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Abstract: In this paper, we prove Hamilton type gradient estimates for positive solutions to a general
type of nonlinear parabolic equation concerning V-Laplacian:

(Ay = q(x, 1) = dpu(x, 1) = A(u(x, 1))

on complete Riemannian manifold (with fixed metric). When V = 0 and the metric evolves under the
geometric flow, we also derive some Hamilton type gradient estimates. Finally, as applications, we
obtain some Liouville type theorems of some specific parabolic equations.
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1. Introduction

Gradient estimates are very powerful tools in geometric analysis. In 1970s, Cheng-Yau [3] proved
a local version of Yau’s gradient estimate (see [25]) for the harmonic function on manifolds. In [16],
Li and Yau introduced a gradient estimate for positive solutions of the following parabolic equation,

(A —q(x,t) —0pu(x, 1) =0, (1.1)

which was known as the well-known Li-Yau gradient estimate and it is the main ingredient in the
proof of Harnack-type inequalities. In [10], Hamilton proved an elliptic type gradient estimate for heat
equations on compact Riemannian manifolds, which was known as the Hamilton’s gradient estimate
and it was later generalized to the noncompact case by Kotschwar [15]. The Hamilton’s gradient
estimate is useful for proving monotonicity formulas (see [9]). In [22], Souplet and Zhang derived
a localized Cheng-Yau type estimate for the heat equation by adding a logarithmic correction term,
which is called the Souplet-Zhang’s gradient estimate. After the above work, there is a rich literature on
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extensions of the Li-Yau gradient estimate, Hamilton’s gradient estimate and Souplet-Zhang’s gradient
estimate to diverse settings and evolution equations. We only cite [1,8, 11,12, 18,19, 24,28, 31] here
and one may find more references therein.

An important generalization of the Laplacian is the following diffusion operator

Ay-=A+(V, V)

on a Riemannian manifold (M, g) of dimension n, where V is a smooth vector field on M. Here V and A
are the Levi-Civita connenction and Laplacian with respect to metric g, respectively. The V-Laplacian
can be considered as a special case of V-harmonic maps introduced in [5]. Recall that on a complete
Riemannian manifold (M, g), we can define the co-Bakry-Emery Ricci curvature and m-Bakry-Emery
Ricci curvature as follows [6,20]

1
RiCV = Ric — ELVg, (12)

Ricy = Ricy - VeV, (1.3)

m-—n
where m > n is a constant, Ric is the Ricci curvature of M and Ly denotes the Lie derivative along
the direction V. In particular, we use the convention that m = n if and only if V = 0. There have
been plenty of gradient estimates obtained not only for the heat equation, but more generally, for other
nonlinear equations concerning the V-Laplacian on manifolds, for example, (4, 13,20,27,32].

In [7], Chen and Zhao proved Li-Yau type gradient estimates and Souplet-Zhang type gradient
estimates for positive solutions to a general parabolic equation

(Ay = q(x, 1) = du(x, 1) = A(u(x, 1)) (1.4)

on Mx[0, T] with m—Bakry—Emery Ricci tensor bounded below, where g(x, ) is a function on M x[0, T']
of C? in x-variables and C!' in t-variable, and A(u) is a function of C? in u. In the present paper,
by studying the evolution of quantity u3 instead of Inu, we derive localised Hamilton type gradient
estimates for %. Most previous studies cited in the paper give the gradient estimates for @. The

main theorems are below.

Theorem 1.1. Let (M", g) be a complete Riemannian manifold with
Ricy > —(m — DK,

for some constant K; > 0 in B(x, p), some fixed point x in M and some fixed radius p. Assume that
there exists a constant Dy > 0 such that u € (0, D] is a smooth solution to the general parabolic Eq
(1.4) in Qs 1,-1, = B(x,2p) X [Ty, T], where T\ > T. Then there exists a universal constant c(n) that
depends only on n so that

1

\Y -DVK, 2m-1 1
M <c(n)+/D; ((m ) VK, + n — + + max |Vq|§)
Vu Jol Jo, t—=Ty Qpr -1,

(1.5)

+34D; ((m— DK, + max 9 min {o, min (A’(u) - M)})

pT1-Tp Qp,Tl ) 2”

in Q%,TI—TO with t * T().
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Remark 1.1. Hamilton [10] first got this gradient estimate for the heat equation on a compact manifold.
We also have Hamilton type estimates if we assume that Ricy > —(m — 1)K for some constant K; > 0,
and notice that Ricy > —(m — 1)K, is weak than Ric}, > —(m — 1)K,. Since we do not have a good
enough V-Laplacian comparison for general smooth vector field V, we need the condition that |V] is
bounded in this case. Nevertheless, when V = Vf, we can use the method given in [23] to obtain all
results in this paper, without assuming that |V| is bounded.

If ¢ = 0 and A(u) = aulnu, where a is a constant, then following the proof of Theorem 1.1 we have
Corollary 1.2. Let (M", g) be a complete Riemannian manifold with
Ricy > —(m - 1)K,

for some constant K| > 0 in B(X, p), some fixed point x in M and some fixed radius p. Assume that u is
a positive smooth solution to the equation

ou=Ayu—aulnu (1.6)
in QZP,TI*TO = B(}, 2,0) X [To, T], where Ty > T).
(1) When a > 0, assuming that 1 < u < Dy in Q», 1,-1,, there exists a constant ¢ = c(n) such that
\Y - 1)2K V2m — 1 1
MSC\/DI o[ m 2) P el Y
u P P Vi—T,

+[20m - DK, - 2a|5] (1.7)

in Q%,TI_TO Wlth t 7& TO.
(2) When a < 0, assuming that 0 < u < Dy in Q», 1,-1,, there exists a constant ¢ = c(n) such that

L (m— 1)2K1 V2m - 1

=1y

'Vul (1.8)

1
+[20m — DK; — a2 + InDy)|*

il’l Q%,TI_TO Wlth t# TO.
Using the corollary, we get the following Liouville type result.

Corollary 1.3. Let (M",g) be a complete Riemannian manifold with Ricy, > —(m — 1)K, for some
constant Ky > 0. Assume that u is a positive and bounded solution to the Eq (1.6) and u is independent
of time.

(1) When a > 0, assume that 1 <u < Dy. Ifa= (m— 1)K, thenu = 1.

(2) When a < 0, assume that 0 < u < exp{-2 + W}, then u does not exist.

Remark 1.2. When V = 0, Ay and Ricy, become A and Ric, respectively. It is clear that Corollary
1.2—1.3 generalize Theorem 1.3 and Corollary 1.1 in [14].

We can obtain a global estimate from Theorem 1.1 by taking p — O.

Corollary 1.4. Let (M",g) be a complete Riemannian manifold with Ricy, > —(m — 1)K, for some
constant Ky > 0. u is a positive smooth solution to the general parabolic Eq (1.4) on M" x [T, T1].
Suppose that u < Dy on M" X [Ty, T ). We also suppose that

' A(u)

A()_Z_u lq]

Dy 5 <D IVqli < D4
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on M" x [Ty, T,]. Then there exists a universal constant c that depends only on n so that

'Yf”' <c(m) Dy (t_l

u_

1
2

+D4)2 +3\/D_1((m— DK, +D3+D2) (1.9)

Ty
in M" X [Ty, T, witht # T,.

Let A(u) = a(u(x, 1))’ in Corollary 1.4, we obtain Hamilton type gradient estimates for bounded
positive solutions of the equation

(Ay — g(x,t) — d)u(x,t) = a(u(x, t))'B, a€R, B € (—00,0]U [%, +00). (1.10)

Corollary 1.5. Let (M",g) be a complete Riemannian manifold with Ricy, > —(m — 1)K, for some
constant Ky > 0. u is a positive smooth solution to (1.10) on M" X [Ty, T,]. Suppose that u < D; on
M" x [Ty, T1]. We also suppose that

|—Z| < D;s, |V6]|% <Dy

on M" X [Ty, T,]. Then in M" X [Ty, T ] with t # T, there exists a universal constant c that depends
only on n so that

1 1

\Y 1 2 1
M SC(”) VDl ( + D4) +3 \/Dl((l’l’l — 1)K1 + D3 + Ao)z, (111)
Vu t—Tpy
where
0, a>0,8> %,
Aq = ~aB-HD™,  a<0,521,
’ 0, a<0,8<0,
“(% - B)(minymgqr,rquf’!,  a>0,8<0.

In the next part, our result concerns gradient estimates for positive solutions of
(A = q(x, 1) = Ou(x, 1) = Au(x, 1)) (1.12)

on (M", g(t)) with the metric evolving under the geometric flow:

0
=8(1) = 25(0), (1.13)

where A, depends on ¢ and it denotes the Laplacian of g(¢), and S(¥) is a symmetric (0, 2)-tensor field
on (M", g(¢)). In [31], Zhao proved localised Li-Yau type gradient estimates and Souplet-Zhang type
gradient estimates for positive solutions of (1.12) under the geometric flow (1.13). In this paper, we
have the following localised Hamilton type gradient estimates for positive solutions to the general
parabolic Eq (1.12) under the geometric flow (1.13).

Theorem 1.6. Let (M", g(t)).cj0.1) be a complete solution to the geometric flow (1.13) on M" with

Ricyp > —K>8(1), |Sg(t)|g(t) <Kj
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for some K,, K3 > 0on Q,r = B(x,p) X [0,T]. Assume that there exists a constant L; > 0 such
that u € (0, L,] is a smooth solution to the general parabolic Eq (1.12) in Q,, 7. Then there exists a
universal constant c(n) that depends only on n so that

1

)2

|\/li|<()\/_(

+3 \/—(K2 + K3 + max % — min {O rénn (A (u) — AZ(:!))})

(1.14)

0. T

in Q%,T'

Remark 1.3. Recently, some Hamilton type estimates have been achieved to positive solutions of
(A; = g — 0)u = au(In u)*
under the Ricci flow in [26], and for
(A =g~ dpu = pu”!

under the Yamabe flow in [29], where p, g € C>!(M" x [0, T1), b is a positive constant and a, « are real
constants. Our results generalize many previous well-known gradient estimate results.

The paper is organized as follows. In Section 2, we provide a proof of Theorem 1.1 and a proof
of Corollary 1.3 and Corollary 1.5. In Section 3, we study gradient estimates of (1.12) under the
geometric flow (1.13) and give a proof of Theorem 1.6.

2. Gradient estimates for (1.4): Proof of Theorem 1.1

2.1. Basic lemmas

We first give some notations for the convenience of writing throughout the paper. Let 4 := u’ and
A(h) := 2% Then A, = A'(u) - ZA(”) To prove Theorem 1.1 we need two basic lemmas. First, we
derive the followmg lemma.

Lemma 2.1. Let (M", g) be a complete Riemannian manifold with Ric}, > —(m—1)K; for some Constant

Ki > 0. u is a positive smooth solution to the general parabolic Eq (1.4) in Qy,1,-1,- If h = u3, and
u = h-|Vh[?, then we have

(Ay = 8u >4h™3p* — 207 (Vh, V) — 2(m — DK + qu

2 3 —~ = 2.1
- §h2|VCI| Vi + 2A + h A(h)p.
Proof. Since h := us, by a simple computation, we can derive the following equation from (1.4):
qh
(Ay — 8)h = =2 \Vh]* + 3+ A(h). (2.2)

By direct computations, we have

= |Vh[*V;h + 2hV,;V ;hV ;h,
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and
Ayp =Au +(V, V)

=2h|V*h|* + 2hV,V,V ;hV ;h + 4V>h(Vh, Vh)
+ |Vh*Ah + 2hV,V ;hV jhV; + (V, Vh)|Vh|

=2h|V?h|* + 2h(VAh, Vh) + 2hRic(Vh, Vh)
+4V*W(Vh,Vh) + |VhI*Ayh + 2hV,V jhV ;hV;

=2h|Vh|* + 2h(VAh, Vh) + 2hRicy(Vh, Vh) + 2hV ;V;V,hV ;h
+ 4V2h(Vh, Vh) + |Vh*Avh + 2hV,V jhV ;hV;

=2h|Vh|* + 2V Ayh, Vh) — 2h(V ;V,V:hV ;b + V,V ;hV jhV))
+ 2hRicy(Vh, Vh) + 2hV ;V.V:hV jh + 4V*h(Vh, Vi)
+ VAP Avh + 21V, V ;hV jhV;

=2h|V?h|* + 2h(VAyh, Vh) + 2hRicy(Vh, Vh)
+4V2h(Vh, Vh) + |Vh*Ayh.

[ ALy YA S —_ V))
mn m(m—n)

(1 1

1

(2.3)

By the following fact:

0

IA

- _) (Ah)? - —(Vh V)Ah + (— - —)(Vh v)?
nom m-—n

= (Ah) —— ((Ah)2 + 2(Vh, VYAh + (Vh, v>2) +

1
<|V*hf* - —(Avh)2 + (Vh, VY,
m m-—n
it yields
1 1
IV2h|? > —(Ayh)? — ——(Vh, V)2 (2.4)
m m-—n

Plugging (2.4) into (2.3), we have
1 1
Ay zzh(—(Avh)2 - —(Vh, v>2) + 2h(VAyh, Vh)
m m-—n

+ 2hRicy(Vh, Vh) + 4V2h(Vh,Vh) + |Vh[*Ayh 25)

:n%h(Avh)z + 2hRicl(Vh, VR) + 2h{VAyh, Vh)
+ 4V2h(Vh,Vh) + |Vh*Ayh.
The partial derivative of u with respect to ¢ is given by
Ay =|Vh[*8,h + 2hV(0,h)Vh

h —~
=|Vh|*d,h + 2hV; (Avh + 217\ Vh]* - % - A(h)) V.h
(2.6)
=|VhI*d,h + 2h(V Ayh, Vh) + 8V>h(Vh,Vh) — 4h~'|Vh|*
2qhVh?*  2h*(Vq,Vh)

— 2hA, VA2
3 3 #|Vh|

AIMS Mathematics Volume 6, Issue 10, 10506-10522.
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It follows from (2.2), (2.5) and (2.6) that
2
(Ay — ) :n—qh(Avh)z + 2hRicl(Vh, Vi) — 4V2h(Vh, Vh)

2qh
+ |[VAP(Ay — 8,)h + 40~ |Vh[* + %sz

20V q. Vh _
L2V T e

2
==h(Ayh)* + 2hRic}(Vh, Vh) — 4V*h(Vh, Vh)
m

h —~
+ VAP (-2h7 Y| VA + % + A(h)) + 4h~"|\Vh*

2 2h*(Vq, Vh) —~ 2.7)

h
”’ o + T 2hA, VAP

2 hAvh)? + 2hRic!(Vh, Vi) — 4V2h(Vh, Vh)
m

2h%(Vq,Vh
+ 217 VAP + ghIVA]? + %
+ 2hA,|Vh? + A(h)|VA]?
> —2(m — DK h|Vh]* — 4V?W(Vh,Vh) + 207 |VA]*

2h*(Vq,Vh)
3

+ gh|Vh]* + + 2hA,|\Vh? + A(h)| VA

Note that
—4V2h(Vh,Vh) =2k~ \Vh|* = 20~ (Vh, V(h|VR*)) 2.8)
=2h7u* — 2h~Y(Vh, V). ’
Therefore,
(Ay — 0 > = 2(m — DK h|VhP? + 40731 = 20~ Y(Vh, V)
2h*(Vq,Vh —~ -
+ gh|Vh]* + 2n{vq. Vi + 2hA,|Vh]* + A(h)|Vh]?
(2.9)
> —2(m — DK+ 4h™>1* = 207 (Vh, V) + qu
2 ; — —
- ghf|vq| Vi + 2A5u + B AR,
which is the desired estimate. O

The following cut-off function will be used in the proof of Theorem 1.1 (see [2, 16,22,30]).

Lemma 2.2. Fix Ty, Ty € Rand Ty < Ty. Given t € (Ty, T ], there exists a smooth function v
[0, +00) X [Ty, T1] — R satisfying the following requirements.

1). The support of‘P(s t) is a subset of [0, p] X [Ty, T1], and 0 < ¥ <1inl0, pl X [Ty, T1].

2). The equalities ¥(s, 1) = 1 m [0, 2] % [1,T1] and ZX(s,1) = 0 in [0, 2] X [To, T .

3). The estimate |8,‘I’| < ﬁ‘l’z is satisfied on [0, +o0] X [Ty, T] for some C >0, and @(s, To) =0
forall s € [0, +00).

4). The inequalities — p < W <0 andl | < Cbl{‘ hold on [0, +o0] X [Ty, T1] for every b € (0, 1)
with some constant Cj, that depends onb.

AIMS Mathematics Volume 6, Issue 10, 10506-10522.
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Throughout this section, we employ the cut-off function ¥ : M" X [Ty, T;] — R by
W(x, 1) = ¥(r(x). 1),

where r(x) := d(x, x) is the distance function from some fixed point x € M".

2.2. Proof of Theorem 1.1
From Lemma 2.1, we have
(Ay = 0)(Pu) =u(Ay — )Y + Y(Ay — d)u + 2(Vu, V)
>u(Ay — 0)¥ + 2(Vu, V) — 2%h~(Vh, Vi)
+ W[ = 2(m — DK + 4073 - %hiwcﬂ N

+ g + 2Au + T A(h)u]

V|2 (2.10)
lI’ ﬂ

— 20 NVh, V(Pu)) + 2h~ 1u(Vh, V)

(A 0¥ + (T, V() ~ 2

2 s
+¥P[ - 2(m - DK+ 4h3u? - §h7|Vq| Vi
+ g + 2Au + h A(hu].

For fixed 7 € (Ty, T11, let (x,#;) be a maximum point for Wy in Q,,_7,. Obviously at (x;,;), we
have the following facts: V(Wu) = 0, Ay(Wu) < 0, and 9,(Ww) > 0. It follows from (2.10) that at such
point
VPP

0 21 p(Ay = 0¥ = 20—y - 20313 VY|

2
[ = 20m — DK R + 4 — §h%|vq| Vi (2.11)
+ quit® + 21 A + WP A(h)p].
In other words, we have just proved that
3 3 2.9 VP2
AP < - IPu(Ay — )Y + 20712 VY| + Zh? Vgl V¥ + 20—
w < —Iu(Ay - 0)) HEIVYI + Sh2 Vgl Vi g M 2.12)

+ Wu2(m — DK\ R — gh® — 2K A, — PA(h)]

at (x1,4).

Next, to realize the theorem, it suffices to bound each term on the right-hand side of (2.12). To deal
with AyW(x,, t;), we divide the arguments into two cases.

Case 1. If d(x, x|) < &, then it follows from Lemma 2.2 that ¥(x, ) = 1 around (xi, ;) in the space
direction. Therefore, AyW(x,1;) = 0.

Case 2. Suppose that d(x, x;) > £. Since Ric], > —(m — 1)K, we can apply the generalized Laplace
comparison theorem (see Corollary 3.2 in [20]) to get

Avrs(m—l)\/Ecoth(\/Er)S(m—l)(\/fl+%).
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Using the generalized Laplace comparison theorem and Lemma 2.2, we have

T AT
AV =——Ayr + —|vr|2
C, V2 2\ Cp¥:
> 2Ty - 1)(\/E+ —)— —
P P P
at (x1, 1), which agrees with Case 1. Therefore, we have
— Pu(Ay - 8)¥
= —uu(Ay — 9)¥
C ly Cip¥: C¥:
s[ L2 —1)(\/_+ ) UELEN ;]u,u
T —
P 4 0 (2.13)
| -1 2m—1 1
<cD\¥Y:u (m = 1) VK, + " +
P p* 7—To
2
1 -DVK, 2m-1 1
<=Wu* +cD} (s )\/_1+ il
2 P p? T—T)

for some universal constant ¢ > 0. Here we used Lemma 2.2, 0 < ¥ < 1 and Cauchy’s inequality.
On the other hand, by Young’s inequality and Lemma 2.2, we obtain

vy
2023 |V =W 1V

N

3

7
1 2 D2 |Vt
SE‘I’ cD; 3

1 1
<2‘P/,t +cD1p4,

(2.14)

2 2
¥R Vgl Vi =3 Wit Vg
1
SE‘I’uZ + cu’P|Vg|? (2.15)

1
SE‘PyZ + cD%‘Pqulg,

VP :
! T' Ry =2[VPPP 1Py

<2D\|[V¥PP 291y
|V (2.16)

AIMS Mathematics Volume 6, Issue 10, 10506-10522.
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nd Yul2(m — DK B — gh® = 2P A, — B2 A(h)]

=P P u[2(m — DK, — g — 24, — i A(R)]
S T ;‘I’u [2(m - DK, — g - 2A, — h”'A(W)]
<l 2+ D; Y[2(m — DK, — q - 24, - i 'AW)].
Now, we plug (2.13)—(2.17) into (2.12) to get

[\)»—A

[\)

(Pu)*(xi, 1) < (P (x, 1)

2
-DVK;, 2m-1 1
yD%((m ) VK, + m2 + +|vq|§) +Df((m— DK,
P P T—-Tp
lql e ?
+ 5> min< 0, min (Ah + h A(h))
pT1-Tp
2
-DVK, 2m-1 1
ch%((m AL + max |Vq|§) +D%((m— DK,
P Y T—To 0 I-To
l] . Au) )
+ — - 0, A .
gnax = —min) 0. min (A0 == 7

The finally, since ¥(x,7) = 1 in B(X, %), it follows from (2.18) that

u(x, 1) < Pulxg, 1)

~ VK 2m-1
sch((m AL ki + max |Vq|§)+D1((m— DK
P p 7—To

Qp T1-Ty

+ ler?ﬁo % — min {0, Qmin (A (u) — A(u))} )

p.T|-T 2u

Since 7 € (T, T ] is arbitrary and u = 9u| we have

2
+ max |Vg|3
- o — Vgl

Op,1(-Ty

|y<{1mqwﬁmw1 I f

+3 \/D—l((m - DK; + max % — min {0 min (A (u) — M)})

0.1 T Op.1)-1y 2u

in Q¢ 7,_7,. We complete the proof.

2.3. Proof of Corollary 1.3 and Corollary 1.5
Proof of Corollary 1.3.
(1) When a > 0, for a = (m — 1)K, using the inequality (1.7), we have

\Y - 1)K V2m —1 1
vul c\D1 |+ G 2) I el Y .
Vu P P i =T,

AIMS Mathematics

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Letting p — +0o,t — 400 in (2.21), we get u is a constant. Using Ayu —aulnu = 0, we getu = 1.
(2) When a < 0, for Dy = exp{—-2 + 2('";&}, using the inequality (1.8), we have

'V“'gcﬁ[“m‘?z’fu*zm‘H ! ] (2.22)

P P Vi =Ty

Letting p — 400, t = +00in (2.22), we get u is a constant. Using Ayu —aulnu = 0, we get u = 1, but
0 <u< Dy =exp{-2+ 2K} < 1. So u does not exist.

Vu

Proof of Corollary 1.5.
Let

A = —min {0, min (a(,B - %)u’g_l)}.

M"x[To,T1]

From Corollary 1.4, we just have to compute A. By the definition, we have

0, a>0p3>1,

~aB-HD™,  a<0,821,

0, a<0,8<0,

a(3 - Bminyyyr, )™, a>0,8<0.

A():

3. Gradient estimates for (1.12) under geometric flow: Proof of Theorem 1.6

In this section, we consider positive solutions of the nonlinear parabolic Eq (1.12) on (M", g) with
the metric evolving under the geometric flow (1.13). To prove Theorem 1.6, we follow the procedure
used in the proof of Theorem 1.1.

3.1. Basic lemmas
We first derive a general evolution equation under the geometric flow.

Lemma 3.1. ( [21]) Suppose the metric evolves by (1.13). Then for any smooth function f, we have

(VS = =2S(V£, V) + 2V 1, V(£)).
Next, we derive the following lemma in the same fashion of Lemma 2.1.

Lemma 3.2. Let (M", g())we(0.1) be a complete solution to the geometric flow (1.13) and u be a smooth
positive solution to the nonlinear parabolic Eq (1.12) in Q,,r. Suppose that there exists positive
constants K, and K3, such that

Ricy) > —K>g(1), |Sg(t)|g<z) < Ks
in Qpr. If h := us, and ju = h - |VhP, then in Qp.r, we have

2 3
(A = B 24h"40* = 4™ (Vh, Vi) = Sh* Vgl Vi 3.0)

—2(K> + K3)p + qu + h™"A(h)u + 2A,u.

AIMS Mathematics Volume 6, Issue 10, 10506-10522.
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Proof. Since u is a solution to the nonlinear parabolic Eq (1.12), the function h = ub satisfies
o, 40T
(A, — 0)h = =2h™*|Vh|]” + 3 + A(h). (3.2)

As in the proof of Lemma 2.1, we have that

At =2h|V?h? + 2h(VAh, Vh) + 2hRic(Vh, Vh)
+4V2h(Vh,Vh) + |Vh*Ah.

On the other hand, by the equation 9,g(¢) = 2S(¢), we have
A =|Vh*0,h + 2hV(0,h)V:h — 2hS(V £,V f)
h
=|Vh|*d,h + 2hV; (A,h + 217!\ VA - % - A(h)) V:h

—2hS(V£,Vf) (3.3)
=|Vh|?d,h + 2(VA,h, Vh) + 8V*h(Vh,Vh) — 40~ |Vh|*
2qhlVhI*  2h*(Vq,Vh)
3 3

— 2hALVH = 2hS(VF, V).

Therefore,
(A, — 8 =2h|V*h|* — 4V2W(Vh, Vh) + 20~ |Vh*
2h*(Vgq, Vh)
+ —_—
3
+ gh|Vh]* + 2hA,Vh?* + A(h)| VA

+ 2hRic(Vh, Vh) + 2hS(Vh, Vh)

> — 8V?W(Vh, Vh) — 2h(K, + K3)|VA|* — §h2|Vh||Vq| (3.4)
+ (gh + 2hA;, + A(h))|VA]?
=4h73 12 — A (Vh, V) - §h3|vq| N
— 2Ky + K + g+ B Al + 24,
where we used (2.8), the assumption on bound of Ric + S and

h|V2h)? + 2V2h(Vh,Vh) + k™' | VA
dh ® dh
vVh

The proof is complete. o

= VhV?h + > >0.
Finally, we employ the cut-off function ¥ : M" X [T, T;] - R, with Ty =0, T, =T, by
P(x, 1) = P(r(x, 0, 1),

where r(x, 1) := dg(x,%) is the distance function from some fixed point x € M" with respect to the
metric g(?).
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3.2. Proof of Theorem 1.6

To prove Theorem 1.6, we follows the same procedure used previously to prove Theorem 1.1; hence
in view of Lemma 3.2,

VP

(Ar = 3)(Pp) 2p(A; = O + %(V‘P, V(¥) -2

— 4h™Y(Vh, V(Pu)) + 4h™ ' w(Vh, V'P)

G, 2 (3.5)
= 2Ky + Ksy+ 4745 = Shi Vgl Vi

+qu + 2;4\;1;1 + h_IZ(h),u .

For fixed 7 € (0, T7], let (x2,%,) be a maximum point for Yu in Q,; := B(x,p) X [0,7] C Q, 7. It
follows from (3.5) that at such point

0 >h’u(A, — 0,)¥ — 2h3| bl - Ak VY

2K, + K3),uh3 + 4 - §h%|vq| N (3.6)

+ qui® + 213 A + R A(h)ul|.

At (x,,1,), making use of (3.6), we further obtain

V[
p M (3.7)

2
AVE < — IPu(A, — 0)Y + 4h3 3 (VY] + 5h%|vq| Va¥ + 20
+ Wu[2(K, + Ky)R® — gh® — 21 A, — *A(h)].

Next, we need to bound each term on the right-hand side of (3.7). To deal with A,¥Y(x,1,), we
divide the arguments into two cases:

Case 1: r(xy, 1) < g. In this case, from Lemma 2.2, it follows that W(x, t) = 1 around (x;, ;) in the
space direction. Therefore, A, '¥(x,,7,) =0

Case 2: r(xy, 1) > 5. Since Ricy) > —(n—1)K,, the Laplace comparison theorem (see [17]) implies
that

A,rs(n—1)\/Ecoth(\/?2r)s(n—1)( K2+%).

Then, it follows that

¥ o*¥
AW === A+ = o —|Vr?
c 2\ Cip?¥:
> 1/2 ( _ 1)( K2+—)— 1/22 2
P P

at (x,, 1), which agrees with Case 1.
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Next, we estimate 9,¥. Vx € B(X, p), lety : [0,a] — M" be a minimal geodesic connecting x and X
at time ¢ € [0, T]. Then, we have

0,r(x, t)lg(t) =

5 f 58 ds
0

HU)
1 [ -l . .
<3 | IFOldets). 7, ds
0

<Ksr(x,t) < Ksp.
Thus, together with Lemma 2.2, we find that

O <10, P50 + VW07 lg0r

oyl (3.8)

< + C]/ng\Pl/z.

Therefore, we have

— (A, - 8,)¥
=—uu(A, — 0¥

Ci2¥? 2\ Cip¥:  CY'?
<[ 172 (n—=1) ( \/Kz + —) + L2 + + C1/2K3“Il1/2 uu
o T

e p?
\/Ell)

(3.9)

ScLl‘I’%,u( + =5+ -+K;
p P T

2
1 VK. 1 1
s—‘P,u2+cL%( 2+—2+—+K3)
2 Jo, Pt T

at (x,, 1) for some universal constant ¢ > 0 that depends only on n. By similar computations as in the
proof of Theorem 1.1, we arrive at

\ 1
4h? VY| < WP + 2ch;, (3.10)
28 Ly 2 2 3
3 Wh? |Vl Vi < SV + LIVl (3.11)
vep . 1, b}
22— Ru< Wl —L 12
7 u< S+ o (3.12)

and
Yul2(K, + K3)h® — gh® — 21 A, — h*A(h)]
(3.13)

1 L2 — —~ Ar
si\mﬁ + ?1\11 2(K> + K3) + |g| — min {o, rgin(ZAh + h‘lA(h))}] .
0.7
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Plugging (3.9)—(3.13) into (3.6), we get

(W)’ (x2, 12) < (PPN (X2, 1)

VK, 1
<cL} ( 2 >
P p

2
1
-+ K3+ |Vq|§) + L%(Kz + K;
.
+@—mm(mmm&+lﬁﬂm»)z
2 Qp,T 2

2

VK, 1 1

SCLf( -+ K3+ max |Vq|3) + Lf(Kz + K;
p P T i

lq| A(u)
+nQ1paTx? —mln{O rgpl?(A (u) — 3)}) .

(3.14)

Note that ¥(x,7) = 1 when d(x, %) < g, it follows from (2.18) that

u(x, 7) < Pu(xs, 1)

VK. 1 1
2 44 K5 + max |Vq|§) + Ll(Kz + K3

0 0T Opr
lql A(u)
+ max 5 min {O Igln (A (u) — —)} )

Q; T 2u

SCLI( (3.15)

IVul

Since 7 € (0, T] is arbitrary and u = , we have

1

\% VK I 1 2
MSC\/L—I( 2+—2+—+K3+rnax|Vq|§)
Vu Jol Pt T Opr

+3 \/_(Kz + K3 + max% — min {0 rgm (A (u) — A(u))})

Qp T 2Lt

(3.16)

in Q%,T‘
We complete the proof.

Remark 3.1. We also obtain the corresponding applications similar to Corollary 1.4 and Corollary 1.5,
which we will not write them down here.
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