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Abstract: With the rapid increase in the number of infected people in COVID-19, medical supplies 

have been increasing significantly. Medical waste treatment scheme selection may have long-term 

impacts on the economy, society, and environment. Determining the best treatment option is a 

considerable challenge. To solve this problem, in this paper, we proposed a multi-criteria group 

decision making (MCGDM) method based on single-valued neutrosophic numbers and partitioned 

Maclaurin symmetric mean (PMSM) operator. Because of the complexity of the medical waste 

treatment scheme selection problem, the single-valued neutrosophic numbers are applied to express 

the uncertain evaluation information. For the medical waste treatment scheme selection problem, the 

factors or criteria (these two terms can be interchanged.) in the same clusters are closely related, and 

the criteria in different clusters have no relationships. The partitioned Maclaurin symmetric mean 

function can handle these complicated criterion relationships. Therefore, we extend the PMSM 

operator to process the single-valued neutrosophic numbers and propose the single-valued 

neutrosophic partitioned Maclaurin symmetric mean (SVNPMSM) operator and its weighted form 

(SVNWPMSM). Then, we analyze their properties and give typical examples of the proposed 

operators. An MCGDM model based on the SVNWPMSM aggregation operator is developed and 

applied to solve the medical waste treatment scheme selection problem. Finally, the validity and 

superiority of the developed model are verified by comparing it with the previous methods. 

Keywords: single-valued neutrosophic numbers; medical waste treatment scheme; aggregation 

operators; the PMSM operator 
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1. Introduction 

The medical wastes are caused by doctors and nurses during various medical services. They may 

be the disposable syringe, disposable examination glove, and surgical mask. They have been polluted 

by bacteria and viruses. They may infect a large number of people when they are used again. Therefore, 

the medical wastes should be safely treated [1,2]. In the past years, the total amount of medical wastes 

initially increases every year. Since the horrible COVID-19 outbreaks in 2019, many persons from all 

over the world have been infected, which makes the COVID-19 pandemic [3]. Treating these patients 

that have been infected by the COVID-19 has produced massive medical wastes. As COVID-19 

spreads rapidly to many countries, the total amount of medical waste per day has increased several 

times. To cope with this global crisis, a number of new medical waste treatment plants have been built. 

Some new medical waste treatment schemes also have been developed to improve treatment efficiency. 

Because of these alternative means, the medical waste treatment efficiency has been dramatically 

increased. For example, the medical waste treatment efficiency in Wuhan city of China has been 

increased by more than five times at the beginning of 2020. 

There are several types of medical waste treatment schemes that can be evaluated and selected. 

Different medical waste treatment schemes show different features. The selection problem of medical 

waste treatment schemes requires consideration of the influences of multiple factors. Determining the 

best medical waste treatment scheme is a big challenge since each medical waste treatment scheme 

has different advantages and disadvantages [4,5]. Moreover, the process of determining the best 

medical waste treatment scheme needs a group of experts to participate. This case makes the process 

complex. Therefore, the selection problem of medical waste treatment schemes can be formulated to 

be an MCGDM (multi-criteria group decision making) problem. For the MCGDM process, the 

evaluation criteria should be determined for alternatives. Then a group of experts is invited to evaluate 

alternatives with respect to the evaluation criteria. Finally, all the evaluation information is fused to 

rank the alternatives. Due to the complexity of the selection problem of medical waste treatment 

schemes, in this paper, we introduce the tool of single-valued neutrosophic sets (SVNSs) to express 

the evaluation information of medical waste treatment schemes. SVNSs [6,7] are the generalization of 

fuzzy sets, which can represent the evaluation information in a more accurate way. 

The selection process of medical waste treatment schemes should consider multiple criteria, 

which belong to economic, social, and environmental aspects. These criteria may have 

interrelationships or be independent of each other. To process these complex interrelationships among 

criteria, a novel MCGDM method based on single-valued neutrosophic numbers (SVNNs) and 

partitioned Maclaurin symmetric mean (PMSM) operator is proposed in this paper. Our main 

contributions are listed as follows: 

(1) The PMSM operator is used to fuse the evaluation information in terms of SVNNs, and then 

a novel single-value neutrosophic PMSM (SVNPMSM) operator and its weighted form are proposed. 

Their features are also discussed. 

(2) A novel MCGDM model based on the single-value neutrosophic weighted PMSM 

(SVNWPMSM) operator is proposed to deal with the selection problem of medical waste treatment 

schemes.  
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(3) An illustrative example is provided to illustrate the implementation process of the proposed 

MCGDM model. Then, the influences of the parameters on the selection results are discussed, and 

comparative analyses are also provided. 

The rest content of this study is arranged as follows: Section 2 reviews the studies about SVNNs. 

Section 3 shows some basic information of SVNNs, including the definition, operation rules, and 

comparison method, and also gives the definition and characteristics of MSM (Maclaurin symmetric 

mean) and PMSM operators. Section 4 presents the definitions of the proposed SVNPMSM and 

SVNWPMSM operators and analyzes the relevant properties. In Section 5, a novel selection model 

based on the SVNWPMSM operator is proposed to solve the selection problem of medical waste 

treatment schemes. Section 6 uses the proposed selection model to solve a practical selection problem 

of medical waste treatment schemes. Section 7 verifies the superiority of the proposed selection model. 

Some valuable conclusions are summarized in the last section. 

2. Literature review 

The selection problem of medical waste treatment schemes is a complex decision-making 

problem. It is difficult for experts to use crisp values to evaluate the medical waste treatment schemes 

[8]. For the complex decision-making problem, the concept of fuzzy sets (FSs) [9,10] is an alternative 

for modeling uncertain information. The fuzzy sets use the degree of membership to measure the 

uncertain information. This concept was extended by Atanassov [11] using the degree of non-

membership, and the concept of intuitionistic fuzzy sets (IFSs) was designed. When expressing fuzzy 

and uncertain information, IFSs give a means that is more intuitive and effective than FSs. However, 

both IFSs and FSs do not have the ability to express inconsistent evaluation information. In this case, 

Smarandache designed the neutrosophic sets that consist of the truth degree, indeterminacy degree, 

and falsity degree [12]. The values of the truth degree, indeterminacy degree, falsity degree, and their 

sum are the non-standard interval subsets of ]0 ,[1− +
 . Since it was proposed, its decision-making 

theories and methods have been studied by researchers [13–15]. However, it is difficult to use the 

neutrosophic sets in real engineering applications. To promote the real application of neutrosophic sets, 

an extended concept of single-valued neutrosophic sets (SVNSs) was proposed by Wang et al. [16] by 

restricting the values of the truth degree, indeterminacy degree, and falsity degree to be in the interval 

[0,1]. Since its appearance, SVNSs have been used in various fields such as medical diagnosis [17], 

assessment of consumers’ motivations [18], and typhoon disaster assessment [19]. 

For the complex decision-making problem, how to aggregate or fuse the evaluation information 

is a big challenge. Information aggregation operators are an effective but simple fusion means [20,21]. 

Various aggregation operators have been proposed to fuse the evaluation information, such as OWA 

(ordered weighted averaging) operator [22], IOWLAD (induced ordered weighted logarithmic 

averaging distance) operator [23], WA (weighted averaging) operator [24], PA (power averaging) 

operator [25], and Hamacher aggregation operator [26]. However, these aggregation operators do not 

consider the relationship between the evaluation information [27]. For the complex decision-making 

problem, there exists a correlation relationship between the evaluation information. To consider this 

correlation relation, the Bonferroni mean function [28] and Heronian mean function [29] are extended 

for fusing various fuzzy evaluation information. For example, Ates et al. [30] improved the Bonferroni 

mean to fuse picture fuzzy information. Lin et al. [31] extended the Heronian mean to fuse linguistic 

q-rung orthopair fuzzy information. 

Both Bonferroni mean and Heronian mean functions only consider the correlation relationship 
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between two input values. The Maclaurin symmetric mean (MSM) [32] is an excellent mapping 

function that can capture the interrelation among evaluation information. Hence, it is more generic 

than Bonferroni mean and Heronian mean [33]. It has been extended by scholars and researchers to 

aggregate complex q-rung orthopair fuzzy sets [34], linguistic intuitionistic fuzzy numbers [26], and 

intuitionistic fuzzy soft sets [35]. Nevertheless, these criteria are not always correlated with each other. 

There may exist cluster relationships among these criteria. The criteria in the same clusters are closely 

related, but the criteria in the different clusters have no relationship. In order to cope with this complex 

interrelation, Liu et al. [32] proposed the partitioned MSM (PMSM) operator, which can not only 

capture the correlation relation among the evaluation information of criteria in the same clusters, but 

also consider the independence relation between clusters. The PMSM operator has been used to process 

2-dimensional linguistic information [36], linguistic neutrosophic information [37], q-rung orthopair 

uncertain linguistic information [38]. However, the information structure of single-valued 

neutrosophic sets is very different from 2-dimensional linguistic information, linguistic neutrosophic 

information, and q-rung orthopair uncertain linguistic information. Their research results cannot be 

simply and directly applied to the single-valued neutrosophic sets. 

3. Preliminaries 

3.1. Single-valued neutrosophic sets 

Definition 1. [12] Suppose X is the collection of discourse, the neutrosophic set p  can be denoted as:  

  , ( ), ( ), ( ) :p p pp x u x x v x x X=  , (1) 

where ( )pu x  , ( )p x  , and ( )pv x   denote truth, indeterminacy, and falsity membership function, 

respectively. The values satisfy the conditions ( ), ( ), ( ) ]0 ,[1p p pu x x v x − +   and 0 sup ( )pu x−  +

sup ( ) sup ( ) 3p px v x ++  . 

Definition 2. [12,39] Suppose X is the collection of discourse, the single-valued neutrosophic set 

(SVNS) p  is given by: 

  , ( ), ( ), ( ) :p p pp x u x x v x x X=  , (2) 

where ( ), ( ), ( ) [0,1]p p pu x x v x   . The constraint 0 ( ) ( ) ( ) 3p p pu x x v x + +    is satisfied. For 

convenience, we call , ,p p pp u v=  a single-valued neutrosophic number (SVNN). 

Definition 3. [39] Suppose , ,p p pp u v=  and , ,q q qq u v=  are any SVNNs, then the operation 

rules are defined as: 

 , , 1 ( )( ), ,p q p q p q p q p q p q p qp q u u u u v v u u v v    = + − = − 1- 1- , (3) 

 , ,p q p q p q p q p qp q u u v v v v    = + − + − , (4) 

 ( )1 1 , ,p p pp u v
   = − − , (5) 
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 ( ) ( ),1 1 ,1 1p p pp u v
   = − − − − , (6) 

 ,1 ,p p p

cp v u= − . (7) 

Definition 4. [40] Suppose , ,p p pp u v=  and , ,q q qq u v=  are any SVNNs, the score function 

( )S p  of p  is given by: 

 
2 ( ) ( ) ( )

( )
3

p p pu x x v x
S p

+ − −
= , (8) 

and the accuracy function ( )H p  of p  is given by: 

 ( ) ( ) ( ) ( )p p pH p u x x v x= + + . (9) 

Then, these two SVNNs can be compared according to the following rules: 

(1) if ( ) ( )S p S q , then p q ; 

(2) if ( ) ( )S p S q= , then 

if ( ) ( )H p H q= , then p q= , 

if ( ) ( )H p H q , then p q . 

3.2. The partitioned Maclaurin symmetric mean (PMSM) operator 

Definition 5. [41] Suppose 1 2{ , ,..., }np p p   are non-negative real numbers and k   is a parameter 

( 1,2,...,k n= ), then the mathematical expression of the Maclaurin symmetric mean (MSM) operator is 

given by: 

 ( ) 1

1/

1 1( )

1 2, , ,
j

k

k

i i n jk

n

k

i

k

n

p

MSM p p p
C

   =

  
  
  

 =
 
 
 
 

 
, (10) 

where 1 2, ,..., ki i i  is the set of k  integers extracted from the set  1,2,...,n , and 1 21 ki i i n    . 

k

nC  denotes the coefficients of the binomial and 
!

!( )!

k

n

n
C

k n k
=

−
. 

Definition 6. [32] Suppose  1 2, , , np p p  is a non-negative real number set that is divided into S  

clusters. k  is a parameter, 1,2,..., gk h= , 
gh  represents the number of criteria in the cluster 

gP . Then, 

the formula of the partitioned MSM (PMSM) operator is given by: 

 ( ) 1

1/

1 1( )

1 2

1

1
PMSM , , ,

g

j

k

g

k

s
i i h jk

n

g

k

i

k

h

p

p p p
s C

    =

=

  
  
  

 =  
 
 
 

 
 , (11) 
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where 1 2, ,..., ki i i   is the set of k   integers extracted from the set  1,2,..., gh  , and 

1 21 k gi i i h    . 
g

k

hC  denotes the coefficients of the binomial and 
!

!( )!g

g

h

g

k
h

C
k h k

=
−

. 

4. The proposed SVNPMSM operator and SVNWPMSM operator 

4.1. The SVNPMSM operator 

Definition 7. Suppose , ,  ( 1,2,..., )ii i ip u v i n= =  is a set of SVNNs, which can be divided into S  

different clusters. k  is the parameter, and 1,2,..., gk h= , 
gh  represents the number of criteria in the 

cluster 
gP . Then the SVNPMSM (single-valued neutrosophic partitioned Maclaurin symmetric mean) 

operator is given by: 

 ( )
1

1/

1 1( )

1 2
1

1
, , ,

k
j

g

g

k
k

s i i h jk

n kg
h

ip

SVNPMSM p p p
S C

    =

=

  
   

   = 
 
 
 

, (12) 

where 1 2, ,..., ki i i   is the set of k   integers extracted from the set  1,2,..., gh  , and 

1 21 k gi i i h    . 
g

k

hC  denotes the coefficients of the binomial and 
!

!( )!g

g

h

g

k
h

C
k h k

=
−

. 

Theorem 1. Suppose , ,  ( 1,2,..., )ii i ip u v i n= =  is a set of SVNNs, which can be divided into S  

different clusters. k  is the parameter, and 1,2,..., gk h= , 
gh  represents the number of criteria in the 

cluster 
gP . Then, the result of the SVNPMSM operator is still an SVNN, which is given by: 

 

( )
1

1

1

1
1

( )

1 2

1 1 1

1
1

1 1 1

, , , 1 1 1 (1 ) ,

1 1 1 (1 )

g

g

k
h

j

k

k
hg

j

k g

s

k

s C
k

n

g i i h j

k

s C

k

i

k

g i i h j

i

SVNPMSM p p p u



=     =

=     =

  
        = − − − −     

      
  

  
        − − − −            

  

  

  
1

1 1

1
1

1 1 1

, 1 1 1 (1 ) .

k
h

j

g

k g

s s

k

s C

g i i h j

k

iv
=     =

  
         − − − −                

  

  

(13) 

Proof. According to Eq (3)–(6), we have 

( ) ( )
1 1 1

1
,1 1 ,1 1

j j j j

k k

i i i i

j j

kk

j
j

vp u 
= = =

=
 −= − − −   . 
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Then we can get 

1
1 1 11

11
1 1 1 1 1

1 (1 ), 1 (1 ) , 1 (1 )( )
j j j j

k
k

g
g g gk k

i

k kk

i

k

i i i
i i h

i i h j i i h j i i h j

u vp 
   

    =     =     =
=

   
 = − − − − − −   

 


 
      , 

and 

1
1 1

1

1 1

1
1 1 1 1

1 1

1

1
1 (1 ) , 1 (1 )

                                            , 1

(

( )

)

1

g g

j j j
k g

k g k gg

j

k

k k
h h

g

C C

i i ik i i h
i i h j i i h jh

i

k kk

i h

j

j

k

i

p u
C

v


   

    =     =

    =

=

     
 = − − − −              







 
− − 



   

 

1
k

ghC 
 
 
 

. 

Further, 

1

1 1

1 1 1
1 1

1

1 1 1

1

1

1 (1 ) ,1 1 1 (1 ) ,

                                      

(

  1

)

  

j g g
k g

j j

k g k

k

g

h

g

k
h

h

k

k

k k k

C C
i i h

k
i i h

ki
j

j j

i

h

i

i iC

p

u 
   

    =     =

=

               
= − − − − − −            

         
    

−



   

1

1
1

1 1

1 1 (1 )
g

j

k

h

g

k
k

C

i i

i

h j

k

v
    =

 
   

− − −    
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 

 

. 

Furthermore, 

1

1

1

1 1
1

1

1 1 1

1
1

1

1

1 1

1
1 1 (1 ) ,

1 1 1 (1 ) , 1 1

( )
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k
h
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j g
k g
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k g
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s C
i i h
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g i i h jh
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i
g

k

i

h j

C

p

u



   

=     =

=    

=

=

=

           = − − −               

 
  



    − − − − −          
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 
      − − −          

 

  
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Thus, we can get 
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1
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
 

   
− − − −    

   
 



   

 
1

1 1

1
1

1 1 1 1

, 1 1 1 (1 )
k g

hg

j

k

s s

k

s s C

g g i i

k

h j

iv
= =     =

     
                − − − −                       

      

   

. 

According to Definition 2, it is easy to know that 

1

1

1
1

1 1 1

0 1 1 1 (1 ) 1

k
hg

j

k g

s

k

ks C

g i i h j

iu
=     =

  
        − − − −      

      
  

   , 

1

1

1
1

1 1 1

0 11 1 1 (1 )

k
hg

j

k g

s

k

s C

g

i

i i h j

k


=     =

  
        − − − −             







    , 

1

1

1
1

1 1 1

0 11 1 1 (1 )

k
hg

j

k g

s

k

s C

g

i

i i h j

k

v
=     =

  
        − − − −             







    . 

Therefore, we can get 

1 1

1 1

1 1
1 1

1 1 1 1 1 1

0 1 1 1 (1 ) 1 1 1 (1 )

1 1 1 (1

g g

j j

k g k g

j

k k
h h

s s

k k

s

i

C s C

g i i h j g i i h

k k

i

i

j

v

u 
=     = =     =

      
                       − − − − + − − − − +                                   

      

− − − −

     

1

1

1
1

1 1 1

) 3

k

g

k

h

g

s

k

s C

g i i h

k

j=     =

  
                      

  

  

. 
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According to the above proof process, the proof of Theorem 1 is completed. Then, we will discuss 

some characteristics of the SVNPMSM operator. 

Theorem 2. (Idempotency). Suppose there exist n  identical real numbers , ,p u v= . Then  

( )( ) , , ,kSVNPMSM p p p p = . 

Proof. Due to , ,p u v= , we have 

( )
1

1

1

1
1

( )

1 1 1

1

1
1

1 1 1

, , , 1 1 1 (1 ) ,

1 1 1 (1 ) ,

g

k
h

k

k
h

g

g

k g

s

k

s C
k

g i i h j

s

k

s C

g i

k

h j

k

i

SVNPMSM p p p u



=     =

=     =

  
        = − − − −     

      
  

  
        − − − −             

  

  

  
1

1

1
1

1 1 1

1 1 1 (1 )
g

k g

k
h

s

k

k

s C

g i i h j

v
=     =

  
        − − − −             

  

  

, 

( )

( )

1 1

1

1 1

1 1
1 1

1 1 1 1

1

1 1 1 (1 ) , 1 1 1 (1 ) ,

1 1 1 (1 )

g g

g

k k
h h

k

k g

kg

s s

k k

s C s C
k k

g i i h g i i h

k

i i h

u

v


=     =    

   

      
                     = − − − − − − − −               

                  
      

 
− − − −


 

   



1

1
1

1

g

k
h

s

k

s C

g=

  
   
      
     

  



, 

( ) ( )

( )

11
11

11

1 1

1

1
1

1

1 1 1 (1 ) , 1 1 1 (1 ) ,

1 1 1 (1 )

kk kk
hh h

g

h

gg g

g

h

k k

g
h

ss
kks s

CC CCk k

g g

s

k
s

C Ck

g

u

v


= =

=

    
           = − − − − − − − −      

               
     

  
     − − − −   
       

  

 



, 
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( ) ( )( ) ( )( )

1 11
1 11

1 1 1

1 1 1 (1 ) , 1 1 1 (1 ) , 1 1 1 (1 )
s ss s ss

k k kk kk

g g g

u v
= = =

        
= − − − − − − − − − − − −            

         
   , 

( ) ( ) ( )

1 1 1

1 1 1

1 1 , 1 (1 ) , 1 (1 ) , ,
s s ss s s

g g g

u v u v p 
= = =

     
= − − − − − − = =     

     
   . 

According to the above proof process, we have completed the proof of Idempotency. 

Theorem 3. (Monotonicity). Suppose that 1 2, , , np p p  and 1 2, , , nq q q  are two sets of SVNNs. If 

, ,i i iip u v= , , ,i i i iq u v =  , and satisfies , ,i i i ii iu u v v       for all 1,2,...,i n= . Then 

( ) ( )( ) ( )

1 2 1 2, ,..., , ,...,k k

n nSVNPMSM p p p SVNPMSM q q q . 

Proof. Suppose that ( )( )

1 2, ,..., , ,k

nSVNPMSM p p p u v= , ( )( )

1 2, ,..., ', ', 'k

nSVNPMSM q q q u v= . 

According to Definition 7, we get 1, 1gh k   , and 1
g

k

hC   . Firstly, let us consider the truth 

membership function part. Since 
iiu u  , then we can get 

1 1
j ji i

k k

j j

u u
= =

  . Further, we can obtain 

1 11 1 1 1 1 1

(1 ) (1 ) (1 ) (1 )
j j j

k g k g

j

k k k k

i i i i

j j i i h j i i h j

u u u u
= =     =     =

 −  −  −  −      , 

1 1

1 1

1 1 1 1

(1 ) (1 )

k k

g

j

g g

j

k

h h

g k

k C k C

i i

i i h j i i h j

u u
    =     =

   
 −  −   

   
   
    , 

1 1

1 1
1 1

1 1 1 1

1 (1 ) 1 (1 )
g g

k g k

h

g

k k
h

j j

k k

k C k C

i i

i i h j i i h j

u u
    =     =

   
      

− −  − −         




     
   

    , 

1 1

1 1
1 1

1 1 1 1 1 1

1 1 (1 ) 1 1 (1 )
g g

k g k g

k k
h h

j j

k k

s k C s k C

i i

g i i h j g i i h j

u u
=     = =     =

 

   
               − − − − − −            

            
   

      , 

1 1

1 1

1 1
1 1

1 1 1 1 1 1

1 1 1 (1 ) 1 1 1 (1 )

k k
h h

j j

g g

k g k g

s s

k k

s k C s k C

i i

g i i h j g i i h j

u u
=     = =     =

      
                     − − − −  − − − −               

                  
      

      . 

Therefore, we can get u u . Similarly, we can obtain the following inequality: ,v v     . 

Through the above analysis, we can obtain that u u   and ,v v      . Then, we can obtain 
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, , , ,u v u v     and ( ) ( )( ) ( )

1 2 1 2, ,..., , ,...,k k

n nSVNPMSM p p p SVNPMSM q q q . According to the 

detailed proof process, we have completed the proof of monotonicity. 

Theorem 4. (Boundedness). Let 1 2, , , np p p  be SVNNs, where , ,  ( 1,2,..., )ii i ip u v i n= = , and 

1max i

n

ip p+

== ,
1min i

n

ip p−

== . Then 

( )( )

1 2, ,...,k

np SVNPMSM p p p p− +  . 

Proof. Monotonicity and Idempotency of the SVNPMSM operator have been proved, so we can obtain 

( ) ( )( ) ( )

1 2, ,..., , ,...,k k

nSVNPMSM p p p SVNPMSM p p p p+ + + + = . 

Similarly, we can obtain 

( ) ( )( ) ( )

1 2, ,..., , ,...,k k

nSVNPMSM p p p SVNPMSM p p p p− − − − = . 

Therefore, we have 

( )( )

1 2, ,...,k

np SVNPMSM p p p p− +  . 

According to the above proof process, we have completed the proof of boundedness. Then, we 

introduce a lemma that will be used in the proof of Theorem 5. 

Lemma 1. Let 0, 0i i    and 
1

1
n

ii


=
= , where 1,2,...,i n= . Then, 

11

i in n

i iii

 

 
==

 . 

Theorem 5. Let , ,  ( 1,2,..., )ii i ip u v i n= =  be SVNNs, and 1,2,...,ming gk h= . The SVNPMSM 

operator decreases monotonically as the parameter k  increases. 

Proof. From the definition of the SVNPMSM operator, we have 1gh   and 1k  , which leads to 

1
g

k

hC  . 

( )
1

1

1

1
1

( )

1 2

1 1 1

1
1

1 1 1

, , , 1 1 1 (1 ) ,

1 1 1 (1 )

g

g

g

k g

k
h

j

k

k
h

j

s

k

s C
k

n

g

g

k

i

k

i i h

i

j

k

s C

i i h j

SVNPMSM p p p u



=     =

=     =

  
        = − − − −     

      
  

  
        − − − −            

  

  

  
1

1 1

1
1

1 1 1

, 1 1 1 (1 )

k
h

k

j

g

g

s s

k

s C

g i i h j

k

iv
=     =

  
         − − − −                

  

  

. 

 Suppose 
1

1

1
1

1 1 1

1 1 1 (1 )( )
g

k
h

j

gk

s

k

s C

g i i h

k

i

j

X k u
=     =

  
       − − − −     

     
  

=



   , 
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1

1

1
1

1 1 1

1 1 1 () 1 )(

k
h

j

g

k g

s

k

s C

g i i h

k

j

iY k 
=     =

  
        − − − −             

 

=



   , and 

1

1

1
1

1 1 1

1 1 1 () 1 )(

k
h

j

g

k g

s

k

s C

g i i h

k

j

ivZ k
=     =

  
        − − − −             

 

=



   . 

Next, we analyze the properties of the function ( )X k . According to Lemma 1, we have 
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1

1

11 1

1

1

k

g

gg g

jh

j

kk

C
j

i i hi

k

ik

i h h

k
j

i

u

u
C

=

       =

−
  

−    
  


  , 

1 11

1

1 1

1 11 1

1

1 1 1
j j

k

g

g gg g

h

j

k gkk

iC
j j

i i h i i hi i h

k k

ik

i k
h j h

k

u u

u
C C

= =

           =

−
  

 − −  − =   
  

 
   , 

11

1

1

11 1

ln 1 1 ln

k

g

gg g

jh

j

kk

C
j

i i hi i

k

ik

h j

i k

h

u

u
C

=

       =

 
         − −          

  
 


  , 

11

1

1

11 1

1 1
ln 1 1 ln

k

g

gg g

h j

j

kk

C
j

i i hi i

k

ik

i k
h j hk k

u

u
C

=

       =

 
         − −          

  
 


  , 
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1

11 1

1 1
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gg g

jh

j

kk

k

C
j

i i hi i h j h

k

k
ik

i k

u

u
C

=

       =

 
         − −          

  
 


  , 

11

1
1

1

1

11 1 1 1

1 1 1 1

k

g

gg gk

jh

j

k

k k
k

is C s
j

i i hg i i h

k

i

h j g
k

u

u
C

=

   =     = =

 
                 − − −  −                      

 


    . 

Therefore, we have 
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1
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1
1

1

11 1 1 1

( ) 1 1 1 1 1 1
jh

j

k

k
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g gk g

s
s

s C s
j

i i hg i i h j g h

k k
k
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i k

u

X k u
C

=

   =     = =

  
                     = − − − − − −                               



  


    . 

Then, we prove the monotonicity of ( )X k   using the contradiction method. Suppose that the 

function ( )X k  decreases monotonously with the increase of the variable k . When 1k = , we can get 

1

1
1

1
1

11

1
1 1

1

1

(1) 1 1 1 1

jj

j

k

g

g g

s
h s

s s
ij

i i hg gh

ii

g

uu

X
C h

==

   = =

                      − − = − −                             


  . 

Further, assume that the number of criteria is equal in each cluster, i. e.,  ( 1,2,..., )gh h g s= = . 

Since min g
g

h h= , we can obtain 

( )
1

1

1 1
1 1

1 1 1 1 1

min ( ) 1 1 1 1 1 1
h

j j

h

gk

s

s

j

h

h C hs s h

g i i g

i

j

g

h

g iX h X h u u
=     = = =

  
                = = − − − − − −                         

 

=



     . 

Then, according to the assumption ( ) (1)X h X , we can obtain 

1
1

1

1

1 1

1 1 1 1

1( ) 1 1 (1) 1 1 1

g

j
j

j

j

i ih

h s
h s

s

s h s s
i i

g j g

i

g g

u u

X h u X
h h

= =

= = = =

                             = − −   − − − −                                     

=

 
    , 

1

1

1

j

j

j

j

h

hh
i

i

i

i

u

u
h

=

=

 
  
   

   
   

 


 . 

However, from the above Lemma 1, we know that if 
jii u =  , 

1
i

h
 =  , then we have 

1

11

1
j j

jj

h h

h
i i

ii

u u
h ==

 
  
 
 
  , which is the opposite of Lemma 1. Therefore, the function ( )X k   decreases 

monotonically as the variable k  increases. Similarly, as the variable k  increases, the functions ( )Y k  

and ( )Z k   monotonically increase. Based on the above analysis, we can obtain 
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( ) ( 1), ( ) ( 1), ( ) ( 1)X k X k Y k Y k Z k Z k +  +  +  . Then, we can get 

( ) ( )( ) ( 1)

1 2 1 2, ,..., , ,...,k k

n nSVNPMSM p p p SVNPMSM p p p+  . Therefore, it is proved that the 

SVNPMSM operator will decrease monotonically as the variable k  increases. 

Then, several special examples of the SVNPMSM operator are briefly described. 

(1) When the number of clusters 1S = , it means that no cluster is required among the criteria. 

The SVNPMSM operator will become the single-valued neutrosophic Maclaurin symmetric mean 

(SVNMSM) operator: 

( )
111

1

1/ 1/

1 1 1 1( )

1 1 2, , ,
k

j j
k

k k
k k

i i h j i i

h

i i
n jk

s n k k

n

p p

SVNPMSM p p p
C C

    =     =

=

      
         

       =
   
   
 

=

 

. 

(2) When the parameter 1k =  , the SVNPMSM operator will become the single-valued 

neutrosophic partitioned mean (SVNPM) operator: 

( )
1

1/1
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1 1(1)

1
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, , ,
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g
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h
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n
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SVNPMSM p p p
S C S h

    =

=

=

=

    
      

     =  
   

  
  

= . 

(3) When the parameter 2k =  , the SVNPMSM operator will become the single-valued 

neutrosophic PBM (SVNPBM) operator ( 1p q= = ): 

( )
1
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1
1 1(2)

1 2
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2 1 ( 1)
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1 1
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i

h

i
i ii

g

i i

n

g

j

g
g

p p
p

SVNPMSM p p p
S C S h h

=
    =

=



=

 
            =    






=
  

  


−



. 

4.2. The SVNWPMSM operator 

Definition 8. Suppose , ,  ( 1,2,..., )ii i ip u v i n= =  is a set of SVNNs, which can be divided into S  

clusters. k  is a parameter, and 1,2,..., gk h= , 
gh  represents the number of criteria in the cluster 

gP . 

i   denotes the weight of ip   that satisfies the condition 0 1i    and 
1

1
n

i

i


=

=  . Then the 

SVNWPMSM (single-valued neutrosophic weighted partitioned Maclaurin symmetric mean) operator 

is given by: 
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1/

1 1( )
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, , ,
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s

k

i h jk
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SVNWPMSM p p p
S C


    =

=

  
   

   = 
 
 
 

, (14) 

where 1 2, ,..., ki i i   is the set of k   integers extracted from the set  1,2,..., gh  , and 
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1 21 k gi i i h    . 
g

k

hC  denotes the coefficients of the binomial and 
!

!( )!g

g

h

g

k
h

C
k h k

=
−

. 

Theorem 6. Suppose , ,  ( 1,2,..., )ii i ip u v i n= =  is a set of SVNNs, which can be divided into S  

different clusters. k  is the parameter, and 1,2,..., gk h= , 
gh  represents the number of criteria in the 

cluster 
gP  . i   is the weight of ip   satisfying the following constraints 0 1i    and 

1

1
n

i

i


=

=  . 

Then, the result of the SVNWPMSM operator is still an SVNN that is given by: 
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  
          = − − − − − −               

  

 
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   

 

(15) 

Theorem 7. Let 1 2, , , np p p   be a set of SVNNs, and 1,2,...,ming gk h=  . As the parameter k  

decreases, the SVNWPMSM operator monotonically increases. 

Similarly, the SVNWPMSM operator also has the characteristics of idempotency, boundedness, 

and monotonicity. In the following part, we will present some typical examples of the SVNWPMSM 

operator. 

(1) When the number of clusters 1S = , it indicates that there are no clusters among criteria. The 

proposed SVNWPMSM operator will change to the single-valued neutrosophic weighted Maclaurin 

symmetric mean (SVNWMSM) operator: 

( )
1 1 1

1

1/ 1/

1 1 1 1( )

1 1 2, , ,
j

k
j j j

k

k k
k k

i i h j i i n jk

s

h

i i i i

kn k

n

p p

SVNWPMSM p p p
C C

 
    =     =

=

      
         

       =
   
  

  

=




. 

(2) When the parameter 1k =  , the SVNWPMSM operator will become the single-valued 

neutrosophic weighted partitioned mean (SVNWPM) operator: 

( )
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1/1
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     =  
   

 


=

 
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. 

(3) When the parameter 2k =  , the SVNWPMSM operator will become the single-valued 

neutrosophic weighted PBM (SVNWPBM) operator: 
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

 
            =    

    
 



 

=



−
. 

5. A novel MCGDM model using the proposed SVNWPMSM operator 

The proposed SVNWPMSM operator can efficiently handle the complex relationship among 

criteria, so we apply it to solve the MCGDM problem. Let us suppose that 1 2{ , ,..., }m   =  is a set 

of alternatives and 1 2{ , ,..., }n   =  is a group of criteria.  1 2, ,...,
T

n   =  denotes the weight 

vector of the criteria, which satisfies the following constraints 0 1 ( 1,2,..., )j j n  =   and 

1
1

n

jj


=
=  . The evaluation of alternatives is performed by a group of decision-makers 

1 2{ , ,..., }eD D D D= . The weight vector of each decision-maker ( 1, 2,..., )lD l e=  is  1 2, ,...,
T

e   = , 

which satisfies the constraint 0 1 ( 1,2,..., )l l e  =   and 
1

1
e

ll


=
=  . The decision-maker lD  

evaluates the alternative i  according to the criteria 
j  and generates the evaluation matrix lX  of 

SVNNs, where [ ] , ,l l l l l

ij m n ij ij ij m n
X u v  

= =  . The criteria 
j   can be divided into S   clusters 

1 2, ,..., sP P P  according to certain rules, and it satisfies the constraints 
r gP P =  and 

1

s

r rP = = . 

We developed a novel MCGDM model using the SVNWPMSM operator to fuse the evaluation 

matrices. The detailed steps of the model are shown in the following part. 

Step 1: Standardization of the evaluation information. 

In the MCGDM problem, the criteria may be either benefit type or cost type. For subsequent 

processing, the data of cost type needs to be converted to be benefit type. Assume that 

[ ] , ,l l l l l

ij m n ij ij ij m n
Y T I F  

= =  is a standardized evaluation matrix. The evaluation matrix is normalized 

in the following way. 

 
, ,    the benefit criterion of 

, ,
,1 ,    the cost criterion of 

l l l

ij ij ij jl l l l

ij ij ij ij l l l

ij ij ij j

u v for
T I F

v u for

 


 




= = 
−

, (16) 

where 1 ,1 ,1i m j n l e      . 

Step 2: Calculate the aggregation values of criteria of alternatives. 

According to Theorem 6, the aggregated values are obtained by calculating the evaluation vector 
l

i  for each alternative i , where ( )( )

1 2, , , , ,l l l l k l l l

i i i i i i inT I F SVNWPMSM   = =  . 
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( ) ( )
1

1

1

1
1

( )

1 2

1 1 1

1

1 1

, , , 1 1 1 1 1 1 ,

1 1 1 1 ( )

j h

j

g

h
j

k

g

i

r

k

g

g

i

r

j

s

s C
k l l l l

k

k

k

i i in

g i i h

C
l

i i h

SVNWPMSM T

I

















  
=     =

    =

  
          = − − − − − −               

  


   

− − − −       


  

 
1

1 1

1 1
1

1 1 1 1

1 1 1 1 (, .)
h

j

ji

r g

k

g

s s

s s C
l

g g i i

k k

k

h

F 





= =     =

      
                    − − − −                              

      

   

(17) 

where S   denotes the number of clusters, 
gh   is the number of criteria in the cluster 

gP  . k   is a 

parameter, 
q

   is the weight of the criterion ( 1,2,..., )j gj h
  =  , and 

( )
!

! !gh

k g

g

h
C

k h k
=

−
  is the 

binomial coefficient. 

Step 3: Calculate the aggregation value of the evaluation information of decision-makers. 

According to Theorem 6, the aggregated values are obtained by calculating the overall evaluation 

value
i  for alternative 

i , where ( )( ) 1 2, , , , ,k e

i i i i i i iT I F SVNWPMSM   = =  : 

( ) ( )( )

( )

1

1

1

1
1

( ) 1 2

1 1 1

1
1

1 1

, , , 1 1 1 1 1 1 ,

1 1 1 1 ( )

k
h

l

g

k
h

g

r

g
l

gr

C
lk e

i i i i

g i i h

C
l

i

i i

k

d k

k

h

d

k

SVNWPMSM T

I



 









  
=     =

    =

  
         = − − − − − −             

  

 
      − − − −          



  

  ( )
1

1 1

1
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g
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k
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l

g
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l

i

g g i i h

d d

k
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

= =     =

    
              − − − −                     

     

   

(18) 

where d  represents the number of clusters, and decision-makers usually do not need to be partitioned, 

i.e., 1d = . 
gh  denotes the number of decision-makers in the cluster 

gP . k  is a parameter, and 
l
  

denotes the weight of lD

. 

Step 4: Choose the optimal alternative. 

In order to obtain the best alternative, the score function ( )iS   of  (1 )i i m    needs to be 

calculated. Then, the score functions 1( )S  , 2( )S  , …, ( )mS   are compared according to Definition 4, 

and the optimal alternative is selected. 

6. Case study 

In this section, the developed MCGDM model is applied to solve the medical waste treatment 
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schemes selection problem. 

6.1. Illustrate example 

Medical waste treatment schemes selection is a critical problem in the field of environmental 

protection. This problem is a crisis looming, especially after the outbreak of the COVID-19. To validate 

the effectiveness of the proposed MCGDM model, we illustrate an example from Fuzhou city, China. 

Fuzhou is located in the eastern part of China, with a population of more than 8 million. About 2 tons 

of medical wastes were produced in Fuzhou per day. Currently, medical wastes are mainly treated by 

incineration. Incineration has caused many problems for people living near the medical waste treatment 

stations. Therefore, the authorities are considering new solutions for the treatment of medical wastes. 

This study provides the authorities with four available schemes: Depositing in landfills ( 1  ), 

Gasification ( 2  ), Autoclaving ( 3  ), and Microwaving ( 4  ). To evaluate the above medical waste 

treatment schemes, we define seven main sustainability criteria: emission ( 1 ), investment cost ( 2 ), 

energy recovery ( 3 ), operation cost ( 4 ), efficiency in waste reduction ( 5 ), technology accessibility 

( 6  ), and employment potential ( 7  ). Then, we consulted with the MWMB (Medical Waste 

Management Board) and determined the weight vector of the above criteria as 

(0.1,0.2,0.2,0.1,0.1,0.2,0.1)T =  . The criteria emission, energy recovery, efficiency in waste 

reduction, and technology accessibility describe the technical aspects of the medical waste treatment 

schemes. The criteria investment cost, operation cost, and employment potential refer to the economic 

aspects of the medical waste treatment schemes. Thus, we divided the criteria into two clusters: 

 1 1 3 5 6, , ,P    =  and  2 2 4 7, ,P   = . To ensure the rationality of the medical waste treatment 

schemes selection result, we invited three experts from different fields. The invited experts have rich 

experience in medical waste treatment. According to the experts from different fields, the weight vector 

of the expert ( 1,2,3)lD l =   is determined as (0.4,0.3,0.3)T =  . Each expert lD   evaluated the 

medical waste treatment schemes and gave the evaluation matrix 
4 7

( )1, 2,3l l

ij l 


= =   , as shown 

in Tables 1–3. 

Table 1. The evaluation matrix 
1  supplied by 1D . 

 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 

δ

1 

<0.9,0.2,0.2

> 

<0.6,0.3,0.2

> 

<0.5,0.4,0.1

> 

<0.6,0.4,0.1

> 

<0.5,0.2,0.2

> 

<0.9,0.2,0.1

> 

<0.6,0.4,0.2

> 

δ

2 

<0.8,0.3,0.2

> 

<0.7,0.3,0.2

> 

<0.7,0.2,0.2

> 

<0.5,0.4,0.1

> 

<0.6,0.4,0.3

> 

<0.5,0.3,0.2

> 

<0.8,0.3,0.2

> 

δ

3 

<0.6,0.4,0.1

> 

<0.8,0.4,0.2

> 

<0.6,0.3,0.1

> 

<0.7,0.3,0.2

> 

<0.7,0.2,0.2

> 

<0.6,0.4,0.2

> 

<0.6,0.4,0.3

> 

δ

4 

<0.7,0.3,0.3

> 

<0.9,0.1,0.1

> 

<0.4,0.1,0.2

> 

<0.8,0.2,0.1

> 

<0.5,0.3,0.2

> 

<0.7,0.4,0.1

> 

<0.5,0.2,0.2

> 
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Table 2. The evaluation matrix 2  supplied by 2D . 

 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 

δ

1 

<0.8,0.2,0.2

> 

<0.6,0.3,0.2

> 

<0.5,0.3,0.1

> 

<0.7,0.2,0.3

> 

<0.4,0.5,0.2

> 

<0.7,0.3,0.2

> 

<0.8,0.2,0.3

> 

δ

2 

<0.7,0.4,0.3

> 

<0.7,0.2,0.1

> 

<0.6,0.4,0.1

> 

<0.8,0.3,0.1

> 

<0.5,0.3,0.3

> 

<0.6,0.4,0.3

> 

<0.7,0.2,0.2

> 

δ

3 

<0.5,0.3,0.3

> 

<0.6,0.5,0.3

> 

<0.7,0.4,0.1

> 

<0.4,0.6,0.1

> 

<0.8,0.4,0.1

> 

<0.7,0.4,0.2

> 

<0.5,0.4,0.3

> 

δ

4 

<0.6,0.4,0.1

> 

<0.9,0.2,0.2

> 

<0.8,0.3,0.1

> 

<0.7,0.3,0.1

> 

<0.9,0.2,0.2

> 

<0.5,0.5,0.1

> 

<0.6,0.3,0.1

> 

Table 3. The evaluation matrix 
3  supplied by 3D . 

 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 

δ

1 

<0.7,0.3,0.3

> 

<0.6,0.2,0.1

> 

<0.5,0.4,0.3

> 

<0.6,0.1,0.1

> 

<0.5,0.5,0.3

> 

<0.3,0.6,0.3

> 

<0.9,0.2,0.1

> 

δ

2 

<0.6,0.2,0.2

> 

<0.7,0.3,0.1

> 

<0.6,0.2,0.1

> 

<0.6,0.2,0.3

> 

<0.5,0.2,0.1

> 

<0.8,0.3,0.2

> 

<0.6,0.3,0.2

> 

δ

3 

<0.4,0.5,0.3

> 

<0.5,0.4,0.2

> 

<0.6,0.3,0.2

> 

<0.4,0.3,0.2

> 

<0.6,0.4,0.1

> 

<0.6,0.5,0.1

> 

<0.5,0.5,0.3

> 

δ

4 

<0.8,0.3,0.2

> 

<0.6,0.3,0.2

> 

<0.5,0.5,0.2

> 

<0.7,0.2,0.3

> 

<0.8,0.2,0.2

> 

<0.5,0.2,0.2

> 

<0.5,0.3,0.1

> 

6.2. Steps to address the selection problem of medical waste treatment schemes 

Step 1: Standardization of the evaluation information. 

According to the description of the criteria ( 1,2,...,7)j j = , all of them are benefit types. Thus, 

there is no need to normalize the evaluation matrix. Then, we can get that 

, , , ,l l l l l l l l

ij ij ij ij ij ij ij ijT I F u v  = = = . 

Step 2: Calculate the aggregation values of the criteria of medical waste treatment schemes. 

We can use Eq (17) to obtain the aggregation values l

i  of the criteria of medical waste treatment 

scheme i , where 1 4,  1 3i l    . Since the criteria are divided into two clusters, the number of 

clusters 2S = . Assume that the parameter 2k = , then the aggregation values of the criteria of medical 

waste treatment schemes are obtained as follows: 

1 2 3

1 1 1

1 2 3

2 2 2

1 2

3 3

(0.1474,0.8432,0.7720), (0.1368,0.8388,0.8091), (0.1220,0.8402,0.7907);

(0.1347,0.8550,0.7978), (0.1411,0.8474,0.7909), (0.1294,0.8233,0.7824);

(0.1407,0.8606,0.7932), (0.1231

  

  

 

= = =

= = =

= = 3

3

1 2 3

4 4 4

,0.8917,0.7919), (0.0956,0.8842,0.7921);

(0.1478,0.8096,0.7740), (0.1686,0.8312,0.7530), (0.1217,0.8331,0.8012).



  

=

= = =

 

Step 3: Calculate the aggregation value of the evaluation information of decision-makers. 
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We apply Eq (18) to calculate the aggregation values i   of the evaluation information of 

decision-makers. The number of clusters 1d =  since the decision-makers usually do not need to be 

clustered. Assume the parameter 2k =  , the aggregation values of the evaluation information of 

decision-makers are obtained as follows: 

1 2

3 4

(0.0472,0.9442,0.9249), (0.0470,0.9448,0.9251),

(0.0415,0.9579,0.9258), (0.0521,0.9379,0.9195).

 

 

= =

= =
 

Step 4: Choose the optimal medical waste treatment scheme. 

The score values ( )iS   of the aggregation values i  are obtained as follows: 

1 2 3 4( ) 0.0594, ( ) 0.0590, ( ) 0.0526, ( ) 0.0649S S S S   = = = = . 

Then, we compare the above score values ( )iS   , where 1 4i   . Since 

4 1 2 3( ) ( ) ( ) ( )S S S S       , the medical waste treatment schemes can be ranked as 

4 1 2 3     , where the symbol     indicates  preferred to . Therefore, the optimal medical 

waste treatment scheme is Microwaving ( 4 ). 

6.3. The effects of variable S and parameter K on the ranking results 

According to the above example, we will discuss the influence of the cluster number S  and the 

parameter k  on the ranking results. Different values of the cluster number S  may lead to changes in 

the morphology of the proposed operator. For example, when 1S =  , the proposed SVNWPMSM 

operator will change to the SVNWMSM operator. Moreover, it is known from Theorem 7 that the 

SVNWPMSM operator monotonically increases as the parameter k  decreases. We assign different 

values to the cluster number S  and parameter k  in the above example. The effects of S  and k  on 

the ranking results of medical waste treatment schemes are discussed. Table 4 shows the ranking results 

obtained by the proposed SVNWPMSM operator when the cluster number S  and the parameter k  

take different values. 

Table 4. The ranking results for different S  and k . 

S and k Score values Ranking results 

1, 1S k= =  1 2 3 4( ) 0.0630, ( ) 0.0614, ( ) 0.0573, ( ) 0.0692S S S S   = = = =  4 1 2 3     

1, 2S k= =  1 2 3 4( ) 0.0599, ( ) 0.0598, ( ) 0.0546, ( ) 0.0663S S S S   = = = =  4 1 2 3     

2, 1S k= =  1 2 3 4( ) 0.0630, ( ) 0.0615, ( ) 0.0562, ( ) 0.0692S S S S   = = = =  4 1 2 3     

2, 2S k= =  1 2 3 4( ) 0.0594, ( ) 0.0590, ( ) 0.0526, ( ) 0.0649S S S S   = = = =  4 1 2 3     

2, 3S k= =  1 2 3 4( ) 0.0573, ( ) 0.0576, ( ) 0.0503, ( ) 0.0620S S S S   = = = =  4 2 1 3     

From Table 4, we can get the following information: 

(1) When the cluster number 1S =  or 2S = , the score value ( )iS   decreases monotonically as 

the value of the parameter k  increases. 
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(2) When the parameter 1k =   or 2k =  , the ranking result of the medical waste treatment 

schemes is 4 1 2 3     and the optimal scheme is 4 . 

(3) When the parameter 3k = , the ranking result is 4 2 1 3     and the optimal scheme is 

4 . 

Obviously, when the cluster number S  or the parameter k  is changed, the ranking result of the 

medical waste treatment schemes may change, but the optimal scheme keeps unchanged, i.e., 4 . As 

shown in Table 4, the change of the value of the parameter k  may lead to the change of the ranking 

results of medical waste treatment schemes. The parameter k   is a reflection of the expert's risk 

preference. The reference value of k  is 0.5 min g gh  =   , where the symbol [] indicates rounding 

off the data in the symbol and 
gh  is the number of criteria in the cluster 

gP . If k  is greater than  , 

it means that the decision-maker is aggressive. If k  is less than  , it means that the decision-maker 

is conservative. If k  is equal to  , it means that the decision-maker is neutral. 

7. Verification and comparative analysis 

In this section, the validity, reliability, and other advantages of the proposed MCGDM model 

based on the SVNWPMSM operator are verified. For comparison, we apply the previous methods, 

such as Peng et al.'s [40] method and Wang et al.'s [33] method, to solve the medical waste scheme 

selection problem in Fuzhou. Table 5 shows the ranking results of the medical waste treatment schemes. 

We compare the ranking results obtained by the previous methods with the ranking results obtained by 

the proposed MCGDM model. 

Table 5. Ranking results obtained by different methods 

Operators Score values Sorting results 

SVNWA [40] 1 2 3 4( ) 0.7343, ( ) 0.7255, ( ) 0.6898, ( ) 0.7686S S S S   = = = =  4 1 2 3     

SVNWG [40] 1 2 3 4( ) 0.6924, ( ) 0.7064, ( ) 0.6712, ( ) 0.7395S S S S   = = = =  4 2 1 3     

LNWBM [33] 1 2 3 4( ) 0.8047, ( ) 0.8042, ( ) 0.7620, ( ) 0.8423S S S S   = = = =  4 1 2 3     

LNWPBM [33] 1 2 3 4( ) 0.8096, ( ) 0.8089, ( ) 0.7552, ( ) 0.8453S S S S   = = = =  4 1 2 3     

SVNWPMSM  

(S=1 and k=1) 
1 2 3 4( ) 0.0630, ( ) 0.0614, ( ) 0.0573, ( ) 0.0692S S S S   = = = =  4 1 2 3     

SVNWPMSM  

(S=1 and k=2) 
1 2 3 4( ) 0.0599, ( ) 0.0598, ( ) 0.0546, ( ) 0.0663S S S S   = = = =  4 1 2 3     

SVNWPMSM  

(S=1 and k=3) 
1 2 3 4( ) 0.0582, ( ) 0.0589, ( ) 0.0530, ( ) 0.0647S S S S   = = = =  4 2 1 3     

SVNWPMSM  

(S=2 and k=1) 
1 2 3 4( ) 0.0630, ( ) 0.0615, ( ) 0.0562, ( ) 0.0692S S S S   = = = =  4 1 2 3     

SVNWPMSM  

(S=2 and k=2) 
1 2 3 4( ) 0.0594, ( ) 0.0590, ( ) 0.0526, ( ) 0.0649S S S S   = = = =  4 1 2 3     

SVNWPMSM  

(S=2 and k=3) 
1 2 3 4( ) 0.0573, ( ) 0.0576, ( ) 0.0503, ( ) 0.0620S S S S   = = = =  4 2 1 3     
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(1) Comparative analysis of the proposed MCGDM model with Peng et al.’s [40] method 

Peng et al.'s method [40] uses the single-valued neutrosophic weighted averaging (SVNWA) 

operator and the single-valued neutrosophic weighted geometric (SVNWG) operator to aggregate the 

evaluation information. The ranking results obtained by Peng et al.’s method [40] and the proposed 

MCGDM model are shown in Table 5. The ranking results of SVNWA tend to the medical waste 

treatment scheme that owns the largest evaluation information value. In contrast, the ranking results 

of SVNWG tend to the medical waste treatment scheme with the smallest weight value of the 

evaluation information. Therefore, their ranking results are different. The ranking results from Peng et 

al.'s method using the SVNWA operator are the same as those from the proposed MCGDM model 

(when 1k =  or 2k = ), i.e., 4 1 2 3    . The ranking results of Peng et al.'s method using the 

SVNWG operator are the same as those of the proposed MCGDM model (when 3k =  ), i.e., 

4 2 1 3    . The best and worst medical waste treatment schemes of Peng et al.'s method [40] 

are the same as those of the proposed MCGDM model. This proves the practicality and effectiveness 

of the proposed model. 

(2) Comparative analysis of the proposed MCGDM model with Wang et al.’s method [33] 

Wang et al.'s method [33] uses the linguistic neutrosophic weighted Bonferroni mean (LNWBM) 

operator and linguistic neutrosophic weighted partitioned Bonferroni mean (LNWPBM) operator to 

process the evaluation information. From Table 5, we can see that the ranking results of Wang et al.'s 

method [33] using LNWBM operator and LNWPBM operators are the same as those of the proposed 

MCGDM model (when 1k =  or 2k = ), i.e., 4 1 2 3    . While the ranking results of Wang et 

al.'s method using LNWBM and LNWPBM operators are different from those of the proposed 

MCGDM model (when 3k = ). Then, we analyze the above situation in detail. Both the LNWBM 

operator and LNWPBM operator can capture the interrelationship between two criteria. The 

LNWPBM operator can handle the situation where the criteria need to be divided into different clusters, 

while the LNWBM operator cannot handle the above situation. The proposed MCGDM method can 

deal with the case where the criteria in the same cluster are closely related and the criteria in different 

clusters have no relationships. When 1k =  or 2k = , the ranking results obtained by Wang et al.'s 

method and the proposed MCGDM model are the same. It proves the practicality of the proposed 

MCGDM model. In addition, when 3k = , the ranking results obtained by Wang et al.'s approach [33] 

and the proposed model are different. The reason is that Wang et al.'s method can only capture the 

correlation relation between two criteria, but cannot handle the case where there are interrelationships 

among criteria in the same cluster. For the above illustrate example, four criteria  1 3 5 6, , ,     are 

closely related and the other three criteria  2 4 7, ,    are closely related. Wang et al.’s method [33] 

can only consider the correlation relation between any two criteria in these two clusters, while the 

proposed MCGDM model can capture the interrelationships among all the criteria in each cluster. 

Therefore, the proposed MCGDM model shows better performance in terms of ranking results. 

8. Conclusions 

During the outbreak of COVID-19, it is a big challenge to dispose of a large number of medical 

wastes. This paper proposes a novel MCGDM model to solve the medical waste treatment schemes 

selection problem to improve medical waste treatment efficiency. The proposed MCGDM model is 

composed of three main phases. In the first phase, the SVNNs are used to represent the evaluation 

information provided by the experts. In the second phase, we extend the PMSM operator to process 
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SVNNs, and propose the SVNWPMSM operator. In the third phase, we propose a novel MCGDM 

model using the SVNWPMSM operator. Then we apply the proposed MCGDM model to solve the 

medical waste treatment schemes selection problem in Fuzhou city, China. The reliability and 

superiority of the proposed MCGDM model are verified by comparing it with the previous methods. 

The proposed MCGDM model can instruct the government management department to choose 

the best treatment scheme. In addition, the proposed MCGDM model can also be applied to solve the 

decision-making problems in other fields, such as site selection, energy management, and production 

evaluation. 
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