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Abstract: This paper proposes a new definition of the nonlinear Fredholm integro-differential
equation of the second kind with continuous kernel in two-dimensional (NT-DFIDE). Furthermore, the
work is concerned to study this new equation numerically. The existence of a unique solution of the
equation is proved. In addition, the approximate solutions of NT-DFIDE are obtained by two powerful
methods Adomian Decomposition Method (ADM) and Homotopy Analysis Method (HAM). The
given numerical examples showed the efficiency and accuracy of the introduced methods.
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1. Introduction

The integral equations provide an important tool for modeling the numerous phenomenons and for
solving boundary value problems. In addition, the references [1-3], studied the different applications
of partial differential equations and analysis in applied mathematics. Kazemi et al. [4] discussed an
efficient iterative method based on quadrature formula to solve two-dimensional nonlinear Fredholm
integral equations. Fattahzadeh [5] solved two-dimensional linear and nonlinear FIE of the first kind
based on Haar wavelet. Torabi and Tari [6] solved T-DIE of the first kind by multi-step method. Atabakan
et al. [7] introduced the solving linear FIDEs using the well-known Chebyshev-Gauss-Lobatto collocation
points. Rabbani and Zarali [8] discussed the technique of modified decomposition method to solve a
system of LIDEs with initial conditions. Arqub et al. [9] discussed the numerical solution of FIDE in
a reproducing kernel Hilbert space. Pandey [10] considered a non-standard finite difference method
for numerical solution of LFIDEs. Erfanian and Zeidabadi [11] discussed a numerical method for the
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solutions of the NFIDE in the complex plane is presented. Saadatmandi and Dehghan [12] studied the
higher-order LFIDDE with variable coefficients. All previous studies have studied the integro-
differential equation in one dimension only. The goal of this paper is to study the N-FIDE of the second
kind in two-dimensional.

Consider

u'(m,n) + A(m,n)u'(m,n) + B(m,n)u(m,n)
= Qmn) = A[. [ Limn, t,)y(t, 5,u(t, ))deds (1)
Under the boundary conditions:

u(a,c) = qiry, u(b,d) = qz1; (2)

Where (m,n) € J, ] =[a,b] X [c,d], is a continuous nonlinear in u given function, and u is the
unknown function represents solution of the NT-DIDE (1). Also, A is a constant. 4 (m, n), B (m, n), are
known continuous functions in the class C [a, b]xC [a, b] with its derivatives. Integrating (1), twice,
then letting m=b, n=d, then, Eq (1) reduce to

u(m,n) = f(m,n) + Af; fcdp(m, n, t,s)y(t, s, u(t,s))dtds 3)

Equation (3) represents T-DFIDE in the nonlinear case.
2. Existence of a solution of NT-DFIDE

Theorem 1. Consider a metric space = (M,d) X # ®. Suppose that M is complete and letT : M —
M be a contraction on M. Then T has precisely one fixed point. In addition, we can write the formula
of Eq (3) in the integral operator form

Wu(m,n) = f(m,n) + Wu(m,n), 4)
where
Wu(m,n) = 1[, [* pnn,t,s)y(t, s, u(t, s))dtds (5)

In addition, we assume the following conditions:
1. The(m, n, t, s), should be satisfies |p(m,n,t,s)| < N.

2. £(M,n) i5 continuous inC [a, b] X C|[c,d], and its norm is defined as
1
If (m,n)|| = {f; fcd|f(m, n)|?dmdn}z = &, (8 is a constant).

3. The known continuous function y(m,n, u(m,n)) satisfies, for the constant A>A, A>P, the

following conditions

b ~d 1
i~ | womnuGnmidmdny? < Alluomwl

i =y (m,n,uy (m,n)) — y(m,n,uz (m,n))| < M(m,n)|uy (m,n) — uy(m, n)|,

where ||M(m,n)|| = P.
4. The unknown function u(x, y), behaves in C[a, b] X C|[c, d] as the given function f (x, y) and its
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norm is defined as

1

fab fcdlu(m, n)|2dmdn|*.

lu(m, || =

Theorem 2. If the conditions (1)—(3) are verified, then Eq (3) has a unique solution in C[a, b] X C|[c, d].
Lemma 1. Under the conditions (1)—~(3-i), the operator W defined by (4), maps the space
Cla, b] X C[c, d] into itself.

Proof. In view of the formulas (4) and (5), we get

. b rd
IWWuGm, Il < IIf el + 121 || f; (LG e )y (e s,ute s)ldeds| - ©)
Using the condition (2), we have
- b rd 1
[Wu(m,m)|l < &+ 12l(Ilp(m, n, t, )N, J, ly(m,n,u(m,n)|>dmdn)2 (7)
Using conditions (1) and (3-1):
[Wu(m,n)|| < & + ollu(m,n)|l, (6 = |AINA) )

Moreover, the inequality (5) involves the roundedness of the operator W of Eq (4), where
IWu(m,n)|| < ollu(m,n)l|. )
m

Lemma 2. If the conditions (1) and (3-ii) are satisfied, then the operator W is a contractive in the
Banach space C[a, b] X C[a, b].

Proof. For u;(m,n) and u,(m,n) in C[a, b] X C[c, d], the formulas (4) and (5) lead to

Wy = W) (mm)ll < IAL|| £ [ Gm,n, £, $) 1y (E 5,u4 (8, 5)) = ¥ (85,152, 5)) deds | (10)

From the condition (3-ii), we have
_ _ b (d 2
|(Wuy = Wup)(m, )|l < [Al(Ip(m,n, t, )N, [, M?(t,s) lug (t,5) — up(t, s)|dtds)z (11)
Finally, we obtain
I(Wu, — Wuy)(m,n)|l < olluy(m,n) — uy(m,n)|| (12)

m
3. Numerical methods for solving NT-DFIDE
3.1. ADM

In this section, we will solve the nonlinear T-DFIDE by using the ADM. New algorithms for
applying the ADM to nonlinear differential and partial differential equations have been introduced
in Behiry et al. [13]. In addition, the error analysis of Adomian series solution for a class of NDIs
have been discussed in El-Kalla [14]. A reliable approach for convergence of the ADM when applied
to a class of NVIEs have been discussed in El-Kalla [15], also ADM is employed to solve nonlinear
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FIEs of the second kind in Atia et al. [16]. EL-Kalla in [17] the proof of convergence of ADM has been
applied to a class of NVI-DEs. In [18], Parviz et al. solved systems of FI-DEs by ADM. In [19], Abdou
et al. studied the convergence of the series solution to a class of NT-DHIE, and solved it by using ADM
and HAM. Zeidan et al. [20] discussed a novel Adomian decomposition method for the solution of
Burgers’ equation.

In this section, we will discuss and solve the NT-DFIDE of the second kind using ADM. In addition,
numerical experiments are prepared to illustrate these considerations, and the estimating error is
calculated.

Consider Eq (3), where f(M.n) is assumed to be bounded YM:N€J =[ab]x[c,d], apq

[P(M.NtSY <N he nonlinear term 7(t,s.ut,s)is Lipehitz continuous with |y(u)— 7(n)| < L|u —h|.

Define (C[a,b]xCJc,d],d"), the space of all continuous functions on the rectangle [a,b]x[c,d ] with
the distance function d "(h,u), where

d*(h,u) = max|h(m,n) —u(m,n)| (13)
X,y€]
u(m,n) 1s assumed of the form:

u(m,n):iun(m,n)

(14)
While the nonlinear term y(t,s,u) in Eq (3) is decomposed into an infinite series
ytsu)=> A
n=0 (15)
Where the traditional formula of 4, is:
1 d n 0 i
A== (AU
n'dA =0 ) (16)
Another formula of Adomian polynomials is given by:
n-1
A, =7S)-2 A
=0 (17)
Where,
S, =>.u;(m,n),
i=0 (18)
Then, applying the ADM to Eq (3), yields
u(m,n)=>u,(m,n)
n=0 . (19)
Where
Ug(m,n)=f (m,n) (20)
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w(mn) = [, [ pm,n,t,5)4,_deds,i > 1. Q1)
3.2. The HAM

In this section, we will solve the nonlinear T-DFIDE by using the HAM. This study is new, as we
have noted that all previous research has been integro differential equation solved in one dimension
using this method.

Consider Eq (3), where, P(M:N.6,8) and f (x,y) are known functions, (t,s,u(t,s)) is a known

function of u.
For description of the method, we consider:

N[u] = u(m,n) — f(m,n) — ff fcdp(m, n,t,s)y(t s,u(t,s))dtds = 0. (22)

Where, N is nonlinear operator. Let Ug(m,n) denote an initial guess of the exact solution u(m,n),

h # 0 an auxiliary parameter, H(m, n) an auxiliary function, LIg (M, n)]=0yhend(M,n) =0 Then
using r €[0,1], we construct such a homotopy.

(1 —-r)Lle(m,n;r) —uy(m,n)] —rhH(m,n)N[p(m,n;r)]
= H[p(m,n;r); uy(m,n), H(m,n), h,r]. (23)

It should be emphasized that we have great freedom to choose the initial guess Ug(m,n) , the auxiliary

linear operator L, the non-zero auxiliary parameter 4, and the auxiliary function H(m,n) , H is the
second auxiliary function, enforcing the homotopy (23) to be zero, i.e.,

H[p(m,nr); uy(m,n), H(m,n), h,r].
Then, we get:
(1—=r)Llp(m,n; 1) —ug(m,n)] = rhkH(m,n)N[p(m,n;r)]. (24)

When r =0, then (24) becomes

p(m,n; 0) = uy(m,n). (25)
Also, when r =1, and & # 0, H(m,n) # 0 then (24) is equivalent to

e(m,n;1) = u(m,n). (26)
Thus, according to (25) and (26), as the embedding parameter 7 increases from 0 to 1, 2(M: 1) varies

continuously from the initial approximation Uo(m, n) to the exact solution Y(M:N) such a kind of
continuous variation is called deformation in homotopy. ¢#(x,y ;r), can be represents the power series

of r as follows:

¢(m,n;r):uo(m,n)+iu|(m,n)r'
E . @7)

Where
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_ i@(p(m,n;r)
w(m,n) = TR N (28)
Then, under these assumptions, we have
u(m,n)=¢(m,n;1) :uo(m,n)+2u, (m,n)r
=1 . (29)
Then,
u,(m,n) = {ug(m,n), u;(m,n),...,u,(mn)}. (30)

According to the Eq (28), the governing equation of U (X,Y) can be derived from the zero-order

deformation equation (24). Differentiating the zero-order deformation equation (24) / times with
respective to  and then dividing by /!, and setting =0, we have the so-called mth-order deformation
equation:

L[u;(m,n) — niu;_1(m,n)] = hH(m, n)R;(@;_1(m, n))

1;(0,0) = 0. (31)
Where
Wy (g (m,m)) = = SO (32)
And
n={i Sy 3

3.3. The computational procuder for the HAM

In this section, we will use the HAM to solve nonlinear T-DFIDE in two-dimensional (3), which can
be written in the form

u(mn) = f(m,n) + [, [ pm,n,t,5)[u(t, s)]" dtds (34)
p is a positive integer, and P(M:M.8.8) For this, assume:
N[u] = u(m,n) — fF(m,n) — A [, [ p(m,n, t,$)[u(t, s)] dtds (35)
The corresponding mth-order deformation Eq (31) reads

L[u,(m,n) — nuy_(m,n)] = hH(m,n)R;_, (4;_1(m, n))

4,(0,0) = 0. (36)
Where
Ry (@ (M) = wog = A =n)f = J [ p(mn, £, )R (9P)deds (37)
| S1 Sy Sp_3 Sp_p
SR' (¢P) - ZuFSl Zusrsz u52*53'" Z uSP—375P—2 z uSP—ZfsP—luSP—l
$,=0 s,=0 S3=0 Sp_p=0 Sp_41=0 . (38)
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So, to obtain a simple iteration formula for u, (X,y), choose Lu =u, then substituting into (36) to

obtain:

In addition, we get:

4. Numerical problems

Example 1. Consider

u(m,n):iu,(m,n)

under the boundary conditions:

The exact solution is u (m, n)=m.n, if we set k=1, in (42), one has

u'(m,n) + Au'(m,n) + Bu(m,n) = Q(m,n) — fol fol(em”.sz)(u(t, s))dtds.

u(0,0) =0,u(1,1) = 0.

Up(m,n) = f(m,n)

w,(m,n) = fab fcdp(m, n,t, )R- (pF)dtds, 1 = 1,2, ...

u'(m,n) + Au'(m,n) + Bu(m,n) = Q(m,n) — fol fol(em'”.sz)(u(t, s))*dtds

(39)
(40)

(41)

(42)

(43)

(44)

Which called the LT-DFIDE, and if we set k > 2 in (42), we obtained the NT-DFIDE, of the second
kind, with A=L A=(2/m+n), B=1 14 addition, the corresponding errors for the nonlinear and
linear cases are computed. We solve Eq (42) using ADM and HAM. In the following Tables 1 and 2,
we present the exact, numerical solutions and the corresponding errors for some points of m, n,

0<m,n<1

» at N=10. Maple 10 is used to carry out the computations. In Tables 1 and 2, ugvic: — the

exact solution, uspy —approximate solution of ADM, Errorspy—> the absolute error of ADM, unam
—approximate solution of HAM, Errornsm — the absolute error of HAM.

Table 1. Numerical results and absolute error values by using HAM and ADM, N=10, at
linear case k=1.

ADM HAM

" " i UADM Errorapu UHAM Errorgam

0.0 0.0 0.00 0.00012207 0.000122070 0.00012207 0.000122070
0.1 0.1 0.01 0.00987670 0.000123297 0.00987670 0.000123297
0.2 0.2 0.04 0.03987294 0.000127052 0.03987294 0.000127052
0.3 0.3 0.09 0.08986643 0.000133566 0.08986643 0.000133566
0.4 0.4 0.16 0.15985674 0.000143250 0.15985674 0.000143250
0.5 0.5 0.25 0.24984325 0.000156741 0.24984325 0.000156741
0.6 0.6 0.36 0.35982503 0.000174966 0.35982503 0.000174967
0.7 0.7 0.49 0.48980074 0.000199257 0.48980074 0.000199257
0.8 0.8 0.64 0.63976849 0.000231503 0.63976849 0.000231504
0.9 0.9 0.81 0.80972559 0.000274402 0.80972559 0.000274402
1.0 1.0 1.00 0.99966817 0.000331821 0.99966817 0.000331821

AIMS Mathematics
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Table 2. Numerical results and absolute error values by using HAM and ADM, N=10, at

nonlinear case £=2.

ADM HAM
m n UExact

Uabm Errorapu UHAM Erroraam
0.0 0.0 0.00 0.347x10°* 0.347000%10°® 0.347x10°8 0.347x10°8
0.1 0.1 0.01 0.00999999 0.350487x1078 0.009999996 0.3505x108
0.2 0.2 0.04 0.03999999 0.361661x10® 0.039999996 0.3610x108
0.3 0.3 0.09 0.08999999 0.379678x10°® 0.089999996 0.3800x108
0.4 0.4 0.16 0.15999999 0.407208x1078 0.159999995 0.4100x108
0.5 0.5 0.25 0.24999999 0.445556x10°® 0.249999995 0.4500x108
0.6 0.6 0.36 0.35999999 0.497365%10°® 0.359999995 0.5000x108
0.7 0.7 0.49 0.48999999 0.566413x1078 0.489999994 0.5700x108
0.8 0.8 0.64 0.63999999 0.658078x10® 0.639999993 0.6600x108
0.9 0.9 0.81 0.80999999 0.780024x10® 0.809999992 0.7800x108
1.0 1.0 1.00 0.99999999 0.34700x10°8 0.999999999 0.3400x108

Example 2. Consider
u"(m,n) + Au'(m,n) + Bu(m,n) = Q(m,n) — fol fol(sin( m.n).s?)(u(t,s))*dtds (45)
Under the boundary conditions:
u(0,0)=0,u(1,1)=0 (46)
The exact solution is u (m, n)=m.n, if we set k=1, in (45), one has
uw'(m,n) + Au'(m,n) + Bu(m,n) = Q(m,n) — [ [ (sin(m.n).s?)(u(t,s))dtds (47)

Which called the LT-DFIDE, and if we set k >2in (45), we obtained the NT-DFIDE, of the second
kind, withA=L A=(=2/m+n), B =1 0<m,n <1 5t N—10. In Tables 3 and 4, upu —> the exact
solution, u4py —>approximate solution of ADM, Errorapy —> the absolute error of ADM, uw4y —>approximate

solution of HAM, Errormuas — the absolute error of HAM.

Table 3. Numerical results and absolute error values by using HAM and ADM, N=10, at
linear case k=1.

ADM HAM
" " i UapM Errorapu UHAM Errorgam
0.0 0.0 0.00 0.0000000 0.00000000 0.0000000 0.000000
0.1 0.1 0.01 0.0099999 0.1999966x10! 0.00999999 0.2x10712
0.2 0.2 0.04 0.0399999 0.7997866x10! 0.03999999 0.1x10710
0.3 0.3 0.09 0.0899999 0.1797570%10°1° 0.08999999 0.2x10710
0.4 0.4 0.16 0.1600000 0.3186364x10°1° 0.16000000 0.00000
0.5 0.5 0.25 0.2500000 0.4948079x10-1° 0.25000000 0.00000
0.6 0.6 0.36 0.3599999 0.7045484x10°1° 0.35999999 0.1x107°
0.7 0.7 0.49 0.4899999 0.9412517x10°1° 0.48999999 0.1x107°
0.8 0.8 0.64 0.6399999 0.1194390%10° 0.63999999 0.1x107°
0.9 0.9 0.81 0.8099999 0.1448574x107° 0.80999999 0.1x107°
1.0 1.0 1.00 0.9999999 0.200x10° 0.99999999 0.2x10°
AIMS Mathematics Volume 6, Issue 10, 10383—-10394.
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Table 4. Numerical results and absolute error values by using HAM and ADM, N=10, at
nonlinear case k=2.

ADM HAM

m n UExact

UdDM Errorapu UHAM Errorgam
0.0 0.0 0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.1 0.1 0.01 0.0100000 0.9999833x10-13 0.0100000 0.9999833x10712
0.2 0.2 0.04 0.0400000 0.3998933x107'2 0.0400000 0.3998933x10712
0.3 0.3 0.09 0.0900000 0.8987854x107'2 0.0900000 0.8987854x107'2
0.4 0.4 0.16 0.1600000 0.1593182x107!" 0.1600000 0.1593182x107!"
0.5 0.5 0.25 0.2500000 0.2474039x107!" 0.2500000 0.2474039x107!"
0.6 0.6 0.36 0.3600000 0.3522742x10" 0.3600000 0.3522742x101"
0.7 0.7 0.49 0.4900000 0.4706258%101! 0.4900000 0.4706258x101!
0.8 0.8 0.64 0.6400000 0.5971954x101! 0.6400000 0.5971954x101!
0.9 0.9 0.81 0.8100000 0.7242871x101! 0.8100000 0.7242871x1071°
1.0 1.0 1.00 1.000000 0.1x10°1° 1.000000 0.1x1071°

Example 3. Consider
u'(m,n) + Au'(m,n) + Bu(m,n) = Q(m,n) — A [, [, (sin(m.n).s7/3)(u(t,s))*dtds (48)
Under the boundary conditions:
u(0,0) = 0, u(1,1) = 0.01 (49)
The exact solution is u (m, n)=m.n, if we set k=1, in (48), one has
u’(m,n) + Au'(m,n) + Bu(m,n) = Q(m,n) — A [ ['(sin(m.n).s7/3)(u(t,s))dtds (50)

Which called the LT-DFIDE, and if we set k >2in (48), we obtained the NT-DFIDE, of the second
kind, with4=0.001, A =(=2/m+n), B =1, 0<m,n<1 4t N=10. In Tables 5 and 6, Upwe —> the
exact solution, wupy —>approximate solution of ADM, Errorspy —> the absolute error of ADM, upam
—approximate solution of HAM, Errorusu — the absolute error of HAM.

Table 5. Numerical results and absolute error values by using HAM and ADM, N=10, at
linear case k=1.

ADM HAM

" " HEvacr UaDM Errorapu UHAM Erroryam

0.0 0.0 0.00 0.01000000 0.01000000 0.0100000 0.01000000
0.1 0.1 0.01 0.01981500 0.00981500 0.0198890 0.00988907
0.2 0.2 0.04 0.04926020 0.00926020 0.04955642 0.00955640
0.3 0.3 0.09 0.09833725 0.00833725 0.09900303 0.00900303
0.4 0.4 0.16 0.16705262 0.00705262 0.16823278 0.00823278
0.5 0.5 0.25 0.25542305 0.00542305 0.25725570 0.00725570
0.6 0.6 0.36 0.36348296 0.00348296 0.36609244 0.00609244
0.7 0.7 0.49 0.49129346 0.00129346 0.49477944 0.00477964
0.8 0.8 0.64 0.63895194 0.00104805 0.64337568 0.00337568
0.9 0.9 0.81 0.80660075 0.00339924 0.81196594 0.00196594
1.0 1.0 1.00 0.99443286 0.00556714 1.00066609 0.00066609

AIMS Mathematics Volume 6, Issue 10, 10383—-10394.



10392

Table 6. Numerical results and absolute error values by using HAM and ADM, N=10, at
nonlinear case k=2.

ADM HAM
m n UExact

UdDM Errorapu UHAM Errorgam
0.0 0.0 0.00 0.01000000 0.0100000 0.01000000 0.0100000
0.1 0.1 0.01 0.01988900 0.0098890 0.01988900 0.0098890
0.2 0.2 0.04 0.49556124 0.00955612 0.04955612 0.0095561
0.3 0.3 0.09 0.09900236 0.00900236 0.09900236 0.0090023
0.4 0.4 0.16 0.16823159 0.00823159 0.16823159 0.0082315
0.5 0.5 0.25 0.25725385 0.00725385 0.25725385 0.0072538
0.6 0.6 0.36 0.36608980 0.00608071 0.36608980 0.0060898
0.7 0.7 0.49 0.49477612 0.00477612 0.49477612 0.00477612
0.8 0.8 0.64 0.64337121 0.00337121 0.64337121 0.00337121
0.9 0.9 0.81 0.81196051 0.00196051 0.81196051 0.00196051
1.0 1.0 1.00 1.00065979 0.00065979 1.00065979 0.00065979

5. Conclusions

The goal of this work is studied the NFIDE of the second kind in two-dimensional. This paper
proposed an effective two numerical methods to obtain the solution. For this purpose, ADM and HAM
has been presented. The given numerical examples showed the efficiency and accuracy of the ADM
and HAM. From the previous numerical results we deduce in linear case both ADM and HAM give
the same approximate solution. In the nonlinear case, it was found that, ADM converges faster than
HAM. Also, the values of absolute errors for linear case larger than the values of errors for nonlinear
case. The codes were written in Maple program. The absolute errors of approximate solution in given
points are small enough, so it follows that the presentation methods in this article are right. For
comparison purpose, many authors have paid the attention to apply, modify and extend the considered
methods in this work to tackle a variety type of integro-differential equations, see [21-38].
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