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Abstract: Let f (z) be a transcendental meromorphic function of finite order and c ∈ C be a nonzero
constant. For any n ∈ N+, suppose that P(z, f ) is a difference polynomial in f (z) such as P(z, f ) =

an f (z + nc) + an−1 f (z + (n− 1)c) + · · ·+ a1 f (z + c) + a0 f (z), where ak(k = 0, 1, 2, · · · , n) are not all zero
complex numbers. In this paper, the authors investigate the uniqueness problems of P(z, f ).
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1. Introduction

Let f (z) be a function meromorphic in the complex plane C. We assume that the reader is familiar
with the general conclussion of the Nevanlinna theory (see [1–3]). The order of f (z) is denoted by
σ( f ). For any a ∈ C, the exponent of convergence of zeros of f (z)−a is denoted by λ( f , a). Especially,
we denote λ( f , 0) by λ( f ). Suppose that f (z) is a transcendental meromorphic function of order σ( f ).
If λ( f , a) < σ( f ), then a is said to be a Borel exceptional value of f (z).

Recently, some well-known facts of the Nevanlinna theory of meromorphic function and their
applications were extended for the differences of meromorhic functions (see [4–23]).

For any c ∈ C\{0} and n ∈ N+, we define a difference polynomial in f (z) as follows (see [19])

P(z, f ) = an f (z + nc) + an−1 f (z + (n − 1)c) + · · · + a1 f (z + c) + a0 f (z), (1.1)

where ak(k = 0, 1, 2, · · · , n) are not all zero complex numbers. Following [4], we denote the forward
difference of f by ∆n

c f (z). i.e.

∆c f (z) = f (z + c) − f (z),∆n+1
c f (z) = ∆n

c f (z + c) − ∆n
c f (z).
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Observe that

∆n
c f (z) =

n∑
k=0

(−1)n−kCk
n f (z + kc),

and
n∑

k=0

(−1)n−kCk
n = 0,

where Ck
n(k = 0, 1, 2, · · · , n) are the binomial coefficients. If ak = Ck

n(−1)n−k(k = 0, 1, 2, · · · , n) in
P(z, f ), then P(z, f ) = 4n

c f . Therefore, P(z, f ) is a more general difference polynomial than 4n
c f .Noting

that for 4n
c f ,

n∑
k=0

ak =
n∑

k=0
(−1)n−kCk

n = 0, we assume that
n∑

k=0
ak = 0 for some ak of P(z, f ) in this paper

(see [19]). The main purpose of this paper is to study uniqueness of the difference polynomial P(z, f ).
Let a ∈ C, f (z) and g(z) be two nonconstant meromorphic functions in the complex plane. If f − a

and g − a have the same zeros counting multiplicities, then we say f (z) and g(z) share the value a
CM. We say that f (z) and g(z) share the value ∞ CM if f (z) and g(z) have the same poles counting
multiplicities (see [24]). For the uniqueness of entire function f (z) and its difference operator 4c f ,
Chen and Yi [15, 16] had proved the following theorems.

Theorem A. [15] Let f (z) be a transcendental entire function of finite order that is of a finite Borel
exceptional value β, and let c be a constant such that f (z + c) . f (z). If ∆c f (z) and f (z) share a(a , β)
CM, then,

∆c f (z) − a
f (z) − a

=
a

a − β
.

Theorem B. [16] Let f (z) be a transcendental entire function of finite order that is of a finite Borel
exceptional value β, and let c be a constant such that f (z + c) . f (z). If ∆c f (z) and f (z) share β CM,
then β = 0 and

f (z + c) − f (z)
f (z)

= k,

for some constant k.
In this paper, the results on the uniqueness of entire function f (z) and its difference operator 4c f

established in theorems A and B are extended to meromorphic function f (z) and P(z, f ) by using the
similar method as that in [15, 16].

Theorem 1.1. Let f be a transcendental meromorphic function of finite order. Suppose that β ∈ C and
∞ are Borel exceptional values of f , P(z, f ) is defined as that in (1.1) and P(z, f ) . 0. If β , 0, then
P(z, f ) and f can not share the value β CM.

Under the conditions of Theorem 1.1, there are only two possible scenarios. The first case is P(z, f )
and f share the value a , β CM for any β ∈ C, and the second case is β = 0, P(z, f ) and f share the
value 0 CM. For the first case, we shall prove the following Theorem.

Theorem 1.2. Let f be a transcendental meromorphic function of finite order. Suppose that β ∈ C and
∞ are Borel exceptional values of f , P(z, f ) is defined as that in (1.1) and P(z, f ) . 0. If P(z, f ) and f
share the value a , β CM. Then

P(z, f ) − a
f − a

=
a

a − β
.
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Example 1.3. Let f (z) = ez, c = log 3, P(z, f ) = f (z + 2c) − 7
2 f (z + c) + 5

2 f (z). Then P(z, f ) and f (z)
share the value 2 CM and they satisfy

P(z, f ) − 2
f − 2

= 1,

where 1 satisfies a
a−β , a = 2, β = 0.

Corollary 1.4. Let f be a transcendental meromorphic function of finite order. Suppose that β ∈ C
and ∞ are Borel exceptional values of f , c ∈ C is non-null and ∆n

c f . 0 and n ∈ N+. If ∆n
c f and f

share the value a , β CM. Then
∆n

c f − a
f − a

=
a

a − β
.

For the second case, we shall prove the following Theorem.

Theorem 1.5. Let f be a transcendental meromorphic function of order σ( f ) < 2. P(z, f ) is defined
as that in (1.1) and P(z, f ) . 0. If P(z, f ) and f share the value 0 CM. Then

P(z, f )
f

= η,

where η is a constant.

2. Proof of Theorems

Lemma 2.1. [24] Suppose that f1(z), f2(z), · · · , fn(z)(n ≥ 2) are meromorphic functions and
g1(z), g2(z), · · · , gn(z) are entire functions satisfying the following conditions.

(i)
n∑

j=1
f j(z)eg j(z) ≡ 0.

(ii) g j(z) − gk(z) are not constants for 1 ≤ j < k ≤ n.
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, f j) = o{T (r, egh−gk)} (r → ∞, r < E),

where E ⊂ (i,+∞) is of finite linear measure or finite logarithmic measure. Then f j(z) ≡ 0( j =

1, 2, · · · , n).

Lemma 2.2. Let f be a transcendental meromorphic function of finite order. Suppose that β ∈ C and
∞ are Borel exceptional values of f , then

f (z) = A(z)eP(z) + β,

where P(z) is a polynomial and A(z) is a meromorphic function such that λ(A) = λ(β, f ), λ( 1
A ) = λ( 1

f )
and

σ(A) ≤ max{λ(β, f ), λ(
1
f

)} < σ( f ) = deg P(z).

Proof. Given that β is a Borel exceptional value of f , f (z) can be written as

f (z) = zk H1(z)
H2(z)

eP(z) + β,
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where k ∈ Z, H1(z) and H2(z) are the canonical products of f formed with the non-null zeros and poles
of f , and P(z) is a polynomial with σ( f ) = deg P(z).

Put
A(z) = zk H1(z)

H2(z)
.

Since β and∞ are Borel exceptional values of f , by the Theorem 2.3 in [24], we have

σ(H1(z)) = λ(β, f ) < σ( f ), σ(H1(z)) = λ(
1
f

) < σ( f ),

and
σ(A) ≤ max{λ(β, f ), λ(

1
f

)} < σ( f ) = deg P(z).

�

Lemma 2.3. [17] Let A0(z), A1(z), · · · , An(z) be entire functions of finite order so that among those
having the maximal order σ := max{σ(Ak(z)), 0 ≤ k ≤ n}, exactly one has its type strictly greater than
the others. Then for any meromorphic solution of

An(z) f (z + ωn) + · · · + A1(z) f (z + ω1) + A0(z) f (z) = 0,

we have σ( f ) ≥ σ + 1.

2.1. Proof of Theorem 1.1

Suppose that P(z, f ) and f (z) share the value β CM, then

P(z, f ) − β
f (z) − β

= eh(z), (2.1)

where h(z) is a polynomial. Since β and∞ are Borel exceptional values of f , then by Lemma 2.2, f (z)
can be written as

f (z) = A(z)eP(z) + β, (2.2)

where A(z) is a meromorphic function such that

σ(A) ≤ max{λ(β, f ), λ(
1
f

)} < σ( f ) = deg P(z).

It follows from (2.1) and (2.2) that

P(z, A(z)eP(z) + β) − β
A(z)eP(z) + β − β

= eh(z). (2.3)

As
n∑

i=0
ai = 0, we get

P(z, A(z)eP(z) + β) = P(z, A(z)eP(z)). (2.4)

Next, according to (2.3) and (2.4) ,we infer that
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n∑
i=0

aiA(z + ic)eP(z+ic) − β

A(z)eP(z) =

n∑
i=0

ai
A(z + ic)

A(z)
eP(z+ic)−P(z) −

β

A(z)
e−P(z) = eh(z). (2.5)

As σ(A) < deg P(z) and deg(P(z + ic) − P(z)) ≤ (deg P(z)) − 1 = σ( f ) − 1, i = 0, 1, 2, · · · , n,

then
n∑

i=0
ai

A(z+ic)
A(z) eP(z+ic)−P(z) is a small meromorphic function respective to β

A(z)e
−P(z). Applying the second

fundamental theorem to β

A(z)e
−P(z), we know that

λ(
n∑

i=0

ai
A(z + ic)

A(z)
eP(z+ic)−P(z) −

β

A(z)
e−P(z)) = deg P(z).

This contradicts with eh(z) , 0. Thus, P(z, f ) and f can not share the value β CM.

2.2. Proof of Theorem 1.2

By the conditions, we can get a , 0. If a = 0, then β , 0. Since β and ∞ are Borel exceptional
values of f , then by Lemma 2.2, f (z) can be written as

f (z) = A(z)eP(z) + β, (2.6)

where P(z) is a polynomial and A(z) is a meromorphic function such that

σ(A) ≤ max{λ(β, f ), λ(
1
f

)} < σ( f ) = deg P(z).

Since P(z, f ) and f (z) share the value 0 CM, we have

P(z, f )
f (z)

= eh(z), (2.7)

where h(z) is a polynomial.
It follows from (2.6) and (2.7) that

P(z, A(z)eP(z) + β)
A(z)eP(z) + β

= eh(z). (2.8)

Since
n∑

i=0
ai = 0, there is

P(z, A(z)eP(z) + β) = P(z, A(z)eP(z)). (2.9)

In view of (2.8) and (2.9), it follows that
n∑

i=0
aiA(z + ic)eP(z+ic)

A(z)eP(z) + β
=

n∑
i=0

aiA(z + ic)eP(z+ic)−P(z)

A(z) + βe−P(z) = eh(z). (2.10)

As deg(P(z + ic) − P(z)) ≤ (deg P(z)) − 1 = σ( f ) − 1, i = 0, 1, 2, · · · , n, we see that

λ(
n∑

i=0

aiA(z + ic)eP(z+ic)−P(z)) ≤ σ(
n∑

i=0

aiA(z + ic)eP(z+ic)−P(z)) ≤ σ( f ) − 1. (2.11)
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As β , 0 and σ(A) < σ( f ), applying the second fundamental theorem to βe−P(z), we have

λ(A(z) + βe−P(z)) = σ(A(z) + βe−P(z)) = σ( f ). (2.12)

From (2.10)–(2.12), we can get a contradiction. Thus, a , 0. Therefore,

P(z, f ) − a
f (z) − a

= eq(z), (2.13)

where q(z) is a polynomial with deg q(z) ≤ σ( f ). Since
n∑

i=0
ai = 0, we have

P(z, f ) = P(z, A(z)eP(z) + β) = P(z, A(z)eP(z)). (2.14)

Hence, we can derive the following inequality by (2.13) and (2.14)

n∑
i=0

aiA(z + ic)eP(z+ic) − a = (β − a)eq(z) + eq(z)A(z)ep(z), (2.15)

i.e.

anA(z + nc)eP(z+nc) + an−1A(z + (n − 1)c)eP(z+(n−1)c) + · · ·

+a1A(z + c)eP(z+c) + (a0 − eq(z))A(z)eP(z) = (β − a)eq(z) + a. (2.16)

Seeing that q(z) is a polynomial with deg q(z) ≤ σ( f ), then deg q(z) only satisfies one of the following
cases: 1 ≤ deg q(z) < σ( f ) = deg P(z); deg q(z) = σ( f ) = deg P(z) and deg q(z) = 0.

Case 1. 1 ≤ deg q(z) < σ( f ) = deg P(z). By (2.16), we have

n∑
i=1

aiA(z + ic)eP(z+ic)−P(z) + (a0 − eq(z))A(z) =
(
(β − a)eq(z) + a

)
e−P(z). (2.17)

It follows from β − a , 0, 1 ≤ deg q(z) < deg P(z) that (β − a)eq(z) + a . 0. Hence, the order
of

(
(β − a)eq(z) + a

)
e−P(z) is equal to σ( f ) = deg P(z). As deg(P(z + ic) − P(z)) ≤ (deg P(z)) − 1,

σ(A(z)) < σ( f ) = deg P(z) and deg q(z) < σ( f ) = deg P(z), we see that the order of
n∑

i=1
aiA(z +

ic)eP(z+ic)−P(z) + (a0 − eq(z))A(z) is less than σ( f ) = deg P(z). We can get a contradiction from (2.17).

Case 2. deg q(z) = σ( f ) = deg P(z). Suppose

P(z) = pkzk + pk−1zk−1 + · · · + p1z + p0, q(z) = qkzk + qk−1zk−1 + · · · + q1z + q0.

Thus pk and qk only satisfy one of the following cases: pk = −qk; pk = qk; pk , qk and pk , −qk.

Subcase 2.1. pk = −qk. From (2.16), we can get

n∑
i=0

ai
A(z + ic)

A(z)
eP(z+ic)−P(z) − eq(z) =

β − a
A(z)

eq(z)−P(z) +
a

A(z)
e−P(z).

i.e.
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B11(z)e−P(z) + B12(z)eq(z)−P(z) + B13(z)er(z) = 0. (2.18)

where

r(z) ≡ 0,

B11(z) =
a

A(z)
+ eq(z)+P(z),

B12(z) =
β − a
A(z)

,

B13(z) = −

n∑
i=0

ai
A(z + ic)

A(z)
eP(z+ic)−P(z).

Since pk = −qk, the deg(q(z) + P(z)) ≤ k − 1. Note that

deg(P(z + ic) − P(z)) ≤ k − 1, i = 1, 2, · · · ,

deg(−P(z) − (q(z) − P(z))) = deg(−P(z) − r(z)) = deg((q(z) − P(z)) − r(z)) = k.

By Lemma 2.1, we can get β−a
A(z) ≡ 0. Which contradicts with a , β.

Subcase 2.2. pk = qk. From (2.16), we can get

n∑
i=0

ai
A(z + ic)

A(z)
eP(z+ic)−P(z) − eq(z) =

β − a
A(z)

eq(z)−P(z) +
a

A(z)
e−P(z).

i.e.

B21(z)e−P(z) + B22(z)eq(z) + B23(z)er(z) = 0. (2.19)

where

r(z) ≡ 0,

B21(z) =
a

A(z)
,

B22(z) = 1,

B23(z) =
β − a
A(z)

eq(z)−P(z) −

n∑
i=0

ai
A(z + ic)

A(z)
eP(z+ic)−P(z).

By Lemma 2.1, we can get a contradiction.

Subcase 2.3. pk , qk and pk , −qk. From (2.16), we can get

 n∑
i=0

aiA(z + ic)eP(z+ic)−P(z)

 eP(z) − a = (β − a)eq(z) + A(z)eP(z)+q(z).
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i.e.
B31(z)eP(z) + B32(z)eq(z)+P(z) + B33(z)eq(z) + B34(z)er(z) = 0. (2.20)

where

r(z) ≡ 0,

B31(z) =

n∑
i=0

aiA(z + ic)eP(z+ic)−P(z),

B32(z) = −A(z),
B33(z) = −(β − a),
B34(z) = −a.

By Lemma 2.1, we can get a contradiction.

Case 3. deg q(z) = 0. In this case, eq(z) is a constant. We denote it by C. Suppose that C , a
a−β ,by (2.16)

we can get

n∑
i=0

aiA(z + ic)eP(z+ic) − a = (β − a)C + CA(z)ep(z).

i.e.
n∑

i=0

aiA(z + ic)eP(z+ic)−P(z) −CA(z) = [(β − a)C + a]e−p(z). (2.21)

Since deg(P(z + ic) − P(z)) ≤ (deg P(z)) − 1, σ(A(z)) < σ( f ) = deg P(z), then

σ(
n∑

i=0

aiA(z + ic)eP(z+ic)−P(z) −CA(z)) < deg P(z) = σ([(β − a)C + a]e−p(z)).

We can get a contradiction from (2.21). Hence C = a
a−β .

2.3. Proof of Theorem 1.5

Since P(z, f ) and f share the value 0 CM, there holds

P(z, f )
f

= eH(z),

where H(z) is a polynomial. If H(z) ,constant, then

an f (z + nc) + an−1 f (z + (n − 1)c) + · · · + a1 f (z + c) + (a0 − eH(z)) f (z) = 0.

By Lemma 2.3, we have σ( f ) > deg(H(z)) + 1 > 2. This contradicts with σ( f ) < 2. Hence H(z) is a
constant. Denote η = eH(z), then η is a constant and

P(z, f )
f

= η.
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3. Conclusions

The main result of this paper (Theorem 1.2) shows that P(z, f ) is a linear function of f , if the
following conditions are satisfied:

(1) f is a transcendental meromorphic function of finite order with two Borel exceptional values β
and∞;

(2) P(z, f ) and f share the value a(, β) CM.
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