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Abstract: Let k be a fixed positive integer with k > 1. In 2014, N. Terai [6] conjectured that the
equation x2 + (2k − 1)y = kz has only the positive integer solution (x, y, z) = (k − 1, 1, 2). This is still
an unsolved problem as yet. For any positive integer n, let Q(n) denote the squarefree part of n. In this
paper, using some elementary methods, we prove that if k ≡ 3 (mod 4) and Q(k − 1) ≥ 2.11 log k, then
the equation has only the positive integer solution (x, y, z) = (k−1, 1, 2). It can thus be seen that Terai’s
conjecture is true for almost all positive integers k with k ≡ 3(mod 4).
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1. Introduction

Let N be the set of all positive integers. Let k be a fixed positive integer with k > 1. In this paper,
we deal with an exponential generalized Ramanujan-Nagell equation with the form

x2 + (2k − 1)y = kz, x, y, z ∈ N. (1.1)

In 2014, N. Terai [6] proposed the following conjecture:
Conjecture 1.1. (1.1) has only the solution (x, y, z) = (k − 1, 1, 2).

Obviously, if k ≡ 2(mod 4) , then 2k − 1 ≡ 3(mod 8). Since z > 1, by (1.1), we have 2 - x, 2 - y
and kz ≡ x2 + (2k − 1)y ≡ 1 + 3 ≡ 4(mod 8). It implies that z = 2. Therefore, Conjecture 1.1 is true for
k ≡ 2(mod 4). However, in addition to this case, it is only proved in some special cases (see [1–4,6,7]).
For example, M. J. Deng, J. Guo and A. J. Xu [3] gave some conditions for (1.1) to have solutions
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(x, y, z) with (x, y, z) , (k − 1, 1, 2). So they proved that if k ≡ 3 (mod 4) and k < 500, then Conjecture
1.1 is true.

For any fixed positive r, there exist unique positive integers d and s such that r = ds2 and d is
square-free. Such d is call the square-free part of r, and denoted by Q(r). In this paper, using some
elementary methods, we prove a general result as follows:
Theorem 1.1. If k ≡ 3(mod 4) and Q(k − 1) ≥ 2.65 log k, then (1.1) has only the solution (x, y, z) =
(k − 1, 1, 2).

By the above theorem, we can deduce the following corollaries:
Corollary 1.1. If k ≡ 3(mod 4) and k − 1 is square-free, then Conjecture 1.1 is true.
Corollary 1.2. If k ≡ 3(mod 4) and 500 < k < 1000, then Conjecture 1.1 is true.
Corollary 1.3. Conjecture 1.1 is true for almost all positive integers k with k ≡ 3(mod 4).

2. Preliminaries

Lemma 2.1. ( [5]) Let n be an odd integer with n > 1, and let X,Y be coprime positive integers.
Further, let p be an odd prime with p - XY . If p | X+Y and pr | (Xn+Yn)/(X+Y), where r is a positive
integer, then pr | n .

Here and below, we assume that k ≡ 3(mod 4) and (1.1) has a solution (x, y, z) with (x, y, z) ,
(k − 1, 1, 2).
Lemma 2.2. ((i) of Lemma 2.5 of [3]) 2 - y and 2 | z .
Lemma 2.3. ((ii) of Lemma 2.5 of [3]) y > 3.
Lemma 2.4. (Lemma 2.6 of [3]) There exist positive integers a and b such that

2k − 1 = ab, a > b > 1, gcd(a, b) = 1 (2.1)

and
ay + by = 2kz/2. (2.2)

Lemma 2.5. ((ii) of Theorem 1.1 of [3]) a ≡ b ≡ 1 (mod 4).
Lemma 2.6. (Theorem 1.2 of [3]) k is not an odd prime power.
Lemma 2.7. ((i) of Theorem 1.1 of [3]) 2k − 1 is not an odd prime power.
Lemma 2.8. (Corollary 1.4 of [3]) k > 500.
Lemma 2.9. y < z < 2y.

Proof. We see from (1.1) that kz > (2k − 1)y > ky. So we have y < z. On the other hand, by Lemma
2.4, we get from (2.1) and (2.2) that b ≥ 3 and

2kz/2 = ay + by < 2ay = 2
(
2k − 1

b

)y

≤ 2
(
2k − 1

3

)y

< 2ky
(2.3)

Therefore, by (2.3), we obtain z < 2y. The lemma is proved. �

Lemma 2.10. (a + b)y ≥ 2.3z/2.
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Proof. Notice that 2 - y, 2 | (a+ b), a+ b > 2 and (ay + by)/(a+ b) is an odd positive integer. By (2.2),
we have

a + b = 2 f kz/2
1 ,

ay + by

a + b
= gkz/2

2 , f g = kz/2
0 ,

k = k0k1k2, f , g, k0, k1, k2 ∈ N, (2.4)

where k0 is square free, neither f nor g has z/2-th power divisors.
If k0 = 1, then from (2.4) we get f = 1, k1 > 1 and a + b = 2kz/2

1 ≥ 2 · 3z/2. Therefore, the lemma
holds for this case.

If k0 > 1, then k0 has an odd prime divisor p. Since neither f nor g has z/2-th power divisors, by
(2.4), there exists a positive integer s such that

ps | f , pz/2−s | g, 1 ≤ s <
z
2
. (2.5)

Hence, applying Lemma 2.1 to (2.4) and (2.5), we have

pz/2−s | y. (2.6)

Therefore, by (2.4) and (2.6), we get (a + b)y ≥ 2pz/2 ≥ 2 · 3z/2. The lemma is proved. �

Lemma 2.11. y < 2.65 log k, where log is the Napierian logarithm.

Proof. By Lemmas 2.9 and 2.10, we have

(a + b)y ≥ 2 · 3z/2 > 2 · 3y/2,

whence we get
y
2

log 3 < log
(
a + b

2

)
+ log y. (2.7)

Futher, by Lemma 2.5, we see from (2.1) that

a + b
2
< a =

2k − 1
b
≤

2k − 1
5
. (2.8)

Hence, by (2.7) and (2.8), we get

y <
2

log 3

(
log

(
2k − 1

5

)
+ log y

)
. (2.9)

Let
y = t log k. (2.10)

Subtitute (2.10) into (2.9), we have

t <
2

log 3

(
log ((2k − 1)/5)

log k
+

log t
log k

+
log log k

log k

)
(2.11)
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Since k ≥ 503 by Lemma 2.8, we get

log((2k − 1)/5)
log k

< 1,
log log k

log k
< 0.2939. (2.12)

Therefore, by (2.11) and (2.12), we have

t <
2

log 3

(
1.2939 +

log t
log k

)
≤

2
log 3

(
1.2939 +

log t
log 503

)
. (2.13)

Let

f (t) = t −
2

log 3

(
1.2939 +

log t
log 503

)
. (2.14)

Then we have
f ′(t) = 1 −

2
(log 3)(log 503)t

, (2.15)

where f ′(t) is the derivative of f (t). We see from (2.15) that f ′(t) > 0 for t > 2. Hence, f (t) is an
increasing function for t > 2. Notice that f (2.65) > 0. We have f (t) > 0 for t > 2.65. Thus, by (2.13)
and (2.14), we get that t < 2.65, and by (2.10), the lemma is proved. �

3. Proofs

In this section, we assume that k ≡ 3(mod 4) and (x, y, z) is a solution of (1.1) with (x, y, z) ,
(k − 1, 1, 2).

3.1. Proof of Theorem 1.1

Proof. By (1.1), we have

x2 = kz − (2k − 1)y = (1 + (k − 1))z − (1 + 2(k − 1))y

=

z∑
i=0

(
z
i

)
(k − 1)i −

y∑
j=0

(
y
j

)
(2(k − 1)) j,

whence we get
x2 ≡ (z − 2y)(k − 1)

(
mod(k − 1)2

)
. (3.1)

By the definition of the square-free part, we have

k − 1 = Q(k − 1)m2, Q(k − 1),m ∈ N, (3.2)

Q(k − 1) is square free. Hence, we see from (3.1) and (3.2) that x ≡ 0(mod Q(k − 1)m). Further, since
x2 ≡ 0(mod(Q(k − 1))2 m2) and (k − 1)2 ≡ 0(mod(Q(k − 1))2 m2), by (3.1) and (3.2), we get

z − 2y ≡ 0 (modQ(k − 1)) . (3.3)

Furthermore, by Lemma 2.9, we find from (3.3) that z − 2y , 0 and

y > 2y − z ≥ Q(k − 1). (3.4)

Therefore, combining (3.4) with Lemma 2.11, we get 2.65 logk > Q(k − 1). This implies that if
Q(k − 1) ≥ 2.65 log k, then(1.1) has no solution (x, y, z) with (x, y, z) , (k − 1, 1, 2). The theorem is
proved. �
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3.2. Proof of Corollary 1.1

Proof. Since k − 1 is square free, we have Q(k − 1) = k − 1. Therefore, by Theorem 1.1, if (1.1) has
solution (x, y, z) , (k − 1, 1, 2), then

k − 1 ≤ 2.65 log k. (3.5)

But, since k > 500 by Lemma 2.8, (3.5) is false. The corollary is proved. �

3.3. Proof of Corollary 1.2

Proof. We now assume that k ≡ 3 (mod 4), 500 < k < 1000 and (1.1) has solutions (x, y, z) with
(x, y, z) , (k − 1, 1, 2). By Theorem 1.1, we have

Q(k − 1) ≤ 2.65 log k < 2.65 log 1000 < 18.31. (3.6)

Since Q(k − 1) is square free with 2 | Q(k − 1), by (3.6), we get

Q(k − 1) ∈ {2, 6, 10, 14}. (3.7)

Further, by (3.2), we have

m =

√
k − 1

Q(k − 1)
<

√
1000

Q(k − 1)
. (3.8)

Therefore, by (3.7) and (3.8), we just have to consider the following cases:

(Q(k − 1),m, k) =(2, 17, 579), (2, 19, 723), (2, 21, 883),
(6, 11, 727), (10, 9, 901), (14, 7, 687).

(3.9)

Since 727 and 883 are odd primes, by Lemma 2.6, Conjecture 1.1 is true for k ∈ {727, 883}.
Similarly, since 1373 and 1801 are odd primes, by Lemma 2.7, Conjecture 1.1 is true for k ∈
{687, 901}.

When k = 579, we have 2k − 1 = 1157 = 13 × 89, where 13 and 89 are odd primes. Hence, by
Lemma 2.4, if (1.1) has solutions (x, y, z) with (x, y, z) , (k − 1, 1, 2) for k = 579, then we have

89y + 13y = 2.579z/2. (3.10)

But, since 2 - y, 89 + 13 = 102 = 2 × 3 × 17 and 17 - 579, (3.10) is false. Therefore, Conjecture 1.1 is
true for k = 579.

Similarly, when k = 723, we have 2k− 1 = 1445 = 5× 172, 172 + 5 = 294 = 2× 3× 72 and 7 - 723.
Therefore, 172y + 5y , 2.723x/2 and Conjecture 1.1 is true for k = 723. Thus, by (3.9), the corollary is
proved. �

3.4. Proof of Corollary 1.3

Proof. For any positive integer K, let F(K) denote the number of positive integer k with k ≤ K and
k ≡ 3 (mod 4). Then we have

F(K) =
[
k + 1

4

]
, (3.11)
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where [(k+1)/4] is the integer part of (K+1)/4. Further, let G(K) denote the number of positive integers
k such that k ≤ K, k ≡ 3 (mod 4) and k can make (1.1) has solutions (x, y, z) with (x, y, z) , (k−1, 1, 2).
By Theorem 1.1, we see from (3.2) that

G(K) ≤
∑

d

√
K − 1

d
=
√

K − 1
∑

d

1
√

d
<
√

K
∑

d

1 < 2.11
√

K log K, (3.12)

where d through all positive integers with d ≤ 2.11 log K and d is square free. Therefore, by (3.11)
and (3.12), we get

lim
K→∞

G(K)
F(K)

= 0.

This implies that Conjecture 1.1 is true for almost all positive integers k with k ≡ 3 (mod 4). The
corollary is proved. �
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5. K. Möller, Untere Schranke für die Anzahl der Primzahlen, aus denen x, y, z der Fermatschen
Geichung xn + yn = zn bestehen muss, Math. Nachr., 14 (1955), 25–28.

6. N. Terai, A note on the diophantine equation x2 + qm = cn, B. Aust. Math. Soc., 90 (2014), 20–27.

7. X. Zhang, On Terai’s conjecture, Kodai Math. J., 41 (2018), 413–420.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 10, 10596–10601.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proofs
	Proof of Theorem 1.1 
	Proof of Corollary 1.1
	Proof of Corollary 1.2
	Proof of Corollary 1.3


