Mathematics

Research article

On the generalized Ramanujan-Nagell equation $x^{2}+(2 k-1)^{y}=k^{z}$ with $k \equiv 3(\bmod 4)$

Yahui Yu ${ }^{1}$ and Jiayuan $\mathbf{H u}^{2, *}$
${ }^{1}$ Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, Henan, 471023, China
${ }^{2}$ Department of Mathematics and Computer, Hetao College, Bayannur, Inner Mongolia, 015000, China

* Correspondence: Email: hujiayuan1986@163.com.

Abstract

Let k be a fixed positive integer with $k>1$. In 2014, N. Terai [6] conjectured that the equation $x^{2}+(2 k-1)^{y}=k^{z}$ has only the positive integer solution $(x, y, z)=(k-1,1,2)$. This is still an unsolved problem as yet. For any positive integer n, let $Q(n)$ denote the squarefree part of n. In this paper, using some elementary methods, we prove that if $k \equiv 3(\bmod 4)$ and $Q(k-1) \geq 2.11 \log k$, then the equation has only the positive integer solution $(x, y, z)=(k-1,1,2)$. It can thus be seen that Terai's conjecture is true for almost all positive integers k with $k \equiv 3(\bmod 4)$.

Keywords: polynomial-exponential diophantine equation; generalized Ramanujan-Nagell equation Mathematics Subject Classification: 11D61

1. Introduction

Let \mathbb{N} be the set of all positive integers. Let k be a fixed positive integer with $k>1$. In this paper, we deal with an exponential generalized Ramanujan-Nagell equation with the form

$$
\begin{equation*}
x^{2}+(2 k-1)^{y}=k^{z}, x, y, z \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

In 2014, N. Terai [6] proposed the following conjecture:
Conjecture 1.1. (1.1) has only the solution $(x, y, z)=(k-1,1,2)$.
Obviously, if $k \equiv 2(\bmod 4)$, then $2 k-1 \equiv 3(\bmod 8)$. Since $z>1$, by (1.1), we have $2 \nmid x, 2 \nmid y$ and $k^{z} \equiv x^{2}+(2 k-1)^{y} \equiv 1+3 \equiv 4(\bmod 8)$. It implies that $z=2$. Therefore, Conjecture 1.1 is true for $k \equiv 2(\bmod 4)$. However, in addition to this case, it is only proved in some special cases (see [1-4,6,7]). For example, M. J. Deng, J. Guo and A. J. Xu [3] gave some conditions for (1.1) to have solutions
(x, y, z) with $(x, y, z) \neq(k-1,1,2)$. So they proved that if $k \equiv 3(\bmod 4)$ and $k<500$, then Conjecture 1.1 is true.

For any fixed positive r, there exist unique positive integers d and s such that $r=d s^{2}$ and d is square-free. Such d is call the square-free part of r, and denoted by $Q(r)$. In this paper, using some elementary methods, we prove a general result as follows:
Theorem 1.1. If $k \equiv 3(\bmod 4)$ and $Q(k-1) \geq 2.65 \log k$, then (1.1) has only the solution $(x, y, z)=$ ($k-1,1,2$).

By the above theorem, we can deduce the following corollaries:
Corollary 1.1. If $k \equiv 3(\bmod 4)$ and $k-1$ is square-free, then Conjecture 1.1 is true.
Corollary 1.2. If $k \equiv 3(\bmod 4)$ and $500<k<1000$, then Conjecture 1.1 is true.
Corollary 1.3. Conjecture 1.1 is true for almost all positive integers k with $k \equiv 3(\bmod 4)$.

2. Preliminaries

Lemma 2.1. ([5]) Let n be an odd integer with $n>1$, and let X, Y be coprime positive integers. Further, let p be an odd prime with $p \nmid X Y$. If $p \mid X+Y$ and $p^{r} \mid\left(X^{n}+Y^{n}\right) /(X+Y)$, where r is a positive integer, then $p^{r} \mid n$.

Here and below, we assume that $k \equiv 3(\bmod 4)$ and (1.1) has a solution (x, y, z) with $(x, y, z) \neq$ ($k-1,1,2$).
Lemma 2.2. ((i) of Lemma 2.5 of [3]) $2 \nmid y$ and $2 \mid z$.
Lemma 2.3. ((ii) of Lemma 2.5 of [3]) $y>3$.
Lemma 2.4. (Lemma 2.6 of [3]) There exist positive integers a and b such that

$$
\begin{equation*}
2 k-1=a b, a>b>1, \operatorname{gcd}(a, b)=1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{y}+b^{y}=2 k^{z / 2} \tag{2.2}
\end{equation*}
$$

Lemma 2.5. ((ii) of Theorem 1.1 of [3]) $a \equiv b \equiv 1(\bmod 4)$.
Lemma 2.6. (Theorem 1.2 of [3]) k is not an odd prime power.
Lemma 2.7. ((i) of Theorem 1.1 of [3]) $2 k-1$ is not an odd prime power.
Lemma 2.8. (Corollary 1.4 of [3]) $k>500$.
Lemma 2.9. $y<z<2 y$.
Proof. We see from (1.1) that $k^{z}>(2 k-1)^{y}>k^{y}$. So we have $y<z$. On the other hand, by Lemma 2.4, we get from (2.1) and (2.2) that $b \geq 3$ and

$$
\begin{align*}
2 k^{z / 2} & =a^{y}+b^{y}<2 a^{y}=2\left(\frac{2 k-1}{b}\right)^{y} \leq 2\left(\frac{2 k-1}{3}\right)^{y} \tag{2.3}\\
& <2 k^{y}
\end{align*}
$$

Therefore, by (2.3), we obtain $z<2 y$. The lemma is proved.
Lemma 2.10. $(a+b) y \geq 2.3^{z / 2}$.

Proof. Notice that $2 \nmid y, 2 \mid(a+b), a+b>2$ and $\left(a^{y}+b^{y}\right) /(a+b)$ is an odd positive integer. By (2.2), we have

$$
\begin{gather*}
a+b=2 f k_{1}^{z / 2}, \frac{a^{y}+b^{y}}{a+b}=g k_{2}^{z / 2}, f g=k_{0}^{z / 2}, \\
k=k_{0} k_{1} k_{2}, \quad f, g, k_{0}, k_{1}, k_{2} \in \mathbb{N}, \tag{2.4}
\end{gather*}
$$

where k_{0} is square free, neither f nor g has $z / 2$-th power divisors.
If $k_{0}=1$, then from (2.4) we get $f=1, k_{1}>1$ and $a+b=2 k_{1}^{z / 2} \geq 2 \cdot 3^{z / 2}$. Therefore, the lemma holds for this case.

If $k_{0}>1$, then k_{0} has an odd prime divisor p. Since neither f nor g has $z / 2$-th power divisors, by (2.4), there exists a positive integer s such that

$$
\begin{equation*}
p^{s}\left|f, p^{z / 2-s}\right| g, 1 \leq s<\frac{z}{2} . \tag{2.5}
\end{equation*}
$$

Hence, applying Lemma 2.1 to (2.4) and (2.5), we have

$$
\begin{equation*}
p^{z / 2-s} \mid y \tag{2.6}
\end{equation*}
$$

Therefore, by (2.4) and (2.6), we get $(a+b) y \geq 2 p^{z / 2} \geq 2 \cdot 3^{z / 2}$. The lemma is proved.
Lemma 2.11. $y<2.65 \log k$, where \log is the Napierian logarithm.
Proof. By Lemmas 2.9 and 2.10, we have

$$
(a+b) y \geq 2 \cdot 3^{z / 2}>2 \cdot 3^{y / 2}
$$

whence we get

$$
\begin{equation*}
\frac{y}{2} \log 3<\log \left(\frac{a+b}{2}\right)+\log y . \tag{2.7}
\end{equation*}
$$

Futher, by Lemma 2.5, we see from (2.1) that

$$
\begin{equation*}
\frac{a+b}{2}<a=\frac{2 k-1}{b} \leq \frac{2 k-1}{5} . \tag{2.8}
\end{equation*}
$$

Hence, by (2.7) and (2.8), we get

$$
\begin{equation*}
y<\frac{2}{\log 3}\left(\log \left(\frac{2 k-1}{5}\right)+\log y\right) . \tag{2.9}
\end{equation*}
$$

Let

$$
\begin{equation*}
y=t \log k . \tag{2.10}
\end{equation*}
$$

Subtitute (2.10) into (2.9), we have

$$
\begin{equation*}
t<\frac{2}{\log 3}\left(\frac{\log ((2 k-1) / 5)}{\log k}+\frac{\log t}{\log k}+\frac{\log \log k}{\log k}\right) \tag{2.11}
\end{equation*}
$$

Since $k \geq 503$ by Lemma 2.8, we get

$$
\begin{equation*}
\frac{\log ((2 k-1) / 5)}{\log k}<1, \quad \frac{\log \log k}{\log k}<0.2939 . \tag{2.12}
\end{equation*}
$$

Therefore, by (2.11) and (2.12), we have

$$
\begin{equation*}
t<\frac{2}{\log 3}\left(1.2939+\frac{\log t}{\log k}\right) \leq \frac{2}{\log 3}\left(1.2939+\frac{\log t}{\log 503}\right) . \tag{2.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
f(t)=t-\frac{2}{\log 3}\left(1.2939+\frac{\log t}{\log 503}\right) . \tag{2.14}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
f^{\prime}(t)=1-\frac{2}{(\log 3)(\log 503) t}, \tag{2.15}
\end{equation*}
$$

where $f^{\prime}(t)$ is the derivative of $f(t)$. We see from (2.15) that $f^{\prime}(t)>0$ for $t>2$. Hence, $f(t)$ is an increasing function for $t>2$. Notice that $f(2.65)>0$. We have $f(t)>0$ for $t>2.65$. Thus, by (2.13) and (2.14), we get that $t<2.65$, and by (2.10), the lemma is proved.

3. Proofs

In this section, we assume that $k \equiv 3(\bmod 4)$ and (x, y, z) is a solution of (1.1) with $(x, y, z) \neq$ ($k-1,1,2$).

3.1. Proof of Theorem 1.1

Proof. By (1.1), we have

$$
\begin{aligned}
x^{2} & =k^{z}-(2 k-1)^{y}=(1+(k-1))^{z}-(1+2(k-1))^{y} \\
& =\sum_{i=0}^{z}\binom{z}{i}(k-1)^{i}-\sum_{j=0}^{y}\binom{y}{j}(2(k-1))^{j},
\end{aligned}
$$

whence we get

$$
\begin{equation*}
x^{2} \equiv(z-2 y)(k-1)\left(\bmod (k-1)^{2}\right) . \tag{3.1}
\end{equation*}
$$

By the definition of the square-free part, we have

$$
\begin{equation*}
k-1=Q(k-1) m^{2}, Q(k-1), m \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

$Q(k-1)$ is square free. Hence, we see from (3.1) and (3.2) that $x \equiv 0(\bmod Q(k-1) m)$. Further, since $x^{2} \equiv 0\left(\bmod (Q(k-1))^{2} m^{2}\right)$ and $(k-1)^{2} \equiv 0\left(\bmod (Q(k-1))^{2} m^{2}\right)$, by (3.1) and (3.2), we get

$$
\begin{equation*}
z-2 y \equiv 0(\bmod Q(k-1)) . \tag{3.3}
\end{equation*}
$$

Furthermore, by Lemma 2.9, we find from (3.3) that $z-2 y \neq 0$ and

$$
\begin{equation*}
y>2 y-z \geq Q(k-1) \tag{3.4}
\end{equation*}
$$

Therefore, combining (3.4) with Lemma 2.11, we get $2.65 \log k>Q(k-1)$. This implies that if $Q(k-1) \geq 2.65 \log k$, then(1.1) has no solution (x, y, z) with $(x, y, z) \neq(k-1,1,2)$. The theorem is proved.

3.2. Proof of Corollary 1.1

Proof. Since $k-1$ is square free, we have $Q(k-1)=k-1$. Therefore, by Theorem 1.1, if (1.1) has solution $(x, y, z) \neq(k-1,1,2)$, then

$$
\begin{equation*}
k-1 \leq 2.65 \log k . \tag{3.5}
\end{equation*}
$$

But, since $k>500$ by Lemma 2.8, (3.5) is false. The corollary is proved.

3.3. Proof of Corollary 1.2

Proof. We now assume that $k \equiv 3(\bmod 4), 500<k<1000$ and (1.1) has solutions (x, y, z) with $(x, y, z) \neq(k-1,1,2)$. By Theorem 1.1, we have

$$
\begin{equation*}
Q(k-1) \leq 2.65 \log k<2.65 \log 1000<18.31 . \tag{3.6}
\end{equation*}
$$

Since $Q(k-1)$ is square free with $2 \mid Q(k-1)$, by (3.6), we get

$$
\begin{equation*}
Q(k-1) \in\{2,6,10,14\} . \tag{3.7}
\end{equation*}
$$

Further, by (3.2), we have

$$
\begin{equation*}
m=\sqrt{\frac{k-1}{Q(k-1)}}<\sqrt{\frac{1000}{Q(k-1)}} . \tag{3.8}
\end{equation*}
$$

Therefore, by (3.7) and (3.8), we just have to consider the following cases:

$$
\begin{align*}
(Q(k-1), m, k)= & (2,17,579), \\
& (2,19,723),(2,21,883), \tag{3.9}\\
& (6,11,727),(10,9,901),(14,7,687) .
\end{align*}
$$

Since 727 and 883 are odd primes, by Lemma 2.6, Conjecture 1.1 is true for $k \in\{727,883\}$. Similarly, since 1373 and 1801 are odd primes, by Lemma 2.7, Conjecture 1.1 is true for $k \in$ \{687, 901\}.

When $k=579$, we have $2 k-1=1157=13 \times 89$, where 13 and 89 are odd primes. Hence, by Lemma 2.4, if (1.1) has solutions (x, y, z) with $(x, y, z) \neq(k-1,1,2)$ for $k=579$, then we have

$$
\begin{equation*}
89^{y}+13^{y}=2.579^{z / 2} \tag{3.10}
\end{equation*}
$$

But, since $2 \nmid y, 89+13=102=2 \times 3 \times 17$ and $17 \nmid 579$, (3.10) is false. Therefore, Conjecture 1.1 is true for $k=579$.

Similarly, when $k=723$, we have $2 k-1=1445=5 \times 17^{2}, 17^{2}+5=294=2 \times 3 \times 7^{2}$ and $7 \nmid 723$. Therefore, $17^{2 y}+5^{y} \neq 2.723^{x / 2}$ and Conjecture 1.1 is true for $k=723$. Thus, by (3.9), the corollary is proved.

3.4. Proof of Corollary 1.3

Proof. For any positive integer K, let $F(K)$ denote the number of positive integer k with $k \leq K$ and $k \equiv 3(\bmod 4)$. Then we have

$$
\begin{equation*}
F(K)=\left[\frac{k+1}{4}\right], \tag{3.11}
\end{equation*}
$$

where $[(k+1) / 4]$ is the integer part of $(K+1) / 4$. Further, let $G(K)$ denote the number of positive integers k such that $k \leq K, k \equiv 3(\bmod 4)$ and k can make (1.1) has solutions (x, y, z) with $(x, y, z) \neq(k-1,1,2)$. By Theorem 1.1, we see from (3.2) that

$$
\begin{equation*}
G(K) \leq \sum_{d} \sqrt{\frac{K-1}{d}}=\sqrt{K-1} \sum_{d} \frac{1}{\sqrt{d}}<\sqrt{K} \sum_{d} 1<2.11 \sqrt{K} \log K \tag{3.12}
\end{equation*}
$$

where d through all positive integers with $d \leq 2.11 \log K$ and d is square free. Therefore, by (3.11) and (3.12), we get

$$
\lim _{K \rightarrow \infty} \frac{G(K)}{F(K)}=0 .
$$

This implies that Conjecture 1.1 is true for almost all positive integers k with $k \equiv 3(\bmod 4)$. The corollary is proved.

Acknowledgments

The authors would like to thank the referee for their very helpful and detailed comments. This work is supported by Young talent-training plan for college teachers in Henan province (2019GGJS241), Startup Foundation for Introducing Talent (HYRC2019007) of Hetao College(CN) and N. S. F. (2021MS01003) of Inner Mongolia(CN).

Conflict of interest

The authors declare that they have no competing interests.

References

1. M. A. Bennett, N. Billerey, Sums of two S-units via Frey-Hellegouarch curves, Math. Comput., 86 (2017), 1375-1401.
2. M. J. Deng, A note on the diophantine equation $x^{2}+q^{m}=c^{2 n}$, Proc. Japan Acad. Ser. A Math. Sci., 91 (2015), 15-18.
3. M. J. Deng, J. Guo, A. J. Xu, A note on the diophantine equation $x^{2}+(2 c-1)^{m}=c^{n}$, B. Aust. Math. Soc., 98 (2018), 188-195.
4. R. Q. Fu, H. Yang, On the solvability of the generalized Ramanujan-Nagell equation $x^{2}+(2 k-1)^{m}=$ k^{n}, J. Xiamen Univ. Nat. Sci., 56 (2017), 102-105.
5. K. Möller, Untere Schranke für die Anzahl der Primzahlen, aus denen x, y, z der Fermatschen Geichung $x^{n}+y^{n}=z^{n}$ bestehen muss, Math. Nachr., 14 (1955), 25-28.
6. N. Terai, A note on the diophantine equation $x^{2}+q^{m}=c^{n}$, B. Aust. Math. Soc., 90 (2014), 20-27.
7. X. Zhang, On Terai's conjecture, Kodai Math. J., 41 (2018), 413-420.

AIMS Press
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

