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Abstract: As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp.
strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically
double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact
metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any
given integer m ≥ 2, f is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if
and only if so is f m. Also, it is shown that if f is a continuous surjection, then f is ergodically multi-
sensitive (resp. strongly ergodically multi-sensitive) if and only if so isσ f , whereσ f is the shift selfmap
on the inverse limit space lim

←
(X, f ). Moreover, it is proved that if f : X → X (resp. g : Y → Y) is a

map on a nontrivial metric space (X, d) (resp. (Y, d′)), and π is a semiopen factor map between (X, f )
and (Y, g), then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of g implies
the same property of f .

Keywords: sensitivity; multi-sensitivity; syndetic sensitivity; ergodic (resp. strongly ergodic)
multi-sensitivity
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1. Introduction

It is well known that chaos characterizes the unpredictability of complex systems (see [1–9], for
example). Sensitive dependence on initial conditions (sensitivity for short) is the essential component
of various definitions of chaos. It is widely used in control theory, chaotic cryptography, Chemistry
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and so on (see [10–14]). And ergodicity is an important part of Markov chain theory. While, what
conditions imply that a system is sensitive? This question has gained some attention in [1,2,4–10] and
others.

For continuous self-maps on compact metric spaces, Moothathu [6] initiated a preliminary study of
stronger forms of sensitivity formulated in terms of large subsets of Z+ = {0, 1, · · · }, named syndetic
sensitivity and cofinite sensitivity. Moreover, he constructed a transitive, sensitive map which is not
syndetically sensitive and established the following. (1) Any syndetically transitive, non-minimal map
is syndetically sensitive (this improves the result that sensitivity is redundant in Devaney’s definition of
chaos). (2) Any sensitive map of [0, 1] is cofinitely sensitive. (3) Any sensitive subshift of finite type
is cofinitely sensitive. (4) Any syndetically transitive, infinite subshift is syndetically sensitive. (5) No
Sturmian subshift is cofinitely sensitive. Also, Moothathu [6] tells us that every topologically mixing
(resp. topologically weakly mixing) selfmap on a compact metric space is cofinitely sensitive (resp.
multi-sensitive). By the definitions, any topologically double ergodic (topologically double strongly
ergodic) selfmap of a compact metric space is topologically weakly mixing. So, any topologically
double ergodic selfmap (resp. topologically double strongly ergodic selfmap) of a compact metric
space is multi-sensitive.

This paper introduces the notion of ergodic (resp. strongly ergodic) multi-sensitivity which is a
stronger form of multi-sensitivity. Particularly, if a continuous map of a compact metric space is
topologically double ergodic (topologically double strongly ergodic), then it is ergodically
multi-sensitive (resp. strongly ergodically multi-sensitive). In Section 3, some necessary and
sufficient conditions for ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) are
given. These results improve and extend some existing ones.

2. Preliminaries

Let |A| denote the cardinality of A. An upper density of a set A ⊂ Z+ is the number

d∗(A) = lim sup
k→∞

1
k + 1

| {0 ≤ j ≤ k : j ∈ A} | .

An lower density of a set A ⊂ Z+ is the number

d∗(A) = lim inf
k→∞

1
k + 1

| {0 ≤ j ≤ k : j ∈ A} | .

For a dynamical system (X, f ) (i.e., X is a compact metric space and f : X → X is a continuous
map) with an admissible metric d on X, according to the classical definition, f is sensitive if there
is δ > 0 such that for each x ∈ X and any open neighborhood Vx of x, there exists n ∈ Z+ with
sup{d( f n(x), f n(y)) : y ∈ Vx} > δ. One can write this in a slightly different way. For V ⊂ X and
δ > 0, write S f (V, δ) = {n ∈ Z+ : there exist x, y ∈ V with d( f n(x), f n(y)) > δ}. Now, the following
conclusions is obtained.

(1) f is sensitive if there is δ > 0 such that for any nonempty open set V ⊂ X, the set S f (V, δ) is
nonempty.

(2) f is syndetically sensitive if there is δ > 0 such that for every nonempty open subset V ⊂ X, the
set S f (V, δ) is syndetic (that is, there is an integer L > 0 such that S f (V, δ)∩{n, n+1, · · · , n+ L−1} , ∅
for any integer n ≥ 0).
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(3) f is cofinitely sensitive if there is δ > 0 such that for every nonempty open subset V ⊂ X, the set
S f (V, δ) is cofinite.

(4) f is ergodically sensitive if there is δ > 0 such that for every nonempty open subset V ⊂ X, the
set S f (V, δ) has positive upper density.

(5) f is multi-sensitive if there is δ > 0 such that for every k ≥ 1 and any nonempty open subset
V1,V2, · · · ,Vk ⊂ X, the set

⋂
1≤i≤k

S f (Vi, δ) is nonempty.

Definition 2.1. For a dynamical system (X, f ), f is ergodically multi-sensitive (resp. strongly
ergodically multi-sensitive) if there is δ > 0 such that for every k ≥ 1 and any nonempty open subset
V1,V2, · · · ,Vk ⊂ X, the set

⋂
1≤i≤k

S f (Vi, δ) has positive upper density (resp. is syndetic).

Here δ > 0 will be referred as a constant of sensitivity. Clearly, syndetic sensitivity implies ergodic
sensitivity. It is known from the definition of the ergodic sensitivity and Theorem 7 in [6] that ergodic
sensitivity implies sensitivity and the converse does not hold. By Theorem 5 and Corollary 3 in [6], one
can conclude that both syndetic sensitivity and ergodic sensitivity are weaker than cofinite sensitivity.
It is easy to show that,

(i) Cofinite sensitivity⇒ ergodic (resp. strongly ergodic) multi-sensitivity.
(ii) Ergodic (resp. strongly ergodic) multi-sensitivity implies multi-sensitivity and ergodic

sensitivity (resp. syndetic sensitivity).
For a dynamical system (X, f ) and subsets U,V ⊂ X, let

N f (U,V) = {n ∈ Z+ : f n(U) ∩ V , ∅}.

One can say that
(1) f is topologically transitive if for every pair of nonempty open sets U,V ⊂ X, the set N f (U,V)

is nonempty.
(2) f is topologically mixing if for every pair of nonempty open sets U,V ⊂ X, the set N f (U,V) is

cofinite.
(3) f is topologically ergodic (resp. topologically strongly ergodic or syndetically transitive) if

for every pair of nonempty open sets U,V ⊂ X, the set N f (U,V) has positive upper density (resp. is
syndetic).

(4) f is topologically double ergodic (resp. topologically double strongly ergodic) if for every pair
of nonempty open sets U,V ⊂ X, the map f × f is topologically ergodic (resp. topologically strongly
ergodic).

Obviously, topological ergodicity implies topological transitivity, and syndetic transitivity (i.e.,
topologically strong ergodicity) implies topological ergodicity, and that topologically double
ergodicity (resp. topologically double ergodicity ) implies topologically weak mixing.

A continuous map f from a compact metric space (X, d) to itself is chaotic in the sense of Devaney if:
(1) f is topologically transitive,
(2) the set of all periodic points of f is dense in X, and,
(3) f has sensitive dependence on initial conditions.
Let (X, d) be a metric space and let f : X → X be a continuous map. Let κ(X) denote the collection

of all nonempty compact subsets of X. The Hausdorff metric dH on K(X) is defined by

dH(C,D) = max{ρ(C,D), ρ(D,C)}
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for any C,D ∈ κ(X), where ρ(C,D) = inf{ε > 0 : d(y,C) < ε, y ∈ D}. It is known that for any compact
metric space (X, d), the topology on κ(X) induced by dHis same as the Vietoris or finite topology, which
is generated by a basis consisting of all sets of the form,

{V1,V2, · · · ,Vn} =

A ∈ κ(X) : A ⊂
⋃

1≤i≤n

Vi, A ∩ Vi , ∅, 1 ≤ i ≤ n

 ,
where V1,V2, · · · ,Vn are nonempty and open subsets of X. It is known that this topology is admissible
in the sense that the map i : X → κ(X) defined as i(x) = {x} is continuous, and κ(X) is compact if and
only if X is compact. Let F (X) denote the set of all finite subsets of X. Under this topology, F (X) is
dense in κ(X) (see [15, 16]).

For any continuous selfmap f of X, a continuous map f : κ(X)→→ κ(X) is defined by f (K) = f (K)
for any K ∈ κ(X). When a point x ∈ X is identified as a subset {x} of X, the system (X, f ) is a subsystem
of the induced system (κ(X), f ) (see [17–23]).

3. Main results

Motivated by Theorem 31 in [24], the following result can be proved.

Theorem 3.1. Let (X, d) be a nontrivial compact metric space and (X, f ) be a dynamical system. Then,
for any given integer m ≥ 2, f is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive)
if and only if so is f m.

Proof. Suppose m ≥ 2 and k ≥ 1 are given integers. Then, for any given integer i ∈ {1, 2, · · · , k}, any
nonempty open set Vi and for any constant θ > 0, {mn : n ∈ S f m(Vi, θ)} ⊂ S f (Vi, θ), which implies
that if f m is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive), then so is f by the
related definitions.

Now, suppose that f is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) with
sensitivity constant δ > 0, and that m ≥ 2 and k ≥ 1 are given integers. As f is uniformly continuous,
f i is uniformly continuous for each i ∈ {0, 1, · · · ,m}. By the definition, there exists a constant ε ∈ (0, δ)
such that d(x, y) ≤ ε (x, y ∈ X) implies d( f i(x), f i(y)) ≤ δ for any i ∈ {0, 1, · · · ,m}. By the definition,
for any k nonempty open sets Vi, 1 ≤ i ≤ k, the set⋂

1≤i≤k

S f (Vi, δ)

has positive upper density (resp. is syndetic). Let

n ∈
⋂

1≤i≤k

S f (Vi, δ)

and n = lm + r with 0 ≤ r ≤ m − 1 and l ∈ Z+. Then

l ∈
⋂

1≤i≤k

S f m(Vi, ε).

This implies the set
⋂

1≤i≤k
S f m(Vi, ε) has positive upper density (resp. is syndetic). �
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Let (X, d) be a compact metric space and (X, f ) be a dynamical system. The inverse limit space
lim
←

(X, f ) of the system (X, f ) or the map f is the metric space {(x0, x1, x2, · · · ) : xi = f (xi+1), xi ∈ X, i =

0, 1, 2, · · · } with the metric d̃ defined by d̃(x̃, ỹ) =
∞∑

i=0

1
2i d(xi, yi), where x̃ = (x0, x1, x2, · · · ) ∈ lim

←
(X, f )

and ỹ = (y0, y1, y2, · · · ) ∈ lim
←

(X, f ). Clearly, The inverse limit space lim
←

(X, f ) is a compact subspace of

the product space
∞∏

i=0
Xi where Xi = X for every i ∈ {0, 1, 2, · · · }. The shift selfmap σ f on the inverse

limit space lim
←

(X, f ) is defined as σ f (x0, x1, x2, · · · ) = ( f (x0), x0, x1, · · · ) for any (x0, x1, x2, · · · ) ∈

lim
←

(X, f ). Then the inverse limit dynamical system is denoted by
(
lim
←

(X, f ), σ f

)
. The projection map

πi : lim
←

(X, f ) → X is defined as πi((x0, x1, x2, · · · )) = xi for any (x0, x1, x2, · · · ) ∈ lim
←

(X, f ) and each
i ∈ {0, 1, 2, · · · }. Obviously, πi is a continuous open map, and f ◦ πi = πi ◦ σ f for each i ∈ {0, 1, 2, · · · }.
If f is a surjective map, then πi is an open surjective mapping for each i ∈ {0, 1, 2, · · · }. The inverse
limit topology induced by d̃ has the following basis:

T = {V : V = π−1
i (U) for some i ≥ 0 and some open subset U ⊂ X}.

Now, one can get the following result.

Theorem 3.2. Let (X, f ) be a dynamical system and f be a onto map. Then f is ergodically multi-
sensitive (resp. strongly ergodically multi-sensitive) if and only if so is σ f .

Proof. Suppose that f is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) with
sensitivity constant δ > 0. For any integer k ≥ 1, let Ṽi ⊂ lim

←
(X, f ) be any nonempty open subset for

each i = 1, 2, · · · , k. Since π0 is an open map, π0(Ṽi) is nonempty and open. By the definitions, the set⋂
1≤i≤k

S f (Vi, δ)

has positive upper density (resp. is syndetic), where Vi = π0(Ṽi). For any given n ∈
⋂

1≤i≤k
S f (Vi, δ), by

the definition there are xi0, yi0 ∈ Vi with d ( f n(xi0), f n(yi0)) > δ for each i = 1, 2, · · · , k.
Take

x̃i = (xi0, xi1, · · · ) ∈ π−1
0 (xi0) ∩ Ṽi and ỹi = (yi0, yi1, · · · ) ∈ π−1

0 (yi0) ∩ Ṽi

for each i = 1, 2, · · · , k. Then, by the definitions we have

d̃
(
σn

f (x̃i), σn
f (ỹi)

)
≥ d( f n(xi0), f n(yi0) > δ

for each i = 1, 2, · · · , k. This implies that⋂
1≤i≤k

S σ f (Ṽi, δ) ⊃
⋂

1≤i≤k

S f (Vi, δ).

So, the set ⋂
1≤i≤k

S σ f (Ṽi, δ)

has positive upper density (resp. is syndetic).
Assume that σ f is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) with

sensitivity constant δ > 0. For any integer k ≥ 1, let Vi ⊂ X be any nonempty open subset for each
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i = 1, 2, · · · , k. As π0 is continuous, Ṽi = π−1
0 (Vi) is nonempty and open for each i = 1, 2, · · · , k. Take

x̃i ∈ Ṽi for each i = 1, 2, · · · , k. Then there is an integer m > 8 with B
(
x̃i,

δ
m

)
⊂ Ṽi for each

i = 1, 2, · · · , k, where

B
(
x̃i,

δ

m

)
= {̃y ∈ lim

←
(X, f ) : d̃(̃y, x̃i) <

δ

m
}

for each i = 1, 2, · · · , k.
By the definitions, the set ⋂

1≤i≤k

S σ f (B
(
x̃i,

δ

m

)
, δ)

has positive upper density (resp. is syndetic). For any given n ∈
⋂

1≤i≤k
S σ f (B

(
x̃i,

δ
m

)
, δ), there are x̃i

′, ỹi
′
∈

B
(
x̃i,

δ
m

)
with d̃

(
σn

f (x̃i
′), σn

f (ỹi
′)
)
> δ for each i = 1, 2, · · · , k. Since σn−1

f is uniformly continuous, for

the above x̃i, there exists δ′ < δ
8 such that ỹi

′
∈ B(x̃i, δ

′) implies d̃(σn−1
f (ỹi

′), σn−1
f (x̃i)) < δ

8 for each
i = 1, 2, · · · , k.

Let x̃i
′

= (x′i0, x
′
i1, · · · ) and ỹi

′
= (y′i0, y

′
i1, · · · ) for each i = 1, 2, · · · , k. Clearly, x′i0, y

′
i0 ∈ Vi for each

i = 1, 2, · · · , k. Then, by the definition, one has

d̃
(
σn

f (x̃i
′), σn

f (ỹi
′)
)

= d( f n(x′i0), f n(y′i0) +
1
2

d̃
(
σn−1

f (x̃i
′), σn−1

f (ỹi
′)
)
≤ d( f n(x′i0), f n(y′i0) +

1
8
δ.

for each i = 1, 2, · · · , k. So,

d( f n(x′i0), f n(y′i0) >
1
2
δ

for each i = 1, 2, · · · , k. This means that⋂
1≤i≤k

S σ f (Ṽi, δ) ⊂
⋂

1≤i≤k

S f

(
Vi,

1
2
δ

)
.

So, the set
⋂

1≤i≤k
S f

(
Vi,

1
2δ

)
has positive upper density (resp. is syndetic). �

Inspired by Lemma 10 in [24], the following result can be obtained.

Theorem 3.3. Let (X, d) be a nontrivial compact metric space, (X, f ) be a dynamical system and f
be topologically double ergodic (resp. topologically double strongly ergodic), then f is ergodically
multi-sensitive (resp. strongly ergodically multi-sensitive).

Proof. Write f (k) = f1 × f2 × · · · × fk for any integer k > 0 where fi = f for every i ∈ {1, 2, · · · , k}.
By Lemma 2 in [25] and Lemma 2 in [26] or the definitions, f is topologically double ergodic (resp.
topologically double strongly ergodic) if and only if so is f (k) for any integer k ≥ 1. Since X is not
reduced to a single point, there is δ > 0 such that for every x ∈ X, there is y ∈ Y satisfying d(x, y) > 3δ.
Fix any integer k > 0 and let Vi ⊂ X, 1 ≤ i ≤ k, be any bounded and nonempty open sets with
diam(Vi) < δ where the diameter diam(Vi) of Vi is defined by diam(Vi) = sup

x,y∈Vi

{d(x, y)}. Then, for each

i ∈ {1, 2, · · · , k} there is a nonempty open subset Ui with d(Ui,Vi) > δ. Since f (2k) is topologically
double ergodic (resp. topologically double strongly ergodic), by the definitions we get the set

N f (2k)((V1 × V1) × (V2 × V2) × · · · × (Vk × Vk), (V1 × U1) × (V2 × U2) × · · · × (Vk × Uk))
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has positive upper density (resp. is syndetic). Fix

n ∈ N f (2k)((V1 × V1) × (V2 × V2) × · · · × (Vk × Vk), (V1 × U1) × (V2 × U2) × · · · × (Vk × Uk)),

f n(Vi) ∩ Vi , ∅ and f n(Vi) ∩ Ui , ∅ for 1 ≤ i ≤ k. Consequently, there are xi, x′i ∈ Vi such that
f n(xi) ∈ Vi and f n(x′i) ∈ Ui for 1 ≤ i ≤ k. So, we have d( f n(xi), f n(x′i)) > δ for 1 ≤ i ≤ k. This implies
that the set

k⋂
i=1

S f (Vi, δ) ⊃ N f (2k)((V1 × V1) × (V2 × V2) × · · · × (Vk × Vk), (V1 × U1)

for any integer k ≥ 1. Hence,
k⋂

i=1

S f (Vi, δ)

has positive upper density (resp. is syndetic) for any integer k ≥ 1. �

In [13], the authors studied the relations between the various forms of sensitivity of the systems
(X, f ) and (κ(X), f ), and proved that all forms of sensitivity of (κ(X), f ) partly imply the same for
(X, f ), and the converse holds in some cases. In particular, they proved that (X, f ) is cofinitely sensitive
if and only so is (κ(X), f ). In [27] we proved that f is syndetically sensitive or multi-sensitive if and
only if so does f . For topologically double ergodic (resp. topologically double strongly ergodic)
continuous selfmap f of a compact metric space, the following result is right.

Theorem 3.4. Assume that f : X → X is a topologically double ergodic (resp. topologically double
strongly ergodic) continuous map on a nontrivial compact metric space (X, d). Then f is ergodically
multi-sensitive (resp. strongly ergodically multi-sensitive).

Proof. From Theorem 2 in [26], f is topologically double ergodic (resp. topologically double strongly
ergodic) if and only if so is f . By hypothesis and Theorem 3.3, f is ergodically multi-sensitive (resp.
strongly ergodically multi-sensitive). �

Let B(X) denotes the σ−algebra of Borel subsets of a compact metric space X. Let M(X) be
the collection of all probability measures defined on the measurable space (X,B(X)). The members
of M(X) are called Borel probability measures on X. Each x ∈ X determines a member δx (i.e.,
point measure) of M(X) defined by δx(A) = 1 if x ∈ A; δx(A) = 0 if x < A. So, the map x → δx

imbeds X inside M(X). For a given dynamical system (X, f ), it is well known that the map defined by
fM(µ)(B) = µ( f −1(B)) for any µ ∈ M(X) and any B ∈ B(X) and the map x → δx from X into M(X) are
continuous, and M(X) is a nonempty convex set which is compact in the weak topology (see [28, 29]).
Clearly, the map x→ δx imbeds X inside M(X). It is well known that the convex combinations of point
measures (i. e. the measures with finite support) are dense in M(X) (see [28, 29]).

Suppose that X is a compact metric space with metric d and M(X) is the space of Borel probability
measures on X provided with the Prohorov metric p defined by p(λ, µ) = inf{ε : λ(A) ≤ µ(Aε) + ε and
µ(A) ≤ λ(Aε) + ε for all Borel sets A ∈ B(X)} for λ, µ ∈ M(X), where Aε = {xeX : d(x, A) < ε}. As
V. Stassen showed in [30], one has p(λ, µ) = inf{ε : λ(A) ≤ µ(Aε) + ε for all Borel sets A ∈ B(X)}.
The induced topology is just the weak topology [28, 29] for measures. It turns M(X) into a compact
space [28, 31].
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Theorem 3.5. Assume that f : X → X is a topologically double ergodic (resp. topologically double
strongly ergodic) continuous map on a nontrivial compact metric space (X, d). Then fM is ergodically
multi-sensitive (resp. strongly ergodically multi-sensitive).

Proof. From Theorem 3.5 in [32], if f is topologically double ergodic, then so is fM. By the proof of
Theorem 3.5 in [32], one can easily prove that if f is topologically double strongly ergodic, then so
is fM. By hypothesis and Theorem 3.1, fM is ergodically multi-sensitive (resp. strongly ergodically
multi-sensitive). �

Remark 3.1. Theorem 3.5 extends and improves Theorem 3.10 in [32].

Theorem 3.6. Assume that f : X → X (resp. g : Y → Y) is a continuous map on a nontrivial compact
metric space (X, d) (resp. (Y, d′)). Then f × g is ergodically multi-sensitive if and only if f or g is
ergodically multi-sensitive.

Proof. The proof is easily obtained by Theorem 3.1 in [33] and Theorem 10 in [34] and is omitted. �

Remark 3.2. It is not known whether the following conclusion holds: f × g is strongly ergodically
multi-sensitive if and only if f or g is strongly ergodically multi-sensitive.

Theorem 3.7. Assume that f : X → X is a continuous map on a nontrivial compact metric space (X, d)
(resp. (Y, d′)). Then f is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and
only if so is f .

Proof. By the definition and the proofs of Theorems 3.2 and 3.3 in [27], the proof is easily obtained
and is omitted. �

Assume that f : X → X (resp. g : Y → Y) is a map on a nontrivial metric space (X, d) (resp. (Y, d′)).
If there exists a continuous and surjective map π : X → Y such that π ◦ f = g ◦ π, then (Y, g) is said
to be a factor of the system (X, f ), and (X, f ) is said to be a extension of (Y, g), while π is said to be a
factor map between (X, f ) and (Y, g).

Theorem 3.8. Assume that f : X → X (resp. g : Y → Y) is a map on a nontrivial metric space
(X, d) (resp. (Y, d′)), and let π be a semiopen factor map between (X, f ) and (Y, g). If g is ergodically
multi-sensitive (resp. strongly ergodically multi-sensitive) then so is f .

Proof. The proof is similar to that of Proposition 9 in [24] and is omitted. �

4. An example

Let I be the compact interval [0,1] and f be defined by

f (x) =



2x +
1
2

f or x ∈ [0,
1
4

]

−2x −
3
2

f or x ∈ [
1
4
,

3
4

]

2x −
3
2

f or x ∈ [
3
4
, 1]
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For arbitrarily x1, x2 ∈ [0, 1
4 ], x1 < x2, one has

| f (x1) − f (x2) |=| 2x1 +
1
2
− (−2x2 +

3
2

) |= 2 | x1 − x2 |>| x1 − x2 | .

For x1 ∈ [0, 1
4 ], x2 ∈ [ 1

4 ,
3
4 ], one has

| f (x1) − f (x2) |=| 2x1 +
1
2
− (−2x2 +

3
2

) |= 2 | x2 + x1 −
1
2
|>| x2 + x1 −

1
2
| .

For x1, x2 ∈ [ 1
4 ,

3
4 ], one has

| f (x1) − f (x2) |=| −2x1 +
3
2
− (−2x2 +

3
2

) |= 2 | x2 − x1 |>| x2 − x1 | .

For x1 ∈ [1
4 ,

3
4 ], x2 ∈ [ 3

4 , 1], one has

| f (x1) − f (x2) |=| −2x1 +
3
2
− (−2x2 −

3
2

) |= 2 | −x2 − x1 +
3
2
|>| −x2 − x1 +

3
2
| .

And for x1, x2 ∈ [ 3
4 , 1], one has

| f (x1) − f (x2) |=| 2x1 −
3
2
− (2x2 −

3
2

) |= 2 | x1 − x2 |>| x1 − x2 | .

If x1 ∈ [0, 1
4 ], x2 ∈ [3

4 , 1], one has

| f (x1) − f (x2) |=| 2x1 +
1
2
− 2x2 +

3
2
|= 2 | x1 − x2 + 1 |>| x1 − x2 + 1 | .

Then, for any x1, x2 ∈ [0, 1], let δ1 =| x1 − x2 |, δ2 =| x2 + x1 −
1
2 |, δ3 =| −x2 − x1 + 3

2 | and
δ4 =| x1 − x2 + 1 |. Taking δ = min{δ1, δ2, δ3, δ4}. For any n ∈ N, one has | f n(x1) − f n(x2) |≥ δ.
So, for every nonempty open subset V ⊂ X, the set S f (V, δ) = {n ∈ Z+ : There exist x, y ∈ V with
d( f n(x), f n(y)) > δ} has positive upper density. Thus, f is ergodically sensitive. Similarly, it can be
proved that for every nonempty open subsets V1,V2, · · · ,Vk ⊂ X, the set

⋂
1≤i≤k

S f (Vi, δ) is nonempty.

So, f is multi-sensitive.

5. Conclusions

Two kinds of sensitivities associated with ergodic (i.e. ergodic multi-sensitivity and strongly
ergodically multi-sensitivity) are preserved in the composite case and in inverse limit system.
Moreover, for two systems (X, d) and (Y, d′), under the condition of that there is a semiopen factor
map between them, the above sensitivities of X and Y are consistent.
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