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Abstract: Let G be a finite group. A bipartite graph associated to elements and cosets of subgroups
of G is the simple undirected graph Γ(G) with the vertex set V(Γ(G)) = A ∪ B, where A is the set of
all elements of a group G and B is the set of all subgroups of a group G and two vertices x ∈ A and
H ∈ B are adjacent if and only if xH = Hx. In this article, several graph theoretical properties are
investigated. Also, we obtain the diameter, girth, and the dominating number of Γ(G). We discuss the
planarity and outer planarity for Γ(G). Finally, we prove that if p and q are distinct prime numbers and
n = pqk, where p < q and k ≥ 1, then Γ(D2n) is not Hamiltonian.
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1. Introduction

The study of group and graph theories has had considerable attention over the past several years.
An important example of such interplay is the notion of the Cayley graph that dates back to 1878
(see [4]). Other important examples that can be found are the notions of commuting graph (see [5])
and non-commuting graph of a group (see [7]). Several other studies have highlighted the relationship
between graph theory and group theory (see [1–3, 6, 9]).

Let Γ be a graph with vertex set V and edge set E. We say that Γ is connected if there is a path
between every pair of vertices of Γ. If vertex u is adjacent to vertex v, then we denote it shorten by
u ∼ v. The length of a smallest cycle contained in a graph Γ is called the girth and it is denoted by
gr(Γ). The distance between a and b in a graph Γ is the length of a shortest path between a and b.
The diameter of a connected graph Γ is the length of the longest path between two distinct vertices of
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Γ. A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets
A and B such that every edge has one vertex in A and the other in B. A complete bipartite graph is a
bipartite graph such that every vertex a ∈ A is adjacent to every vertex b ∈ B. A tree is a connected
graph such that there is no cycle as a subgraph. A dominating set for a graph Γ is a subset D of a vertex
set V such that every vertex in V \ D is adjacent to at least one vertex in D. The domination number
γ(Γ) is the number of vertices in a smallest dominating set for Γ. A cycle that meets every vertex in a
graph exactly once is called a Hamiltonian cycle. A graph that includes a Hamiltonian cycle is called
a Hamiltonian graph.

Throughout this article, G denotes a finite group. A subgroup H of a group G is called a normal
subgroup if and only if ghg−1 ∈ H for all g ∈ G and h ∈ H. If H is a subgroup of G and a ∈ G,
then the left coset of H containing a is aH = {ah|h ∈ H}. Similarly the right coset of H containing
a is Ha = {ha|h ∈ H}. For basic definitions in graph theory and group theory, we refer the reader
to [10–12].

This article concerns a bipartite graph associated with elements and cosets of subgroups of G. In
Section 2, we introduce the bipartite graph associated with elements and cosets of subgroups of G and
we provide some examples of Γ(G). Furthermore, we give a clear view of its basic properties including
diameter, girth, connectivity and the dominating number. In fact, we display some relations between
group theory and graph theory through this graph. In Section 3, we study the planarity and outer
planarity of Γ(G). In Section 4, we shed light on the relationship between the Hamiltonian property of
this graph and the number theory problem throughout dihedral groups.

2. Basic results

In this section, we define a new type of graph that is determined by group theoretic properties and we
present some examples that give a clear view of our new graph. Then we present some characteristics
of Γ(G).

Definition 2.1. A bipartite graph associated to elements and cosets of subgroups of a finite group G
denoted by Γ(G) is defined as the following: The set of vertices V(Γ(G)) = A∪ B, where A is the set of
all elements of a group G and B is the set of all subgroups of G and two vertices x ∈ A and H ∈ B are
adjacent if and only if xH = Hx.

Theorem 2.2. Let G be a group. Then Γ(G) has no isolated vertex.

Proof. If G = {e}, then trivially e is adjacent to G and Γ(G) = K2. Assume that G , {e}. Then for every
vertex x ∈ A and every vertex H ∈ B, we have x is adjacent to {e} and H is adjacent to e. Therefore
deg(x) and deg(H) are at least 1 and the result follows. �

Theorem 2.3. The graph Γ(G) is connected with diameter less than or equal 3.

Proof. We have to prove that for every two arbitrary vertices, there exists a path between them of length
at most 3. So, we have the following cases:

Case 1. x1, x2 ∈ A.
It is obvious that x1 and x2 have common neighbour (for example {e} or G) in B and we have a path of
length 2.
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Case 2. H1,H2 ∈ B.
Similar to the case 1, two vertices H1 and H2 have common neighbour e in A and again we have a path
of length 2.

Case 3. x ∈ A and H ∈ B.
By the above two cases, we will have a path x ∼ {e} ∼ e ∼ H of length 3.

Hence Γ(G) is connected and diam(G) ≤ 3. �

As a consequence of Theorem 2.3, we can see that Γ(G) can not be tree or star graph.

Example 2.4. Firstly, we consider the group S 3 = {e, (12), (13), (23), (123), (132)}. The set A = S 3 and
the set B = {H0 = {e},H1 = {e, (12)},H2 = {e, (13)},H3 = {e, (23)},H4 = {e, (123), (132)},H5 = S 3}.
It is clear that Z(S 3) = {e} and H4 is normal subgroup in S 3. Hence {e} and H4 are adjacent with all
vertices in the set A. The graph Γ(S 3) is drawn in Figure 1(a). Secondly, let G = Z8. So, the set A = Z8

and the set B = {H0 = {e},H1 =< 2 >,H2 =< 4 >,Z8}. Since all subgroups of Z8 are normal, Γ(Z8) is
complete bipartite graph (see Figure 1(b)).

e
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(123)

(132)

H0

H1

H2

H3

H4

S 3

(a) Γ(S 3)
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H2

Z8

(b) Γ(Z8)

Figure 1. Γ(S 3) and Γ(Z8).
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Theorem 2.5. If Z(G) , {e} and |B| ≥ 2, then the girth of Γ(G) equals 4.

Proof. Since any bipartite graph has no odd cycle. Hence, there is no cycle of length 3. we may have
a cycle of length 4 as the following e ∼ H1 ∼ z ∼ H2 ∼ e, where e, z ∈ Z(G) and H1,H2 ∈ B. �

Definition 2.6. A group G is called Dedekind group if all subgroups of G are normal. If G is non-
abelian and Dedekind group, then it is called Hamiltonian.

Theorem 2.7. The graph Γ(G) is complete bipartite graph if and only if G is a Dedekind group.

Proof. First, we note that if H is a normal subgroup of G, then xH = Hx for every element x in
G. Thus, if H is a normal subgroup of G, then H is adjacent to all elements of G. Hence, if G is
a Dedekind group, then Γ(G) is complete bipartite graph. Conversely, if Γ(G) is complete bipartite,
then every element of G must adjacent to every subgroup of G. So, if H is an arbitrary subgroup of
G, then we should have xH = Hx for every element x ∈ G. It is equivalent to say that H is a normal
subgroup of G. Thus, every subgroup of G should be normal which implies that G is a Dedekind group
as required. �

Example 2.8. Let G = Q8 be quaternion group. Then we have the following subgroups
H1 = {1},H2 = {1,−1},H3 = {1,−1, i,−i},H4 = {1,−1, j,− j},H5 = {1,−1, k,−k},H6 = Q8. It
is clear that Q8 is a Hamiltonian group and so all subgroups of Q8 are normal. Hence the graph Γ(Q8)
is K8,6 (See Figure 2).

1 −1 i −i j − j k −k

H1 H2 H3 H4 H5 H6

Figure 2. Γ(Q8) = K8,6.

Lemma 2.9. Assume that G is a group, Z(G) is the center of G, {x1, x2, x3, · · · , xn} is the set of
representative elements of distinct left cosets of Z(G) in G and H is a subgroup of G. Then

(i) if xi is adjacent to H, then all element in xiZ(G) is also adjacent to H
(ii) if xi is not adjacent to H, then any element in xiZ(G) can not be adjacent to H.

Proof. (i) Assume that xi is adjacent to H and z is an arbitrary element in Z(G). Then we have xizH =

xiHz = Hxiz which implies that xiz is adjacent to H. (ii) Suppose that xi is not adjacent to H and xiz is
adjacent to H for some z ∈ Z(G). Then we have xizH = Hxiz. So zxiH = zHxi. By removing z from
both sides, we got xiH = Hxi which is a contradiction.

�

Theorem 2.10. Let G be a group. Then the dominating number of the graph Γ(G) is exactly 2.

Proof. Suppose that D = {e,G}. Then it is clear that D is a dominating set. Because, if e , x ∈ A, then it
will adjacent to G and if G , H ∈ B, then H will adjacent to e. Moreover, D is the smallest dominating
set and we can not have a singleton dominating set. Thus, the domination number γ(Γ) = |D| = 2 as
required. �
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3. Planarity and outer planarity

In this section, we deal with the planarity and outer planarity of Γ(G). Let us start with the following
simple lemma.

Lemma 3.1. Let G be a cyclic group of order p, where p is a prime number. Then Γ(G) is planar.

Proof. From the definition of bipartite graph and the structure of cyclic group of order p, we can
see that the vertex set of Γ(G) consists of p elements of G in the set A and 2 subgroups (the trivial
subgroup and the whole group G) in the set B. Thus it is complete bipartite Kp,2 and so Γ(G) is planar
(see Figure 3). �

{e}

x1 x2 x3
· · ·

xp

G

Figure 3. Γ(G) is planar.

Lemma 3.2. Let G be a cyclic group of order p1 p2, where p1 and p2 are two distinct prime numbers.
Then Γ(G) is not planar.

Proof. It is clear that we have at least 4 subgroups of order 1, p1, p2 and p1 p2. Hence Γ(G) contains
subgraphs Kp1 p2,4. Since p1 p2 ≥ 3, so Γ(G) contains K3,3 which implies that Γ(G) is not planar.

�

Theorem 3.3. Let G be a cyclic group of order n, where n = p1
α1 p2

α2 · · · pk
αk . If k = 1 and αk = 1.

Then Γ(G) is planar. Otherwise it is not planar.

Proof. It is clear that if k = 1 and αk = 1, then G is a cyclic group of prime order and so Γ(G) is planar
by Lemma 3.1. If k = 1 and αk ≥ 2, then we have at least three subgroups of order 1, p1 and pα1

1 which
they are all adjacent to every element of G. Thus it contains subgraph K3,3. So, Γ(G) is not planar. If
k > 2, then we may again find at least three subgroups of G which are adjacent to all elements of G.
Hence, Γ(G) is not planar.

�

In the following theorem we classify the planarity of Γ(G) and show that the only cyclic groups of
prime order have planar graphs.

Theorem 3.4. Let G be a finite group and Γ(G) be the associated bipartite graph of G. Then Γ(G) is
planar if and only if G is a cyclic group of order prime number.

Proof. It is clear that if G is a cyclic group of prime order, then Γ(G) is planar by Lemma 3.1.
Conversely, assume that Γ(G) is planar. Then we may consider the following cases:
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Case 1. G is a cyclic group.
In this case, we can see that the only possibility for Γ(G) to be planar is when G is a cyclic group of
prime order, by Lemma 3.1 and Theorem 3.3. Thus the result follows.

Case 2. G is not a cyclic group.
In this case, we can consider the following two subcases:
(i) G is a simple group.
If G contains an element x of order 3 or more, then Γ(G) contains a copy of K3,3 induced on the vertices
e, x, x2 of A and the vertices {e}, < x >,G of B which is a contraction. Thus every non-identity element
of G has order 2. So, by a group theory result G must be an abelian group and since by our assumption
G is simple, it will be a cyclic group of prime order as required.
(ii) G is not a simple group.
Since G is not simple, there is a normal subgroup N such that {e} , N , G. Thus, there are two distinct
elements e , x ∈ N and x , g ∈ G. Hence the induced subgraph to vertices e, x, g of A and {e},N,G of
B provide K3,3 and is a contradiction. Thus the proof is completed. �

Example 3.5. If G is a group of order less than 9. Then Γ(G) is the following:
If |G| = 1, then Γ(G) = K1,1 and so it is planar. If |G| = 2, then Γ(G) = K2,2. So Γ(G) is planar. If
|G| = 3, then Γ(G) = K3,2 and so Γ(G) is planar. If |G| = 4, then we have two cases. If G is cyclic, then
Γ(G) = K4,3 which implies that Γ(G) is not planar. If G is not cyclic, then Γ(G) = K4,5 and again Γ(G)
is not planar. If |G| = 5 then Γ(G) = K5,2. Thus Γ(G) is planar. If |G| = 6, then we have two cases.
If G is cyclic, then Γ(G) = K6,4 which implies that Γ(G) is not planar. If G is not cyclic, then G = S 3

and Γ(G) has K3,3 as a subgraph. Thus Γ(G) is not planar. If |G| = 7 then Γ(G) = K7,2 and is planar. If
|G| = 8, then G is one of Z8, Q8 or D8. In all cases Γ(G) is not planar (see Figures 1 and 2 and the point
that the induced subgraph {e, x, y} ⊆ A and {{e},Z(D8),D8} is K3,3 and so it is not planar).

Definition 3.6. A graph Γ that has a planar drawing such that all vertices lie on the outer-face of the
graph is called an outer planar graph [10].

A known result shows that a graph is outer planar if it has no subgraph isomorphic to K4 or K2,3.

Theorem 3.7. Let G be a cyclic group of order p ≥ 3, where p is a prime number. Then Γ(G) is not an
outer planar graph.

Proof. Assume that G is a cyclic group of order p ≥ 3. We can see that the vertex set A consists of p
elements, where p ≥ 3, and two vertices in B. Hence the graph contains K2,3 as a subgraph of Γ(G).
Therefore Γ(G) is not an outer planar graph. �

One can easily see that if a graph is an outer planar then it is planar too. But, the converse is not
true. The following example shows that we may have a planar graph which is not outer planar.

Example 3.8. Let Z5 be a cyclic group of order 5. Then we can see that Γ(Z5) = K2,5 which is planar.
But it is not an outer planar graph.

Similar to Theorem 3.4, we may classify all outer planar graphs as the following.

Theorem 3.9. Γ(G) is outer planar if and only if |G| = 1 or 2.
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Proof. It is clear that if |G| = 1 or 2, then Γ(G) = K2 or C4, respectively. So, Γ(G) is outer planar.
Conversely, assume that Γ(G) is outer planar. If G is not cyclic, then by Theorem 3.4, Γ(G) is not planar
and consequently it is not Outer planar. Thus assume that G is a cyclic group. Again by Theorem 3.4,
if G is not a cyclic group of prime order, then Γ(G) is not outer planar. Hence the only possibility for
G is a cyclic group of order 2, by Theorem 3.7. If G = {e}, then Γ(G) = K2 is outer planar as well.
Therefore |G| = 1 or 2 as required. �

4. Hamiltonian

In this section we discuss the Hamiltonicity of the graph Γ(D2n). We show that Γ(D2n) is not
Hamiltonian in many cases.

Lemma 4.1. Let Γ(G) be Hamiltonian graph. Then |A| = |B|.

Proof. Suppose that V(Γ(G)) = A ∪ B and Γ(G) is Hamiltonian. Thus we will have a cycle that meets
all vertices of Γ(G). If we start from a vertex x1 in A, then will meet y1 in B and meets x2 in A and then
y2 in B. After |A| steps we will reach to x|A| in A and y|A| in B and finally reach x1. Since, Hamiltonian
cycle must meet all vertices in A and B, we should have |A| = |B|. �

In the rest of this section, we are going to investigate for what values of n, Γ(D2n) is Hamiltonian or
not, where D2n is a dihedral group of order 2n. Recall that D2n is a group generated by two elements
a and b such that an = b2 = e and bab = a−1. In the following theorems, we show that Γ(D2n) is not
Hamiltonian in many cases. First, we start with the following simple lemma.

Lemma 4.2. If p is prime then px > 2x + 2 for all x ≥ 3.

Proof. Let f (x) = px. Then by the mean value theorem, for [1, n], we have f ′(x) = pxln(p) and
f (x)− f (3)

x−3 = f ′(c), where 3 < c < x. Since f ′(c) = pcln(c) > 23. Thus px−p3

x−3 > 23. Hence, px >

8x + p3 − 24, then px > 8x + 8 − 24 = 8x − 16. Therefore px > 2x + 2, for all x ≥ 3. �

Lemma 4.3. Let D2n be a dihedral group of order 2n. Then the number of subgroups of D2n = τ(n) +

σ(n), where τ(n) is the number of divisors of n and σ(n) is the sum of divisors of n.

Proof. (See [8]). �

Thus if V(Γ(D2n)) = A ∪ B, then we have |A| = 2n and |B| = τ(n) + σ(n), for all n ≥ 3. So, by
Lemma 4.1, if for some values of n, 2n = |A| , |B| = τ(n) + σ(n), then Γ(D2n) can not be Hamiltonian.
In the following theorems, we determine many values of n such that Γ(D2n) is not Hamiltonian.

Lemma 4.4. Γ(S 3) is not Hamiltonian.

Proof. As in Figure 1(a), Γ(S 3) has 6 vertices in A and 6 vertices in B as the following: A =

{e, (12), (13), (23), (123), (132)} and B = {H0,H1,H2,H3,H4, S 3}. Moreover, we have deg(H1) =

deg(H2) = deg(H3) = 2 and H1,H2 and H3 have a common neighbor e. If Γ(S 3) is Hamiltonian,
then we should have a cycle visited every vertex exactly once. But, we can easily check that it is
not possible. Because, if there exists a cycle consisting vertices H1,H2 and H3, then we have to visit
identity element e at least twice which is a contradiction to Hamiltonian cycle. Hence Γ(S 3) is not
Hamiltonian. �
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Theorem 4.5. Γ(D2p) is not Hamiltonian for every prime number p.

Proof. Assume that V(Γ(D2p)) = A ∪ B, then we will have |A| = 2p and |B| = p + 3. Thus |A| = |B|
will deduce that p = 3. Now, if p = 3 then Γ(D6) = Γ(S 3) is not Hamiltonian, by Lemma 4.4. Thus the
proof follows. �

Theorem 4.6. Let p ≥ 3 be prime. If n = p2 or n = p3, then Γ(D2p) is not Hamiltonian.

Proof. It is enough to prove that |A| , |B|. If n = p2, then |A| = 2p2 and |B| = p2 + p + 4. So, |A| , |B|,
because p2 − p − 4 = 0 has no prime number solution. Similarly, for n = p3, we have |A| = 2p3 and
|B| = p3 + p2 + p + 5. So, |A| , |B|, because p3 − p2 − p − 5 = 0 has no prime number solution. Thus
the proof follows. �

Theorem 4.7. Γ(D2n) is not Hamiltonian for all n = pk, where p is prime and k ≥ 4.

Proof. By the same method as in the above case, we have |A| = 2pk and |B| = τ(n) + σ(n). Hence,

|B| = k + 1 + 1 + p + p2 + · · · + pk = k + 1 +
pk+1 − 1

p − 1
=

pk+1 + kp − k + p − 2
p − 1

. If |A| = |B|, then we

will have 2pk+1 − 2pk = pk+1 + kp + p − k − 2, or equivalently pk+1 − 2pk − kp − p + k + 2 = 0. Thus
pk(p − 2) − (k + 1)p + 2(k + 1) − k = 0
⇐⇒ (p − 2)(pk − k − 1) = k. If p = 2, then we have |A| = 2k+1 , 2k+1 + k = |B| and so Γ(D2n) is not
Hamiltonian. So p − 2 ≥ 1. Therefore, pk − k − 1 < k. By Lemma 4.2, 2k + 2 − k − 1 < pk − k − 1 ≤ k
or k + 1 ≤ k which is a contradiction. Thus, |A| , |B| and therefore Γ(D2n) is not Hamiltonian.

�

Corollary 4.8. Γ(D2n) is not Hamiltonian, if n = pk, for all k ≥ 1 and prime number p.

The last theorem of the paper deals with the case that n = pqk. The following lemma plays an
important role in the proof of Theorem 4.10.

Lemma 4.9. Let k ≥ 2, p and q be distinct prime numbers. Then the equation p =
qk + qk−1 + qk−2 + · · · + q + (3 + 2k)

qk − qk−1 − · · · − q − 1
has only integer solution when q = 2.

Proof. It can be easily seen that qk − qk−1 − qk−2 − · · · − q − 2 = (q − 2)(qk−1 + qk−2 + · · · + q + 1)
and so, qk − qk−1 − qk−2 − · · · − q − 1 = (q − 2)(qk−1 + qk−2 + · · · + q + 1) + 1. Thus , if q = 2,
then qk − qk−1 − qk−2 − · · · − q − 1 = 0 + 1 = 1. Hence, p = 2k + 2k−1 + · · · + 2 + 3 + 2k =

(2k + 2k−1 + · · · + 2 + 1) + (2 + 2k) =
2k+1 − 1

2 − 1
+ (1 + 2k) = 2k+1 + 2k + 1.

Now, If q = 3, then p =
qk + qk−1 + qk−2 + · · · + q + (3 + 2k)

qk − qk−1 − · · · − q − 1
is not integer.

Moreover, assume that p =
A
B

, where A = qk +qk−1 +qk−2 +· · ·+q+(3+2k) and B = qk−qk−1−· · ·−q−1,

then B = (q − 2)(qk−1 + qk−2 + · · · + q + 1) + 1 = (qk + qk−1 + · · · + q2 + q) − 2(qk−1 + · · · + q + 1) + 1.
Hence, −3−2k = A−2(qk−1 + · · ·+ q + 1)−2(k + 1). Therefore, A = B + 2(qk−1 + · · ·+ q + 1) + 2(k + 1).
So,

p =
A
B

=
B + 2(qk−1 + · · · + q + 1) + 2(k + 1)

B
= 1 +

2[(qk−1 + · · · + q + 1) + (k + 1)]
B

= 1 + 2(
C
B

), where C = [(qk−1 + · · · + q + 1) + (k + 1)]. On other hand,
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B = (q − 2)(qk−1 + qk−2 + · · · + q + 1) + 1
=(qk−1 + qk−2 + · · · + q + 1) + (q − 3)(qk−1 + qk−2 + · · · + q + 1) + 1
=qk−1 + qk−2 + · · · + q + 1 + (k + 1) + (q − 3)(qk−1 + qk−2 + · · · + q + 1) − k
=C + (q − 3)(qk−1 + qk−2 + · · · + q + 1) − k
≥ C + (qk−1 + qk−2 + · · · + q + 1) − k, since q > 3
≥ C + (qk−2 + qk−3 · · · + q + 1)
≥ C, since qk−1 ≥ k

Therefore, B > C, and so,
C
B
< 1, which implies that p = 1 + 2(

C
B

) is not an integer.
�

Theorem 4.10. If p and q are distinct prime numbers and n = pqk, where p < q and k ≥ 1, then Γ(D2n)
is not Hamiltonian.

Proof. If Γ(D2n) is Hamiltonian, then we should have 2n = 2pqk = τ(n) +σ(n) = (2k + 2) + (1 + p + q +

q2 + · · ·+ qk + pq + pq2 + · · ·+ pqk). Thus, p =
qk + qk−1 + · · · + q + (3 + 2k)

qk − qk−1 − · · · − q − 1
. Let us start with the case

that k = 1. In this case, we have n = pq and so 2pq = 2n = |D2n| = τ(n) +σ(n) = 4 + 1 + p + q + pq will
imply that (p − 1)(q − 1) = 6. All solutions of this equation are (p, q) = (2, 7), (7, 2), (3, 4), or (4, 3).
The only acceptable case is (2, 7). But, if we draw Γ(D28), then we can see that there are 13 subgroups
of order 2 and degree 2 in B. Moreover, they have a common neighbor identity element e. By the same
reason as we mentioned in Lemma 4.4, Γ(D28) is not Hamiltonian. Thus, Γ(D2n) is not Hamiltonian for
n = pq. Now, assume that k ≥ 2. Then by Lemma 4.9, the only integer solution for the above equation
is q = 2, p = 2k + 2k + 1. Since, p < q, so this solution is not acceptable and therefore, there is no
integer solution. Hence Γ(D2n). can not be Hamiltonian and the proof is complete.

�

Finally, we have checked the condition |A| = |B| in Γ(D2n) for all 3 ≤ n ≤ 1000 and found the
numbers 3, 14, 52, 130, 184 and 656. It seems that as we removed the possibilities 3 and 14 for graphs
Γ(D6) and Γ(D28), respectively. So, we possibly could be able to consider the other cases and show that
they are not Hamiltonian. Thus, we end the paper with the following conjecture.

Conjecture. Γ(D2n) is not Hamiltonian for all n ≥ 2.
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