

AIMS Mathematics, 6(10): 10485–10494. DOI: 10.3934/math.2021608 Received: 16 March 2021 Accepted: 12 July 2021 Published: 20 July 2021

http://www.aimspress.com/journal/Math

Theory article

Uniqueness of difference polynomials

Xiaomei Zhang¹ and Xiang Chen^{2,*}

- ¹ Department of Basic Courses, Guangzhou Maritime University, Guangzhou 510725, China
- ² School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning 437100, China
- * Correspondence: Email: xchen@hbust.edu.cn.

Abstract: Let f(z) be a transcendental meromorphic function of finite order and $c \in \mathbb{C}$ be a nonzero constant. For any $n \in \mathbb{N}^+$, suppose that P(z, f) is a difference polynomial in f(z) such as $P(z, f) = a_n f(z+nc) + a_{n-1} f(z+(n-1)c) + \cdots + a_1 f(z+c) + a_0 f(z)$, where $a_k(k = 0, 1, 2, \cdots, n)$ are not all zero complex numbers. In this paper, the authors investigate the uniqueness problems of P(z, f).

Keywords: difference polynomial; Borel exceptional values; uniqueness **Mathematics Subject Classification:** 30D30

1. Introduction

Let f(z) be a function meromorphic in the complex plane \mathbb{C} . We assume that the reader is familiar with the general conclussion of the Nevanlinna theory (see [1–3]). The order of f(z) is denoted by $\sigma(f)$. For any $a \in \mathbb{C}$, the exponent of convergence of zeros of f(z) - a is denoted by $\lambda(f, a)$. Especially, we denote $\lambda(f, 0)$ by $\lambda(f)$. Suppose that f(z) is a transcendental meromorphic function of order $\sigma(f)$. If $\lambda(f, a) < \sigma(f)$, then *a* is said to be a Borel exceptional value of f(z).

Recently, some well-known facts of the Nevanlinna theory of meromorphic function and their applications were extended for the differences of meromorhic functions (see [4–23]).

For any $c \in \mathbb{C} \setminus \{0\}$ and $n \in \mathbb{N}^+$, we define a difference polynomial in f(z) as follows (see [19])

$$P(z, f) = a_n f(z + nc) + a_{n-1} f(z + (n-1)c) + \dots + a_1 f(z + c) + a_0 f(z),$$
(1.1)

where $a_k(k = 0, 1, 2, \dots, n)$ are not all zero complex numbers. Following [4], we denote the forward difference of *f* by $\Delta_c^n f(z)$. i.e.

$$\Delta_c f(z) = f(z+c) - f(z), \Delta_c^{n+1} f(z) = \Delta_c^n f(z+c) - \Delta_c^n f(z).$$

Observe that

$$\Delta_c^n f(z) = \sum_{k=0}^n (-1)^{n-k} C_n^k f(z+kc),$$

and

$$\sum_{k=0}^{n} (-1)^{n-k} C_n^k = 0,$$

where $C_n^k(k = 0, 1, 2, \dots, n)$ are the binomial coefficients. If $a_k = C_n^k(-1)^{n-k}(k = 0, 1, 2, \dots, n)$ in P(z, f), then $P(z, f) = \Delta_c^n f$. Therefore, P(z, f) is a more general difference polynomial than $\Delta_c^n f$. Noting that for $\Delta_c^n f$, $\sum_{k=0}^n a_k = \sum_{k=0}^n (-1)^{n-k} C_n^k = 0$, we assume that $\sum_{k=0}^n a_k = 0$ for some a_k of P(z, f) in this paper (see [19]). The main purpose of this paper is to study uniqueness of the difference polynomial P(z, f).

Let $a \in \mathbb{C}$, f(z) and g(z) be two nonconstant meromorphic functions in the complex plane. If f - aand g - a have the same zeros counting multiplicities, then we say f(z) and g(z) share the value aCM. We say that f(z) and g(z) share the value ∞ CM if f(z) and g(z) have the same poles counting multiplicities (see [24]). For the uniqueness of entire function f(z) and its difference operator $\triangle_c f$, Chen and Yi [15, 16] had proved the following theorems.

Theorem A. [15] Let f(z) be a transcendental entire function of finite order that is of a finite Borel exceptional value β , and let *c* be a constant such that $f(z + c) \neq f(z)$. If $\Delta_c f(z)$ and f(z) share $a(a \neq \beta)$ CM, then,

$$\frac{\Delta_c f(z) - a}{f(z) - a} = \frac{a}{a - \beta}.$$

Theorem B. [16] Let f(z) be a transcendental entire function of finite order that is of a finite Borel exceptional value β , and let *c* be a constant such that $f(z + c) \neq f(z)$. If $\Delta_c f(z)$ and f(z) share β CM, then $\beta = 0$ and

$$\frac{f(z+c) - f(z)}{f(z)} = k,$$

for some constant k.

In this paper, the results on the uniqueness of entire function f(z) and its difference operator $\triangle_c f$ established in theorems A and B are extended to meromorphic function f(z) and P(z, f) by using the similar method as that in [15, 16].

Theorem 1.1. Let f be a transcendental meromorphic function of finite order. Suppose that $\beta \in \mathbb{C}$ and ∞ are Borel exceptional values of f, P(z, f) is defined as that in (1.1) and $P(z, f) \neq 0$. If $\beta \neq 0$, then P(z, f) and f can not share the value β CM.

Under the conditions of Theorem 1.1, there are only two possible scenarios. The first case is P(z, f) and f share the value $a \neq \beta$ CM for any $\beta \in \mathbb{C}$, and the second case is $\beta = 0$, P(z, f) and f share the value 0 CM. For the first case, we shall prove the following Theorem.

Theorem 1.2. Let f be a transcendental meromorphic function of finite order. Suppose that $\beta \in \mathbb{C}$ and ∞ are Borel exceptional values of f, P(z, f) is defined as that in (1.1) and $P(z, f) \neq 0$. If P(z, f) and f share the value $a \neq \beta$ CM. Then

$$\frac{P(z,f)-a}{f-a} = \frac{a}{a-\beta}$$

AIMS Mathematics

Example 1.3. Let $f(z) = e^{z}$, $c = \log 3$, $P(z, f) = f(z + 2c) - \frac{7}{2}f(z + c) + \frac{5}{2}f(z)$. Then P(z, f) and f(z) share the value 2 CM and they satisfy

$$\frac{P(z,f) - 2}{f - 2} = 1,$$

where 1 satisfies $\frac{a}{a-\beta}$, $a = 2, \beta = 0$.

Corollary 1.4. Let f be a transcendental meromorphic function of finite order. Suppose that $\beta \in \mathbb{C}$ and ∞ are Borel exceptional values of f, $c \in \mathbb{C}$ is non-null and $\Delta_c^n f \neq 0$ and $n \in \mathbb{N}^+$. If $\Delta_c^n f$ and f share the value $a \neq \beta$ CM. Then

$$\frac{\Delta_c^n f - a}{f - a} = \frac{a}{a - \beta}.$$

For the second case, we shall prove the following Theorem.

Theorem 1.5. Let f be a transcendental meromorphic function of order $\sigma(f) < 2$. P(z, f) is defined as that in (1.1) and $P(z, f) \neq 0$. If P(z, f) and f share the value 0 CM. Then

$$\frac{P(z,f)}{f} = \eta_{z}$$

where η is a constant.

2. Proof of Theorems

Lemma 2.1. [24] Suppose that $f_1(z), f_2(z), \dots, f_n(z)$ $(n \ge 2)$ are meromorphic functions and $g_1(z), g_2(z), \dots, g_n(z)$ are entire functions satisfying the following conditions.

(i) $\sum_{j=1}^{n} f_j(z)e^{g_j(z)} \equiv 0.$ (ii) $g_j(z) - g_k(z)$ are not constants for $1 \le j < k \le n.$ (iii) For $1 \le j \le n, 1 \le h < k \le n,$

$$T(r, f_i) = o\{T(r, e^{g_h - g_k})\} \quad (r \to \infty, r \notin E),$$

where $E \subset (i, +\infty)$ is of finite linear measure or finite logarithmic measure. Then $f_j(z) \equiv 0$ $(j = 1, 2, \dots, n)$.

Lemma 2.2. Let f be a transcendental meromorphic function of finite order. Suppose that $\beta \in \mathbb{C}$ and ∞ are Borel exceptional values of f, then

$$f(z) = A(z)e^{P(z)} + \beta,$$

where P(z) is a polynomial and A(z) is a meromorphic function such that $\lambda(A) = \lambda(\beta, f), \lambda(\frac{1}{A}) = \lambda(\frac{1}{f})$ and

$$\sigma(A) \le \max\{\lambda(\beta, f), \lambda(\frac{1}{f})\} < \sigma(f) = \deg P(z).$$

Proof. Given that β is a Borel exceptional value of f, f(z) can be written as

$$f(z) = z^k \frac{H_1(z)}{H_2(z)} e^{P(z)} + \beta,$$

AIMS Mathematics

where $k \in \mathbb{Z}$, $H_1(z)$ and $H_2(z)$ are the canonical products of f formed with the non-null zeros and poles of f, and P(z) is a polynomial with $\sigma(f) = \deg P(z)$.

Put

$$A(z) = z^k \frac{H_1(z)}{H_2(z)}$$

Since β and ∞ are Borel exceptional values of f, by the Theorem 2.3 in [24], we have

$$\sigma(H_1(z)) = \lambda(\beta, f) < \sigma(f), \sigma(H_1(z)) = \lambda(\frac{1}{f}) < \sigma(f),$$

and

$$\sigma(A) \le \max\{\lambda(\beta, f), \lambda(\frac{1}{f})\} < \sigma(f) = \deg P(z).$$

Lemma 2.3. [17] Let $A_0(z), A_1(z), \dots, A_n(z)$ be entire functions of finite order so that among those having the maximal order $\sigma := \max\{\sigma(A_k(z)), 0 \le k \le n\}$, exactly one has its type strictly greater than the others. Then for any meromorphic solution of

$$A_n(z)f(z + \omega_n) + \dots + A_1(z)f(z + \omega_1) + A_0(z)f(z) = 0$$

we have $\sigma(f) \ge \sigma + 1$.

2.1. Proof of Theorem 1.1

Suppose that P(z, f) and f(z) share the value β CM, then

$$\frac{P(z,f) - \beta}{f(z) - \beta} = e^{h(z)},$$
(2.1)

where h(z) is a polynomial. Since β and ∞ are Borel exceptional values of f, then by Lemma 2.2, f(z) can be written as

$$f(z) = A(z)e^{P(z)} + \beta, \qquad (2.2)$$

where A(z) is a meromorphic function such that

$$\sigma(A) \le \max\{\lambda(\beta, f), \lambda(\frac{1}{f})\} < \sigma(f) = \deg P(z).$$

It follows from (2.1) and (2.2) that

$$\frac{P(z, A(z)e^{P(z)} + \beta) - \beta}{A(z)e^{P(z)} + \beta - \beta} = e^{h(z)}.$$
(2.3)

As $\sum_{i=0}^{n} a_i = 0$, we get

$$P(z, A(z)e^{P(z)} + \beta) = P(z, A(z)e^{P(z)}).$$
(2.4)

Next, according to (2.3) and (2.4), we infer that

AIMS Mathematics

$$\frac{\sum_{i=0}^{n} a_i A(z+ic) e^{P(z+ic)} - \beta}{A(z) e^{P(z)}} = \sum_{i=0}^{n} a_i \frac{A(z+ic)}{A(z)} e^{P(z+ic) - P(z)} - \frac{\beta}{A(z)} e^{-P(z)} = e^{h(z)}.$$
(2.5)

As $\sigma(A) < \deg P(z)$ and $\deg(P(z + ic) - P(z)) \le (\deg P(z)) - 1 = \sigma(f) - 1, i = 0, 1, 2, \dots, n,$ then $\sum_{i=0}^{n} a_i \frac{A(z+ic)}{A(z)} e^{P(z+ic)-P(z)}$ is a small meromorphic function respective to $\frac{\beta}{A(z)} e^{-P(z)}$. Applying the second fundamental theorem to $\frac{\beta}{A(z)} e^{-P(z)}$, we know that

$$\lambda(\sum_{i=0}^{n} a_{i} \frac{A(z+ic)}{A(z)} e^{P(z+ic)-P(z)} - \frac{\beta}{A(z)} e^{-P(z)}) = \deg P(z).$$

This contradicts with $e^{h(z)} \neq 0$. Thus, P(z, f) and f can not share the value β CM.

2.2. Proof of Theorem 1.2

By the conditions, we can get $a \neq 0$. If a = 0, then $\beta \neq 0$. Since β and ∞ are Borel exceptional values of *f*, then by Lemma 2.2, f(z) can be written as

$$f(z) = A(z)e^{P(z)} + \beta,$$
 (2.6)

where P(z) is a polynomial and A(z) is a meromorphic function such that

$$\sigma(A) \le \max\{\lambda(\beta, f), \lambda(\frac{1}{f})\} < \sigma(f) = \deg P(z)$$

Since P(z, f) and f(z) share the value 0 CM, we have

$$\frac{P(z,f)}{f(z)} = e^{h(z)},$$
(2.7)

where h(z) is a polynomial.

It follows from (2.6) and (2.7) that

$$\frac{P(z, A(z)e^{P(z)} + \beta)}{A(z)e^{P(z)} + \beta} = e^{h(z)}.$$
(2.8)

Since $\sum_{i=0}^{n} a_i = 0$, there is

$$P(z, A(z)e^{P(z)} + \beta) = P(z, A(z)e^{P(z)}).$$
(2.9)

In view of (2.8) and (2.9), it follows that

$$\frac{\sum_{i=0}^{n} a_i A(z+ic) e^{P(z+ic)}}{A(z) e^{P(z)} + \beta} = \frac{\sum_{i=0}^{n} a_i A(z+ic) e^{P(z+ic) - P(z)}}{A(z) + \beta e^{-P(z)}} = e^{h(z)}.$$
(2.10)

As $\deg(P(z + ic) - P(z)) \le (\deg P(z)) - 1 = \sigma(f) - 1, i = 0, 1, 2, \dots, n$, we see that

$$\lambda(\sum_{i=0}^{n} a_{i}A(z+ic)e^{P(z+ic)-P(z)}) \le \sigma(\sum_{i=0}^{n} a_{i}A(z+ic)e^{P(z+ic)-P(z)}) \le \sigma(f) - 1.$$
(2.11)

AIMS Mathematics

As $\beta \neq 0$ and $\sigma(A) < \sigma(f)$, applying the second fundamental theorem to $\beta e^{-P(z)}$, we have

$$\lambda(A(z) + \beta e^{-P(z)}) = \sigma(A(z) + \beta e^{-P(z)}) = \sigma(f).$$
(2.12)

From (2.10)–(2.12), we can get a contradiction. Thus, $a \neq 0$. Therefore,

$$\frac{P(z,f) - a}{f(z) - a} = e^{q(z)},$$
(2.13)

where q(z) is a polynomial with deg $q(z) \le \sigma(f)$. Since $\sum_{i=0}^{n} a_i = 0$, we have

$$P(z, f) = P(z, A(z)e^{P(z)} + \beta) = P(z, A(z)e^{P(z)}).$$
(2.14)

Hence, we can derive the following inequality by (2.13) and (2.14)

$$\sum_{i=0}^{n} a_i A(z+ic) e^{P(z+ic)} - a = (\beta - a) e^{q(z)} + e^{q(z)} A(z) e^{p(z)},$$
(2.15)

i.e.

$$a_{n}A(z+nc)e^{P(z+nc)} + a_{n-1}A(z+(n-1)c)e^{P(z+(n-1)c)} + \cdots +a_{1}A(z+c)e^{P(z+c)} + (a_{0}-e^{q(z)})A(z)e^{P(z)} = (\beta-a)e^{q(z)} + a.$$
(2.16)

Seeing that q(z) is a polynomial with deg $q(z) \le \sigma(f)$, then deg q(z) only satisfies one of the following cases: $1 \le \deg q(z) < \sigma(f) = \deg P(z)$; deg $q(z) = \sigma(f) = \deg P(z)$ and deg q(z) = 0.

Case 1. $1 \le \deg q(z) < \sigma(f) = \deg P(z)$. By (2.16), we have

$$\sum_{i=1}^{n} a_i A(z+ic) e^{P(z+ic)-P(z)} + (a_0 - e^{q(z)}) A(z) = \left((\beta - a) e^{q(z)} + a \right) e^{-P(z)}.$$
(2.17)

It follows from $\beta - a \neq 0, 1 \leq \deg q(z) < \deg P(z)$ that $(\beta - a)e^{q(z)} + a \neq 0$. Hence, the order of $((\beta - a)e^{q(z)} + a)e^{-P(z)}$ is equal to $\sigma(f) = \deg P(z)$. As $\deg(P(z + ic) - P(z)) \leq (\deg P(z)) - 1$, $\sigma(A(z)) < \sigma(f) = \deg P(z)$ and $\deg q(z) < \sigma(f) = \deg P(z)$, we see that the order of $\sum_{i=1}^{n} a_i A(z + ic)e^{P(z+ic)-P(z)} + (a_0 - e^{q(z)})A(z)$ is less than $\sigma(f) = \deg P(z)$. We can get a contradiction from (2.17).

Case 2. deg $q(z) = \sigma(f) = \deg P(z)$. Suppose

$$P(z) = p_k z^k + p_{k-1} z^{k-1} + \dots + p_1 z + p_0, \quad q(z) = q_k z^k + q_{k-1} z^{k-1} + \dots + q_1 z + q_0.$$

Thus p_k and q_k only satisfy one of the following cases: $p_k = -q_k$; $p_k = q_k$; $p_k \neq q_k$ and $p_k \neq -q_k$. **Subcase 2.1.** $p_k = -q_k$. From (2.16), we can get

$$\sum_{i=0}^{n} a_{i} \frac{A(z+ic)}{A(z)} e^{P(z+ic)-P(z)} - e^{q(z)} = \frac{\beta-a}{A(z)} e^{q(z)-P(z)} + \frac{a}{A(z)} e^{-P(z)}$$

i.e.

AIMS Mathematics

$$B_{11}(z)e^{-P(z)} + B_{12}(z)e^{q(z)-P(z)} + B_{13}(z)e^{r(z)} = 0.$$
(2.18)

where

$$\begin{aligned} r(z) &\equiv 0, \\ B_{11}(z) &= \frac{a}{A(z)} + e^{q(z) + P(z)}, \\ B_{12}(z) &= \frac{\beta - a}{A(z)}, \\ B_{13}(z) &= -\sum_{i=0}^{n} a_i \frac{A(z + ic)}{A(z)} e^{P(z + ic) - P(z)}. \end{aligned}$$

Since $p_k = -q_k$, the deg $(q(z) + P(z)) \le k - 1$. Note that

$$\deg(P(z+ic) - P(z)) \le k - 1, i = 1, 2, \cdots,$$

$$\deg(-P(z) - (q(z) - P(z))) = \deg(-P(z) - r(z)) = \deg((q(z) - P(z)) - r(z)) = k.$$

By Lemma 2.1, we can get $\frac{\beta-a}{A(z)} \equiv 0$. Which contradicts with $a \neq \beta$. **Subcase 2.2.** $p_k = q_k$. From (2.16), we can get

$$\sum_{i=0}^{n} a_{i} \frac{A(z+ic)}{A(z)} e^{P(z+ic)-P(z)} - e^{q(z)} = \frac{\beta-a}{A(z)} e^{q(z)-P(z)} + \frac{a}{A(z)} e^{-P(z)}.$$

i.e.

$$B_{21}(z)e^{-P(z)} + B_{22}(z)e^{q(z)} + B_{23}(z)e^{r(z)} = 0.$$
 (2.19)

where

$$\begin{aligned} r(z) &\equiv 0, \\ B_{21}(z) &= \frac{a}{A(z)}, \\ B_{22}(z) &= 1, \\ B_{23}(z) &= \frac{\beta - a}{A(z)} e^{q(z) - P(z)} - \sum_{i=0}^{n} a_i \frac{A(z + ic)}{A(z)} e^{P(z + ic) - P(z)}. \end{aligned}$$

By Lemma 2.1, we can get a contradiction.

Subcase 2.3. $p_k \neq q_k$ and $p_k \neq -q_k$. From (2.16), we can get

$$\left(\sum_{i=0}^{n} a_{i}A(z+ic)e^{P(z+ic)-P(z)}\right)e^{P(z)} - a = (\beta - a)e^{q(z)} + A(z)e^{P(z)+q(z)}.$$

AIMS Mathematics

i.e.

$$B_{31}(z)e^{P(z)} + B_{32}(z)e^{q(z)+P(z)} + B_{33}(z)e^{q(z)} + B_{34}(z)e^{r(z)} = 0.$$
 (2.20)

where

$$r(z) \equiv 0,$$

$$B_{31}(z) = \sum_{i=0}^{n} a_i A(z+ic) e^{P(z+ic)-P(z)},$$

$$B_{32}(z) = -A(z),$$

$$B_{33}(z) = -(\beta - a),$$

$$B_{34}(z) = -a.$$

By Lemma 2.1, we can get a contradiction.

Case 3. deg q(z) = 0. In this case, $e^{q(z)}$ is a constant. We denote it by *C*. Suppose that $C \neq \frac{a}{a-\beta}$, by (2.16) we can get

$$\sum_{i=0}^{n} a_i A(z+ic) e^{P(z+ic)} - a = (\beta - a)C + CA(z) e^{p(z)}.$$

i.e.

$$\sum_{i=0}^{n} a_i A(z+ic) e^{P(z+ic)-P(z)} - CA(z) = [(\beta - a)C + a] e^{-p(z)}.$$
(2.21)

Since $\deg(P(z + ic) - P(z)) \le (\deg P(z)) - 1$, $\sigma(A(z)) < \sigma(f) = \deg P(z)$, then

$$\sigma(\sum_{i=0}^{n} a_i A(z+ic)e^{P(z+ic)-P(z)} - CA(z)) < \deg P(z) = \sigma([(\beta - a)C + a]e^{-p(z)}).$$

We can get a contradiction from (2.21). Hence $C = \frac{a}{a-\beta}$.

2.3. Proof of Theorem 1.5

Since P(z, f) and f share the value 0 CM, there holds

$$\frac{P(z,f)}{f} = e^{H(z)},$$

where H(z) is a polynomial. If $H(z) \neq \text{constant}$, then

$$a_n f(z+nc) + a_{n-1} f(z+(n-1)c) + \dots + a_1 f(z+c) + (a_0 - e^{H(z)}) f(z) = 0.$$

By Lemma 2.3, we have $\sigma(f) > \deg(H(z)) + 1 > 2$. This contradicts with $\sigma(f) < 2$. Hence H(z) is a constant. Denote $\eta = e^{H(z)}$, then η is a constant and

$$\frac{P(z,f)}{f} = \eta.$$

AIMS Mathematics

3. Conclusions

The main result of this paper (Theorem 1.2) shows that P(z, f) is a linear function of f, if the following conditions are satisfied:

(1) *f* is a transcendental meromorphic function of finite order with two Borel exceptional values β and ∞ ;

(2) P(z, f) and f share the value $a(\neq \beta)$ CM.

Acknowledgments

This work was supported by the Scientific Research Project of Education Department of Hubei Province (Grant No. D20182801, B2020157).

Conflict of interest

The authors declare that they have no competing interests.

References

- 1. W. K. Hayman, *Meromorphic functions*, Oxford: Oxford Mathematical Monographs Clarendon Press, 1964.
- 2. L. Yang, Value distribution theory, Berlin: Springer-Verlag, 1993.
- 3. J. H. Zheng, Value distribution of meromorphic functions, Beijing: Tsinghua University Press, 2011.
- 4. W. Bergweiler, J. K. Langley, Zeros of differences of meromorphic functions, *Math. Proc. Cambridge Philos. Soc.*, **142** (2007), 133–147.
- 5. Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane, *Ramanujan J.*, **16** (2008), 105–129.
- Y. M. Chiang, S. J. Feng, On the growth of logarithmic difference, difference equations and logarithmic derivatives of meromorphic functions, *J. Trans. Am. Math. Soc.*, 361 (2009), 3767– 3791.
- 7. R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, 2005. Available from: https://arxiv.org/abs/math/0506011.
- 8. R. G. Halburd, R. J. Korhonen, Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations, *J. Phys. A: Math. Theor.*, **40** (2007), 1–38.
- 9. R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, *J. Math. Anal. Appl.*, **314** (2006), 477–487.
- 10. B. M. Deng, M. L. Fang, D. Liu, Uniqueness of meromorphic functions concerning shared functions with their difference, *Bull. Korean Math. Soc.*, **56** (2019), 1151–1524.
- Z. B. Huang, R. R. Zhang, Uniqueness of the differences of meromorphic functions, *Anal. Math.*, 44 (2018), 461–473.

10493

- 12. X. M. Li, C. Y. Kang, H. X. Yi, Uniqueness theorems of entire functions sharing a nonzero complex number with their difference operators, *Arch. Math.*, **96** (2011), 577–587.
- 13. Z. B. Huang, Value distribution and uniqueness on q-differences of meromorphic functions, *Bull. Korean Math. Soc.*, **50** (2013), 1157–1171.
- 14. Z. X. Chen, On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations, *Sci. China Math.*, **54** (2011), 2123–2133.
- 15. Z. X. Chen, On the difference counterpart of Brück's conjecture, *Acta Math. Sci.*, **34** (2014), 653–659.
- Z. X. Chen, H. X. Yi, On sharing values of meromorphic functions and their differences, *Results Math.*, 63 (2013), 557–565.
- 17. I. Laine, C. C. Yang, Clunie theorems for difference and q-difference polynomials, *J. London Math. Soc.*, **76** (2007), 556–566.
- K. Liu, H. Z. Cao, T. B. Cao, Entire solutions of Fermat type differential difference equations, *Arch. Math.*, 99 (2012), 147–155.
- 19. Z. X. Liu, Q. C. Zhang, Difference uniqueness theorems on meromorphic functions in several variables, *Turk. J. Math.*, **42** (2018), 2481–2505.
- 20. Z. J. Wu, Value distribution for difference operator of meromorphic functions with maximal deficiency sum, *J. Inequalities Appl.*, **530** (2013), 1–9.
- 21. H. Y. Xu, T. B. Cao, B. X. Liu, The growth of solutions of systems of complex q-shift difference equations, *Adv. Differ. Equations*, **2012** (2012), 216.
- 22. J. F. Xu, X. B, Zhang, The zeros of q-shift difference polynomials of meromorphic functions, *Adv. Differ. Equations*, **2012** (2012), 200.
- 23. R. R. Zhang, Z. X. Chen, Fixed points of meromorphic functions and of their difference, divided differences and shifts, *Acta Math. Sin. English Ser.*, **32** (2016), 1189–1202.
- 24. C. C. Yang, H. X. Yi, *Uniqueness theory of meromoprhic functions*, Dordrecht: Kluwer Academic Publishers, 2003.

 \bigcirc 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)