j(e j(rt))

+

n∧
j=1

αi j f j(e j(rt)) +

n∨
j=1

βi j f j(e j(rt)) + ε

n∑
j=1

d̄i jh j(z j(t)) − ε
n∑

j=1

di jh j(w j(t))

+ sgn(ei(t))(σi − ηi(ei(t)) − k sgn(ei(t))|ei(t)|θ)
]
. (3.9)

Using Lemma 2.1 and Assumptions H1 and H2, we obtain

L j|e j(t)| ≤ | f j(e j(t))| ≤ L j|e j(t)| ≤ L j|e j(t)|,

N j|e j(t)| ≤ |h j(e j(t))| ≤ N j|e j(t)| ≤ N j|e j(t)|,∣∣∣ n∧
j=1

αi j f j(e j(rt))
∣∣∣ ≤ n∑

j=1

|αi j|| f j(e j(rt))| ≤
n∑

j=1

|αi j|M j, (3.10)

∣∣∣ n∨
j=1

βi j f j(e j(rt))
∣∣∣ ≤ n∑

j=1

|βi j|| f j(e j(rt))| ≤
n∑

j=1

|βi j|M j,

where L j = max{|L j|, |L j|}, N j = max{|N j|, |N j|}.
Thus from Eqs (3.9) and (3.10), we get

D+V1(t) =

n∑
i=1

p sgn(ei(t))|ei(t)|p−1
[
− (ci + ηi)ei(t) +

n∑
j=1

ai j f j(e j(t)) +

n∑
j=1

bi j f j(e j(rt))
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+

n∧
j=1

αi j f j(e j(rt)) +

n∨
j=1

βi j f j(e j(rt)) +

n∑
j=1

εdi j(h j(z j(t)) − h j(w j(t)))

+ σisgn(ei(t)) − k sgn(ei(t))|ei(t)|θ
]

≤ −

n∑
i=1

p(ci + ηi − λi)|ei(t)|p +

n∑
i=1

n∑
j=1, j,i

p|ai j|L j|ei(t)|p−1|e j(t)| +
n∑

i=1

n∑
j=1

pµi j|ei(t)|p−1M j

+

n∑
i=1

n∑
j=1, j,i

pε |di j|N j|ei(t)|p−1|e j(t)| −
n∑

i=1

pσi|ei(t)|p−1 −

n∑
i=1

pk|ei(t)|(p−1+θ).

Similarly, by Theorem 3.1, we obtain

D+V1(t) ≤ −
n∑

i=1

p(ci − λi + ηi − wi − vi)|ei(t)|p +

n∑
i=1

p(ρi − σi)|ei(t)|p−1

−

n∑
i=1

pk|ei(t)|(p−1+θ)

Choosing ηi and σi such that ηi ≥ −ci + λi + wi + vi and ρi − σi ≤ 0 and using Lemma 2.3, we get

D+V1(t) ≤ −pk
n∑

i=1

|ei(t)|(p+θ−1) ≤ − pk
( n∑

i=1

|ei(t)|p
) q

p

= − pkV
q
p

1 (t),

where q = p+θ−1, From the Lemma 2.4, we say that error system (2.3) is fixed-time stabled at origin.
Then fixed-time synchronization is achieved between the considered systems (2.1) and (2.2).

By Lemma 2.4, we can estimate the settling time as

T (e(t0)) ≤ Tmax =

(
1
pk

)(
p

p − q

)
.

�

Remark. Since the controllers (3.1) and (3.8) contain the discontinuous sgn function, as a hard
switcher, it may be caused to undesirable chattering. In order to avoid the chattering, the sgn function
is replaced by a continuous tanh function to remove discontinuity. For examples, the control laws
(3.1) and (3.8) can be modified as follows

ui(t) = −ηiei(t) − σi tanh(ξiei(t)) − k tanh(κiei(t))|ei(t)|θ,

ui(t) = tanh(ξiei(t))(σi − ηiei(t) − k|ei(t)|θ),

where ξi, κi > 0 and i ∈ I.
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4. Numerical simulation and discussions

In this section two numerical examples are considered to demonstrate the effectiveness and
efficiency of our proposed synchronization scheme.

Example 4.1. Suppose that following FCNN with interaction and proportional delay terms as drive
system. Then for n=2,

żi(t) = − cizi(t) +

2∑
j=1

ai j f j(z j(t)) +

2∑
j=1

bi j f j(z j(rt)) +

2∧
j=1

αi j f j(z j(rt))

+

2∨
j=1

βi j f j(z j(rt)) + ε

2∑
j=1

di jh j(w j(t)) + Ii, i = 1, 2, (4.1)

where f j(x j) = tanh(x j) and h j(x j) = sin(x j). ci, ai j, bi j, αi j, βi j and di j are the parameters of the system
which are taken as c1 = 1.5, c2 = 0.5, a11 = 1.4, a12 = −0.8, a21 = 1.8, a22 = 2, b11 = −1, b12 =

0.2, b21 = −0.5, b22 = 0.5, α11 = 1.2, α12 = −0.2, α21 = 1.8, α22 = −0.4, β11 = 0.4, β12 = −1.2, β21 =

1.5, β22 = −0.2, d11 = 0.5, d12 = 0, d21 = 0, d22 = 0.5, r = 0.7, τ(t) = 0.3exp(t) and I1 = 0, I2 = 0,ε =

0.5.
The 3-D plot of the trajectories z1(t) and z2(t) with time t of the system (4.1) is depicted through

Figure 1 with initial values as z1(s) = −0.50, z2(s) = 0.75,w1(s) = −0.25,w2(s) = 0.25 for s ∈
[−0.3, 1].

The corresponding response system is taken as

ẇi(t) = − ciwi(t) +

n∑
j=1

ai j f j(w j(t)) +

n∑
j=1

bi j f j(w j(rt)) +

n∧
j=1

αi j f j(w j(rt))

+

n∨
j=1

βi j f j(w j(rt)) + ε

n∑
j=1

d̄i jh j(z j(t)) + Ii + ui(t), (4.2)

where ci, ai j, bi j, di j, αi j, βi j, f j, h j, r and Ii are similar to the system (4.2), and ui(t) is the controller
which is given as

ui(t) = −ηiei(t) − σi tanh(ei(t)) − k tanh(ei(t))|ei(t)|θ, (4.3)

where ei(t) = wi(t) − zi(t).
For Li = 0, Li = Mi = 1,Ni = 1, i = 1, 2, the assumptions (H1) and (H2) hold. After choosing

the values p = 2, θ = 0.6 and k=3, we have L1 = L2 = 1, λ1 = 1.4, λ2 = 2, w̄1 = w̄2 = 1.30, ρ̄1 =

4.2, ρ̄2 = 4.9, v̄1 = v̄1 = 0. Considering η1 = 1.50, η2 = 3, σ1 = 4.2, σ2 = 4.9, all the conditions of
Theorem 3.1 hold. Therefore, in view of the Theorem 3.1, the considered systems (4.1) and (4.2) will
be synchronized in a finite time with the help of the defined controllers given in Eq (4.3). Figures 2
and 3 show the synchronizations between the systems (4.1) and (4.2). The synchronizations of errors
between systems (4.1) and (4.2) are depicted through Figure 4 for the earlier considered initial values.
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Figure 1. Plots of the state trajectories z1(t) and z2(t) vs. t for Example 4.1.
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Figure 2. Plots of the state trajectories z1(t) and w1(t) vs. t, of master system (4.1) and
response system (4.2) for Example 4.1.
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Figure 3. Plots of the state trajectories z2(t) and w2(t) vs. t, of master system (4.1) and
response system (4.2) for Example 4.1.
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Figure 4. Plots of errors e1(t) and e1(t) of the systems (4.1) and (4.2) for Example 4.1.

Example 4.2. Let us consider following FCNN with interaction and proportional delay terms for fixed
time synchronization as a drive system as

żi(t) = − cizi(t) +

2∑
j=1

ai j f j(z j(t)) +

2∑
j=1

bi j f j(z j(rt)) +

2∧
j=1

αi j f j(z j(rt))
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+

2∨
j=1

βi j f j(z j(rt)) + ε

2∑
j=1

di jh j(w j(t)) + Ii, (4.4)

where h j(x j) = sin(x j) and fi(x) = (|x + 1| − |x − 1|)/2, i = 1, 2. Now the values of the parameters
of the system (4.4) are taken as c1 = 1.2, c2 = 1, a12 = −0.5, a11 = 1.5, a21 = 1.8, a22 = 2.1, b12 =

0.2, b11 = −1, b21 = −0.5, b22 = 0.5, α12 = −0.1, α11 = 1.5, α22 = −0.4, α21 = −0.5, β11 = 0.5, β12 =

−1.1, β21 = 1.5, β22 = −0.1, d12 = 0, d11 = 0.4, d22 = 0.4, d21 = 0, r = 0.2, τ(t) = 0.8exp(t) and
I1 = 0.1, I2 = 0.2, ε = 0.5.

Figure 5 depicts the 3-D plot of the trajectories z1(t) and z2(t) at time t of the system (4.4) with
initial values as z1(s) = −0.15, z2(s) = 0.45,w1(s) = −0.25,w2(s) = 0.35 for s ∈ [−0.5, 1] .

The corresponding response system is considered as

ẇi(t) = − ciwi(t) +

n∑
j=1

ai j f j(w j(t)) +

n∑
j=1

bi j f j(w j(rt)) +

n∧
j=1

αi j f j(w j(rt))

+

n∨
j=1

βi j f j(w j(rt)) + ε

n∑
j=1

d̄i jh j(z j(t)) + Ii + ui(t), (4.5)

where ci, ai j, bi j, di j, αi j, βi j, f j, h j, r and Ii are the same parameters as considered in system (4.4), and
ui(t) is the controller designed as

ui(t) = tanh(ei(t))(σi − ηiei(t) − k|ei(t)|θ), (4.6)

where ei(t) = wi(t) − zi(t).

For Li = 0, Li = Mi = 1, Ni = 1, i = 1, 2, Assumptions (H1) and (H2) hold. Choosing the values
p = 2, θ = 0.3 and k=3, we have L1 = L2 = 1, λ1 = 1.5, λ2 = 2.1, w̄ = w̄ = 1.15, ρ̄1 = 4.4, ρ̄2 =

4.6, v̄1 = v̄1 = 0. After considering η1 = 1.60, η2 = 2.50, σ1 = 4.4, σ2 = 4.6, all conditions of Theorem
3.2 hold. So in view of the Theorem 3.2, the systems (4.4) and (4.5) will be synchronized with the
help of the controllers (4.6). Figures 6 and 7 show the fixed time synchronizations between systems
(4.4) and (4.5). The synchronizations of the errors between systems (4.4) and (4.5) are shown through
Figure 8.

Here the settling time is Tmax = 0.4761. In order to show the estimation bound of the settling time
in more effective and more accurate ways a comparison is executed with the results given in [42].

As far as we know, there is no research on the finite and fixed-time synchronization for FCNNs
model with interaction and proportional delays. Here it is mentioned that interaction functions are
bounded and delays are proportional, which are more general than the bounded delays. Here, some
special types of controller are taken to achieve finite and fixed-time synchronizations. The method
used in this article provides a useful approach to study the problems on the finite and fixed time
synchronizations of other fuzzy neural networks with interaction term and proportional delays.
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Figure 5. Plots of the state trajectories z1(t) and z2(t) vs. t for Example 4.2.
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Figure 6. Plots of the state trajectories z1(t) and w1(t) vs. t of master system (4.4) and
response system (4.5) for Example 4.2.
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Figure 7. Plots of the state trajectories z2(t) and w2(t) vs. t, of master system (4.4) and
response system (4.5) for Example 4.2.
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Figure 8. Plots of errors e1(t) and e1(t) of the systems (4.4) and (4.5) for Example 4.2.

5. Conclusions

In the present endeavor, finite and fixed-time synchronizations (FFTS) of FCNNs are discussed
under the impact of proportional delays and interaction terms. Based on Lyapunov stability technique,
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finite-time and fixed-time convergence theory and some other criteria along with Lyapunov
functional, the FFTS is achieved. The controllers have been designed in a simple way to achieve the
said synchronizations for FCNNs. In the case of finite-time synchronization of FCNNs, the upper
bound of the settling time can be estimated which depends on initial conditions, whereas in FTS of
FCNNs, the settling time does not depend on initial conditions. Two numerical examples are taken to
verify the correctness of the mathematical results. Consequently, the obtained results on FCNN
models with interaction and proportional delay terms are first of its kind and also convenient as
compared to the previous available results of the FTS obtained by [8–10, 31, 34, 35, 61, 63]. Our future
work will be focused on quasi-synchronization problem of FCNNs with interaction terms. Also the
FFTS of impulsive FCNNs with mixed delay and interaction terms will be considered in near future.

6. Acknowledgement

The authors are extending their heartfell thanks to the revered reviewers for their valuable comments
towards upgradation of the article. The second author S.Das acknowledges the project grant provided
by the SERB, Government of India under the MATRICS scheme (File no: MTR/2020/000053).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. L. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–
1272.

2. T. Roska, L. Chua, Cellular neural networks with non-linear and delay-type template elements and
non-uniform grids, Int. J. Circ. Theor. App., 20 (1992), 469–481.

3. H. Harrer, J. Nossek, Discrete-time cellular neural networks, Int. J. Circ. Theor. App., 20 (1992),
453–467.

4. T. Yang, L. Yang, The global stability of fuzzy cellular neural network, IEEE Trans. Circuits Syst.
I, 43 (1996), 880–883.

5. K. Ratnavelu, M. Manikandan, P. Balasubramaniam, Synchronization of fuzzy bidirectional
associative memory neural networks with various time delays, Appl. Math. Comput., 270 (2015),
582–605.

6. U. Kumar, S. Das, C. Huang, J. Cao, Fixed time synchronization of quaternion-valued neural
networks with time varying delay, P. Roy. Soc. A-Math. Phy., 476 (2020), 20200324.

7. R. Kumar, S. Das, Exponential stability of inertial bam neural network with time-varying impulses
and mixed time-varying delays via matrix measure approach, Commun. Nonlinear Sci., 81 (2020),
105016.

8. L. Duan, H. Wei, L. Huang, Finite-time synchronization of delayed fuzzy cellular neural networks
with discontinuous activations, Fuzzy Set. Syst., 361 (2019), 56–70.

AIMS Mathematics Volume 6, Issue 10, 10620–10641.



10638

9. R. Tang, X. Yang, X. Wan, Finite-time cluster synchronization for a class of fuzzy cellular neural
networks via non-chattering quantized controllers, Neural Networks, 113 (2019), 79–90.

10. A. Abdurahman, H. Jiang, Z. Teng, Finite-time synchronization for fuzzy cellular neural networks
with time-varying delays, Fuzzy Set. Syst., 297 (2016), 96–111.

11. P. Mani, R. Rajan, L. Shanmugam, Y. Joo, Adaptive control for fractional order induced chaotic
fuzzy cellular neural networks and its application to image encryption, Inform. Sciences, 491
(2019), 74–89.

12. D. Xu, T. Wang, M. Liu, Finite-time synchronization of fuzzy cellular neural networks with
stochastic perturbations and mixed delays, Circ. Syst. Signal Pr., 40 (2021), 3244–3265.

13. L. Li, W. Wang, L. Huang, J. Wu, Some weak flocking models and its application to target tracking,
J. Math. Anal. Appl., 480 (2019), 123404.

14. J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial
terms, Adv. Differ. Equ., 2020 (2020), 1–12.

15. Q. Cao, X. Guo, Anti-periodic dynamics on high-order inertial hopfield neural networks involving
time-varying delays, AIMS Mathematics, 5 (2020), 5402–5421.

16. C. Huang, Y. Tan, Global behavior of a reaction-diffusion model with time delay and Dirichlet
condition, J. Differ. Equations, 271 (2021), 186–215.

17. C. Huang, X. Zhao, J. Cao, F. Alsaadi, Global dynamics of neoclassical growth model with multiple
pairs of variable delays, Nonlinearity, 33 (2020), 6819–6834.

18. C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson’s blowflies
model with nonlinear density-dependent mortality term, Commun. Pur. Appl. Anal., 18 (2019),
3337–3349.

19. J. Wang, X. Chen, L. Huang, The number and stability of limit cycles for planar piecewise linear
systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405–427.

20. J. Wang, C. Huang, L. Huang, Discontinuity-induced limit cycles in a general planar piecewise
linear system of saddle-focus type, Nonlinear Anal. Hybri., 33 (2019), 162–178.

21. L. Pecora, T. Carroll, Synchronization in chaotic systems, Phys. rev. lett., 64 (1990), 821–824.

22. Y. Kao, H. Li, Asymptotic multistability and local s-asymptotic ω-periodicity for the
nonautonomous fractional-order neural networks with impulses, Sci. China Inform. Sci., 64 (2021),
1–13.

23. Y. Kao, Y. Li, J. Park, X. Chen, Mittag-leffler synchronization of delayed fractional memristor
neural networks via adaptive control, IEEE T. Neur. Net. Lear., 32 (2020), 2279–2284.

24. H. Li, Y. Kao, H. Bao, Y. Chen, Uniform stability of complex-valued neural networks of
fractional order with linear impulses and fixed time delays, IEEE T. Neur. Net. Lear., 2021, DOI:
10.1109/TNNLS.2021.3070136.

25. Y. Cao, Y. Kao, J. Park, H. Bao, Global mittag-leffler stability of the delayed fractional-coupled
reaction-diffusion system on networks without strong connectedness, IEEE T. Neur. Net. Lear.,
2021, DOI: 10.1109/TNNLS.2021.3080830.

AIMS Mathematics Volume 6, Issue 10, 10620–10641.



10639

26. C. Huang, X. Long, J. Cao, Stability of antiperiodic recurrent neural networks with
multiproportional delays, Math. Method. Appl. Sci., 43 (2020), 6093–6102.

27. Q. Wang, Y. Fang, H. Li, L. Su, B. Dai, Anti-periodic solutions for high-order hopfield neural
networks with impulses, Neurocomputing, 138 (2014), 339–346.

28. C. Huang, L. Yang, J. Cao, Asymptotic behavior for a class of population dynamics, AIMS
Mathematics, 5 (2020), 3378–3390.

29. W. Perruquetti, T. Floquet, E. Moulay, Finite-time observers: application to secure communication,
IEEE T. Automat. Contr., 53 (2008), 356–360.

30. H. Wang, J. Ye, Z. Miao, E. Jonckheere, Robust finite-time chaos synchronization of time-delay
chaotic systems and its application in secure communication, T. I. Meas. Control, 40 (2018), 1177–
1187.

31. B. Vaseghi, M. Pourmina, S. Mobayen, Finite-time chaos synchronization and its application in
wireless sensor networks, T. I. Meas. Control, 40 (2018), 3788–3799.

32. A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE
T. Automat. Contr., 57 (2011), 2106–2110.

33. Z. Xu, C. Li, Y. Han, Leader-following fixed-time quantized consensus of multi-agent systems via
impulsive control, J. Frank. I., 356 (2019), 441–456.

34. C. Chen, L. Li, H. Peng, Y. Yang, Fixed-time synchronization of inertial memristor-based neural
networks with discrete delay, Neural Networks, 109 (2019), 81–89.

35. X. Yang, J. Lam, D. Ho, Z. Feng, Fixed-time synchronization of complex networks with impulsive
effects via nonchattering control, IEEE T. Automat. Contr., 62 (2017), 5511–5521.

36. G. Kamenkov, On stability of motion over a finite interval of time, J. Appl. Math. Mech., 17 (1953),
529–540.

37. A. Muralidharan, R. Pedarsani, P. Varaiya, Analysis of fixed-time control, Transport. Res. B-Meth.,
73 (2015), 81–90.

38. Y. Ma, T. Houghton, A. Cruden, D. Infield, Modeling the benefits of vehicle-to-grid technology to
a power system, IEEE T. Power Syst., 27 (2012), 1012–1020.

39. A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE
T. Automat. Contr., 57 (2011), 2106–2110.

40. M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, Y. Zhang, et al. Fixed-time synchronization of
memristor-based fuzzy cellular neural network with time-varying delay, J. Franklin. I., 355 (2018),
6780–6809.

41. Y. Liu, Y. Sun, Fixed-time synchronization of fuzzy cellular neural networks with time-varying
delays and discontinuous activations, IEEE Access, 8 (2020), 65801–65811.

42. Y. Sun, Y. Liu, Fixed-time synchronization of delayed fractional-order memristor-based fuzzy
cellular neural networks, IEEE Access, 8 (2020), 165951–165962.

43. W. Cui, Z. Wang, W. Jin, Fixed-time synchronization of markovian jump fuzzy cellular neural
networks with stochastic disturbance and time-varying delays, Fuzzy Set. Syst., 411 (2021), 68–84.

AIMS Mathematics Volume 6, Issue 10, 10620–10641.



10640

44. W. Ding, M. Han, Synchronization of delayed fuzzy cellular neural networks based on adaptive
control, Phy. Lett. A, 372 (2008), 4674–4681.

45. X. Feng, F. Zhang, W. Wang, Global exponential synchronization of delayed fuzzy cellular neural
networks with impulsive effects, Chaos, Soliton. Fract., 44 (2011), 9–16.

46. Q. Xiao, Z. Zeng, Scale-limited lagrange stability and finite-time synchronization for memristive
recurrent neural networks on time scales, IEEE T. Cybernetics, 47 (2017), 2984–2994.

47. X. Liu, J. Cao, W. Yu, Q. Song, Nonsmooth finite-time synchronization of switched coupled neural
networks, IEEE T. Cybernetics, 46 (2015), 2360–2371.

48. X. Liu, H. Su, M. Chen, A switching approach to designing finite-time synchronization controllers
of coupled neural networks, IEEE T. Neur. Net. Lear., 27 (2015), 471–482.

49. X. Yang, D. Ho, J. Lu, Q. Song, Finite-time cluster synchronization of t–s fuzzy complex networks
with discontinuous subsystems and random coupling delays, IEEE T. Fuzzy Syst., 23 (2015), 2302–
2316.

50. M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, H. Zhao, Finite-time stability analysis for
neutral-type neural networks with hybrid time-varying delays without using Lyapunov method,
Neurocomputing, 238 (2017), 67–75.

51. M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, H. Zhao, Finite-time stability and synchronization for
memristor-based fractional-order cohen-grossberg neural network, Eur. Phys. J. B, 89 (2016), 204.

52. A. Polyakov, D. Efimov, W. Perruquetti, Finite-time and fixed-time stabilization: Implicit lyapunov
function approach, Automatica, 51 (2015), 332–340.

53. Y. Wan, J. Cao, G. Wen, W. Yu, Robust fixed-time synchronization of delayed cohen–grossberg
neural networks, Neural Networks, 73 (2016), 86–94.

54. X. Liu, T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control,
IEEE T. Cybernetics, 48 (2016), 240–252.

55. W. Ma, C. Li, Y. Wu, Y. Wu, Synchronization of fractional fuzzy cellular neural networks with
interactions, Chaos, 27 (2017), 103106.

56. W. Sun, Y. Wu, J. Zhang, S. Qin, Inner and outer synchronization between two coupled networks
with interactions, J. Franklin I., 352 (2015), 3166–3177.

57. Y. Liu, X. Wan, E. Wu, X. Yang, F. Alsaadi, T. Hayat, Finite-time synchronization of markovian
neural networks with proportional delays and discontinuous activations, Nonlinear Anal-Model.,
23 (2018), 515–532.

58. W. Wang, Finite-time synchronization for a class of fuzzy cellular neural networks with time-
varying coefficients and proportional delays, Fuzzy Set. Syst., 338 (2018), 40–49.

59. C. Huang, H. Yang, J. Cao, Weighted Pseudo Almost Periodicity of Multi-Proportional Delayed
Shunting Inhibitory Cellular Neural Networks with D operator, Discrete Cont. Dyn. S, 14 (2021),
1259–1272.

60. Y. Chen, C. Qiao, M. Hamdi, D. Tsang, Proportional differentiation: A scalable qos approach,
IEEE Commun. Mag., 41 (2003), 52–58.

AIMS Mathematics Volume 6, Issue 10, 10620–10641.



10641

61. A. Abdurahman, H. Jiang, Z. Teng, Finite-time synchronization for memristor-based neural
networks with time-varying delays, Neural Networks, 69 (2015), 20–28.

62. Q. Zhu, X. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed cohen-
grossberg neural networks, Fuzzy Set. Syst., 203 (2012), 74–94.

63. F. Kong, Q. Zhu, Finite-time and fixed-time synchronization criteria for discontinuous fuzzy neural
networks of neutral-type in hale’s form, IEEE Access, 7 (2019), 99842–99855.

64. A. Chen, J. Cao, Existence and attractivity of almost periodic solutions for cellular neural networks
with distributed delays and variable coefficients, Appl. Math. Comput., 134 (2003), 125–140.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 10, 10620–10641.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Some preliminaries and system description 
	Preliminaries
	Systems' description

	Theorem and ..
	Finite-time synchronization
	Fixed-time synchronization

	Numerical simulation and discussions
	Conclusions
	Acknowledgement

