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Abstract: Financial system is essentially chaotic and unstable if there is not any external inputs.
By means of Lyapunov function method, design of switching law, novel fuzzy assumption, Lp

estimation technique and Laplace semigroup theory, the author presents the boundedness and LMI-
based (globally) asymptotical input-to-state stability criteria of financial systems. Particularly, the
globally asymptotical stability in the meaning of switching implies that when the time t is big enough,
the dynamic of any subsystem must approach its unique equilibrium point. Besides, the global stability
in the classical sense is not applicable to eruption of the periodical financial crisis. So the stability in
the meaning of switching proposed in this paper is suitable and appropriate. Numerical examples
illuminate the effectiveness of the obtained results.
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1. Introduction

In recent decades, a kind of complex financial system model consisting of production sub-blocks,
currency sub-blocks, securities sub-blocks and labor sub-blocks has become a hot topic for many
researchers because it well simulates the dynamic behavior of important economic indicators in the
real financial market ([1–9] and the references therein), and a series of beneficial economic
macro-control and stability analysis are obtained, which are conducive to macro-control and market
self-regulation with theoretical guidance ([1–10]). But the previous research only involves the
stability of the equilibrium point with a fixed interest rate, while the financial market is complex and
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changeable, and the market will adjust itself, and the financial management department will carry out
macro-control according to the market situation. Its purpose is not necessarily to pursue the stability
of the equilibrium point with a certain fixed interest rate, but to constantly consciously or
unconsciously switch to equilibrium points of different interest rates (positive or negative or zero) to
achieve the prosperity and stability of the financial market. Besides, the important economic
indicators, such as savings, the unit investment cost, and the elasticity of commodity demand, has
certain uncertainty. It is necessary to deal with the important economic index parameters obtained by
previous statistics or different ways with fuzzy method. Takagi-Sugeno (T-S) fuzzy model will be
considered in this paper, for Takagi-Sugeno fuzzy models have excellent ability in analyzing,
synthesizing, and approximating complex dynamical behaviors by a set of IF-THEN rules ([14–18]).
Thereby, switched models and fuzzy models are usually investigated in various control
systems ([11–21]). Due to the random inflows and outputs of foreign capital will produce real-time or
delayed disturbance to economic indicators, Ito stochastic models are often considered in the
modeling of various control systems ([22–27]). In real financial markets, the government purchase
will promote economic prosperity and stability, which will randomly improve some important
economic indicators, such as savings, the unit investment cost, and represents the elasticity of
commodity demand. Because of the lag of macro-control effect in the real market, the effect of
macro-control is not obvious when the market is switched to one subsystem and only takes effect
when the market is switched to another subsystem. Therefore, one of the main tasks of this paper is to
design such a switching rule that the whole switching system is stable although some subsystems are
unstable.

On the other hand, the financial system is the nonlinear system with non-Lipschitz functions, which
brings about the true difficulties. That is, the globally asymptotical stability in the meaning of switching
introduced by [32, Definition 3] may truly be not available for the financial system. In fact, according
to [33,34], the unique existence of the solution of a system can be guaranteed if the active functions
are Lipschitz continuous and growing linearly. However, the financial systems studied by this paper
are complex and chaos due to the non-Lipschitz functions with superlinear growth. To overcome this
difficulty, a suitable Lyapunov-Krasovskii function is given to create conditions making the switched
financial system stable globally.

It is found from the study of financial mathematical model that the essence of financial system is
chaotic and unstable. This is also in line with the unpredictability of the real financial market. In fact,
the cyclical outbreak of the world economic crisis has confirmed this view. If the financial market is
to be stable, the government must be active in taking remedial measures at a certain time. Thereby,
input-to-state stability of switched financial system is studied in this paper. Due to the difficulties
brought about by non-Lipschitz functions of delayed (fuzzy) stochastic switched financial systems,
free weight matrix criteria can not be derived. However, by means of Lyapunov function method,
design of switching law, novel fuzzy assumption, Lp estimation technique and Laplace semigroup
theory, the author presents the boundedness and LMI-based (globally) asymptotical input-to-state
stability criteria of financial systems. Particularly, the globally asymptotical stability in the meaning
of switching implies that when the time t is big enough, the dynamic of any subsystem must approach
its unique equilibrium point. Motivated by some methods of the related literature ([19–32, 35–43]),
the author presents the following highlights in this paper:
� It is the first paper to design a novel fuzzy condition and a state-dependent switching law for the
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globally asymptotical input-to-state stability in the meaning of switching for fuzzy switched stochastic
financial system with delayed feedback;
� It is the first time to utilize the Laplace semigroup to derive the boundedness for fuzzy switched

stochastic financial system with delayed feedback, which reveals the relation between ordinary
differential equations model and partial differential equations model.

Throughout of this paper, for any symmetric matrices A and B, the matrix-form inequality A < B
represents that the symmetric matrix (B − A) is a positive definite matrix.

2. System description

The following financial system has been investigated in many existing literature([1–9]),
ẋ =z + (y − a)x

ẏ =1 − by − x2

ż = − x − cz,

(2.1)

where x represents the interest rate, y represents the investment demand, z represents the price index,
a represents savings, b represents the unit investment cost, and c represents the elasticity of
commodity demand. It is well known that if c − b − abc 6 0, the financial system (2.1) has the unique
equilibrium point P2(0, 1

b , 0); if c − b − abc > 0, the financial system (2.1) owns three equilibrium

point P1(θ, 1+ac
c , −θc ), P2(0, 1

b , 0), P3(−θ, 1+ac
c , θc ), where θ =

√
c−b−abc

c . Chaos appears in the financial

system (2.1) if c − b − abc > 0 and c + a − 1
b < 0. For example, let a = 0.9, b = 0.2, c = 1.2, then there

is a chaos phenomenon in the financial system (2.1) (see, e.g. [2,3]). Throughout this paper, we
assume that c − b − abc > 0.

For the equilibrium point P1(θ, 1+ac
c , −θc ), we may set

X1 =x − θ

X2 =y −
1 + ac

c

X3 =z +
θ

c
,

(2.2)

then the financial system (2.1) is translated into the following system:
Ẋ1 =

1
c

X1 + θX2 + X3 + X1X2

Ẋ2 = − 2θX1 − bX2 − X2
1

Ẋ3 = − X1 − cX3,

(2.3)

or

Ẋ(t) = H1X(t) + f (X(t)), (2.4)

where the equilibrium point P1(θ, 1+ac
c , −θc ) of the financial system (2.2) is corresponding to the null
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solution of the system (2.3) or (2.4), and A and f are defined as follows,

H1 =


1
c θ 1
−2θ −b 0
−1 0 −c

 , f (X) =


X1X2

−X2
1

0

 , (2.5)

Similarly, for the equilibrium point P2(0, 1
b , 0), let

X1 =x

X2 =y −
1
b

X3 =z,

(2.6)


Ẋ1 =(

1
b
− a)X1 + X3 + X1X2

Ẋ2 = − bX2 − X2
1

Ẋ3 = − X1 − cX3,

(2.7)

or
Ẋ = H2X + f (X), (2.8)

where X = (X1, X2, X3)T ,

H2 =


1
b − a 0 1

0 −b 0
−1 0 −c

 (2.9)

For the equilibrium point P3(−θ, 1+ac
c , θc ), we may set

X1 =x + θ

X2 =y −
1 + ac

c

X3 =z −
θ

c
,

(2.10)


Ẋ1 =

1
c

X1 − θX2 + X3 + X1X2

Ẋ2 =2θX1 − bX2 − X2
1

Ẋ3 = − X1 − cX3,

(2.11)

or

Ẋ(t) = H3X(t) + f (X(t)), (2.12)

where

H3 =


1
c −θ 1

2θ −b 0
−1 0 −c

 , (2.13)
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In the real financial market, the economic system is a dynamic market with randomness. Economic
activities do not necessarily pursue a fixed interest rate. The null solution of the following switched
system

Ẋ(t) = HσX(t) + f (X(t)), σ ∈ T, where T = {1}, or {1, 2}, or {1, 2, 3} (2.14)

corresponds to a series of equilibrium points Pσ with respective interest rates. The switched
system (2.14) means that the financial system is adjusted macroscopically, or the market adjusts itself
when the economic situation changes to a critical value. For example, when the economic crisis
breaks out, in order to promote economic development, the interest rate is adjusted to zero or even
negative. When the economy is booming, banks raise interest rates to finance, and the interest rate
converges to a positive equilibrium point. Thereby, the global asymptotic stability of the switched
system (2.14) reflects the activity of real financial market and the stability. That is, when the time t is
big enough, the dynamical behavior of the switched system converges to an equilibrium point with a
fixed positive interest at the stage of booming, and converges to another equilibrium point with a fixed
non-positive interest at the stage of depression. In financial management, the Uncertainty of
parameters sampling conforms to the fuzzy model to a great extent. So we consider the following T-S
fuzzy rule for the financial system (2.14).

Fuzzy Rule r: IF ω̂1(t) is νr1 and · · · and ω̂κ(t) is νrκ THEN

Ẋ(t) = HσrX(t) + f (X(t)), (2.15)

where ω̂k(t)(k = 1, 2, · · · , κ) is the premise variable, νrk(r = 1, 2, · · · , n; k = 1, 2, · · · , κ) is the fuzzy
set that is characterized by membership function. And n is the number of the IF-THEN rules, κ is the
number of the premise variables.

In view of a standard fuzzy inference method, (2.15) can be inferred as follows,

Ẋ(t) =

n∑
r=1

%r(ω̂(t))HσrX(t) + f (X(t)), (2.16)

where ω̂(t) = [ω̂1(t), ω̂2(t), · · · , ω̂κ(t)], %r(ω̂(t)) =
w̄r(ω̂(t))

n∑
k=1

w̄k(ω̂(t))
, w̄r(ω̂(t)) =

∏κ
j=1 νr j(ω̂(t)) : Rκ → [0, 1](r =

1, 2, · · · , n) denotes the grade of membership of ω̂(t) in νr j with respect to the fuzzy rule r. %r can be
regarded as the normalized weight of each IF-THEN rule, satisfying

%r(ω̂(t)) > 0,
n∑

r=1

%r(ω̂(t)) = 1.

Remark 1. Since the important economic parameters, such as savings, the unit investment cost, and
the elasticity of commodity demand, usually come from some small sample statistics, we hope that the
financial system can be stabilized in a certain range of parameter ambiguity.

Since some stochastic disturbance factors in the real financial market, such as the input and outflow
of foreign capital, these additional funds will produce immediate and delayed stochastic disturbance
to some important financial parameters, such as savings, the unit investment cost, and the elasticity of
commodity demand. So, in this paper, we have to consider the following delayed feedback stochastic
financial system:
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
dX(t) =

[ n∑
r=1

%r(ω̂(t))HσrX(t) + f (X(t)) + v(t)
]
dt + ϕσ(X(t), X(t − τ(t)))dw(t), t > 0

X(s) = ξ(s), s ∈ [−τ, 0]

(2.17)

where v is the external input, time delay τ(t) satisfies τ(t) ∈ [0, τ], and X(t − τ(t)) is the delayed
feedback state variable. The noise perturbation ϕ : R3 × R3 → R3×3 is a Borel measurable function
with ϕσ(X(t), X(t − τ(t))) = (ϕ1, ϕ2, ϕ3)T and
ϕi = (ϕσi1(Xi(t), Xi(t − τ(t))), ϕσi2(Xi(t), Xi(t − τ(t))), ϕσi3(Xi(t), Xi(t − τ(t)))), and
w(t) = (w1(t),w2(t),w3(t))T ∈ R3 is a 3-dimensional Brownian motion defined on a complete
probability space (Υ,F ,P) with a natural filtration {Ft}t>0 generated by {w(s) : 0 6 s 6 t}, where we
associate Υ with the canonical space generated by w(t), and denoted by F the associated σ-algebra
generated by w(t) with the probability measure P, and E{dw(t)} = 0. Besides, E{dwi(t)dw j(t)} = dt if
i = j, and E{dwi(t)dw j(t)} = 0 if i , j, where i, j = 1, 2, 3.

If the fuzzy factors are ignored, the system (2.17) is degenerated into the following system: dX(t) =

[
HσX(t) + f (X(t)) + v(t)

]
dt + ϕσ(X(t), X(t − τ(t)))dw(t), t > 0

X(s) = ξ(s), s ∈ [−τ, 0]
(2.18)

Definition 1 ([32, Definition 3]). The switched system (2.16) is said to be globally asymptotically
stable in the meaning of switching if the zero solution of the switched system (2.18) is be globally
asymptotically stable. Particularly, in the case of T = {1}, the switched system (2.16) is globally
asymptotically stable ( in the classical meaning ) if the zero solution of the switched system (2.16) is
be globally asymptotically stable.

Remark 2. The globally asymptotical stability in the meaning of switching means that when the time
t > 0 is big enough, and the system is switched into any ith subsystem, the dynamic of the subsystem
must approach its equilibrium point Pi. For example, the financial crisis breaks out, the financial
system is switched into a subsystem, say, the 2th subsystem whose equilibrium point is P2, and the
dynamic of the subsystem must approach P2 if the time t > 0 is big enough. Moreover, if the stability
is local, then the dynamic of the subsystem may not approach P2 due to various different initial values.
Besides, the global financial crisis often erupts periodically, which illuminates that the global stability
in the classical sense is actually meaningless. So the stability in the meaning of switching proposed
in this paper is suitable and appropriate. Note that Peng Li and Xiaodi Li presented the definition of
global asymptotical input-to-state stability under the assumption that v is a measurable locally bounded
disturbance input ([44]). Similarly, in this paper, v is also a measurable bounded disturbance input,
satisfying the bounded assumption (3.1).

Definition 2. System (2.18) is said to be global asymptotical input-to-state stability if there exist
functions γ ∈ K∞ and β ∈ KL such that for each t0 > 0 , ξ(s) ∈ R3 and each input v, the solution
satisfies

|X(t)| 6 β(‖ξ(s)‖τ, t − t0) + γ(‖v‖), ∀ t > t0. (2.19)
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In this paper, we assume
(A1) There are constant symmetric matrices Λσ1 and Λσ2 with Λσ2 < ασI such that

trace[ϕT
σ(u, v)ϕσ(u, v)] 6 uT Λσ1u + vT Λσ2v,

where I represents the identity matrix.
The following estimate condition for fuzzy parameters is considered for the fuzzy system (2.17):
(A2) For any given mode σ , there exists correspondingly a constant matrix Eσ such that

n∑
r=1

%r(ω̂(t))
(
Hσr + HT

σr

)
<

1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ.

Remark 3. The fuzzy estimate condition is feasible, which can be verified in (5.3)–(5.5) of Example
5.2 below.

Lemma 1.1([28,29]). Let Ω ⊂ RN(N ∈ N) be a bounded domain with smooth boundary and let ∆

denote the Laplacian in Ls(Ω) with domain

{z ∈ W2,s(Ω)|∇ · ν = 0 on ∂Ω}

for s ∈ (1,∞). Then the operator −∆+1 is sectorial and possesses closed fractional powers (−∆+1)δ, δ ∈
(0, 1), with dense domain D((−∆ + 1)δ). Moreover, the following three properties hold.

(i) If m ∈ {0, 1}, p ∈ [1,∞] and q ∈ (1,∞), then there exists a constant C1 > 0 such that for all
z ∈ D((−∆ + 1)δ),

‖z‖Wm,p(Ω) 6 C1‖(−∆ + 1)δz‖Lq(Ω),

(ii) Suppose p ∈ [1,∞). Then the associated heat semigroup (et∆)t>0 maps Lp(Ω) into D((−∆ + 1)δ)
in Lp(Ω), and there exist constants C2 > 0 and λ2 > 0 such that

‖(−∆ + 1)δet(∆−1)z‖Lp(Ω) 6 C2t−δe−λ2t‖z‖Lp(Ω)

for all z ∈ Lp(Ω) and all t > 0.

3. Main result in the case of non-fuzzy factors

Define the switching law for the switched system (2.18) as follows,
switching law Fa: At each switching we determine the next mode according to the following

minimum law :

σ(t) = arg min
n∑

r=1

ξT

Q + PHσ + HT
σP + (εP + ε−1α2

1P) + ρΛσ1 + PDσ + D
T
σP + Ψ 0

0 ρΛσ2 − (1 − α)Q

 ξ.
(Fa1) Choose the initial mode σ(t) = i0, if ξ(t0) ∈ Υi0 .
(Fa2) For each t > t0, if σ(t−) = i and ξ ∈ Υi, keep σ(t) = i. On the other hand, if σ(t−) = i

but ξ < Υi. i.e., hitting a switching surface, choose the next mode by applying the above-mentioned
minimum law and begin to switch.
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Here, Υσ is defined as follows,

Υσ =

{
ξ ∈ R6

∣∣∣ξT

Q + PHσ + HT
σP + (εP + ε−1α2

1P) + ρΛσ1 + PDσ + D
T
σP + Ψ 0

0 ρΛσ2 − (1 − α)Q

 ξ < 0
}
,

where ε > 0, ρ > 0 are two given positive numbers, P = diag(p1, p2, p3) is a given positive definite
diagonal matrix with p1 = p2, and Q > 0,Ψ > 0 are given symmetric matrices, respectively.

(A3) Since X1 represents the interest rate which is actually bounded in real world, there exists the
positive number α1 such that |X1| 6 α1.

(A4) There are constant matrices Dσ and Dσ such that the external input satisfies v(t) = Dσ(t)X(t)
with

Dσ 6 Dσ(t) 6 Dσ. (3.1)

Theorem 3.1. Suppose the conditions (A1),(A3)and (A4) hold. Besides, τ̇(t) 6 α, and there is a
positive definite diagonal matrix P 6 ρI with P = diag(p1, p2, p3) with p1 = p2, a positive definite
matrix Q, and a sequence of non-negative numbers βσ(σ ∈ T) with

∑
σ∈T

βσ = 1 such that


∑
σ∈T

βσ(PHσ + HT
σP + ρΛσ1 + PDσ + D

T
σP) + (εP + ε−1α2

1P) + Q + Ψ 0

0 ρ
∑
σ∈T

Λσ2 − (1 − α)Q

 < 0,

(3.2)
then the zero solution of the system (2.18) is the global asymptotical input-to-state stability. That is,

the switched system (2.18) is said to be the global asymptotical stability in the meaning of switching.

Proof. Consider the following Lyapunov-Krasovskii function

V(t, X) = XT (t)PX(t) +

∫ t

t−τ(t)
XT (s)QX(s)ds.

The condition (A3) and P = diag(p1, p2, p3) with p1 = p2 yield

f (X) =


f1(X)
f2(X)
f3(X)

 =


X1X2

−X2
1

0

 , XT P f (X) + [
√

P f (X)]T (
√

PX) 6 εXT PX + ε−1 f T (X)P f (X), P = diag(p1, p2, p3), p1 = p2

⇒XT P f (X) + f T (X)PX 6 εXT PX + ε−1[X2
1(p2X2

1 + p1X2
2)] 6 εXT PX + ε−1[α2

1(p1X2
1 + p2X2

2)] 6 XT (εP + ε−1α2
1P)X.

(3.3)

Let R+ be the set of positive numbers. Denote by C1,2(R+ × Rn → R+) the family of nonnegative
functions V(t, X) on R+ × Rn which are continuous once differentiable in t and twice differentiable in
X. For each such V , one can define an operator LV associated with equations (2.18) as
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LV =Vt(t, X(t)) + VX(t, X(t))
[
HσX(t) + f (X(t)) + v(t)

]
+

1
2

trace[ϕT
σ(X(t), X(t − τ(t)))VXX(t, X(t))ϕσ(X(t), X(t − τ(t)))]

6XT (t)QX(t) − (1 − τ̇(t))XT (t − τ(t))QX(t − τ(t)) + 2XT (t)P
[
HσX(t) + f (X(t)) + Dσ(t)X(t)

]
+ ρ trace[ϕT

σ(X(t), X(t − τ(t)))ϕσ(X(t), X(t − τ(t)))]

6XT (t)
[
Q + PHσ + HT

σP + (εP + ε−1α2
1P) + ρΛσ1 + PDσ + D

T
σP

]
X(t) + XT (t − τ(t))

(
ρΛσ2 − (1 − α)Q

)
X(t − τ(t)).

(3.4)
where

VX(t, X(t)) =

(
∂V(t, X(t))

∂X1
,
∂V(t, X(t))

∂X2
,
∂V(t, X(t))

∂X3

)
, VXX(t, X(t)) =

(
∂2V(t, X(t))
∂Xi∂X j

)
3×3
.

Set ξ = (XT (t), XT (t − τ(t)))T , one can claim

LV 6ξT

Q + PHσ + HT
σP + (εP + ε−1α2

1P) + ρΛσ1 + PDσ + D
T
σP 0

0 ρΛσ2 − (1 − α)Q

 ξ
<ξT

−Ψ 0
0 0

 ξ < 0.

(3.5)

In fact, it follows by (3.2) and the proof by contradiction that
⋃
σ∈T

Υσ = R6 \ {0}. On one hand, when

σ(t−) = i and ξ(t) ∈ Υi, then keep σ(t) = i, and (3.5) holds. On the other hand, when σ(t−) = i and
ξ(t) < Υi, which means that the trajectory hits a switching surface, and is chosen by the minimum law
(3.2). At the same time, ξ ∈ Υ j( j , i), and then (3.5) holds.

Besides,
dV(t) =LV(t)dt + VX(t)ϕσ(X(t), X(t − τ(t)))dw(t)

6ξT (t)Υσξ(t) + 2XT (t)Pϕσ(X(t), X(t − τ(t)))dw(t).
(3.6)

So it follows by (3.6) that

EV(t + ε) − EV(t) =

∫ t+ε

t
ELV(s)ds + E

∫ t+ε

t
2XT (s)Pϕσ(X(s), X(s − τ(s)))dw(s)

=

∫ t+ε

t
ELV(s)ds,

(3.7)

which implies that
D+EV(t) < 0. (3.8)

Moreover, it is obvious that

(λminP)|X(t)|2 6 XT (t)PX(t) 6 V(t) 6 (λmaxP + τλmaxQ)‖Xt‖τ, (3.9)

where
‖Xt‖τ = sup

s∈[−τ,0]
|X(t + s)|.
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Combining (3.8) and (3.9) results in that the zero solution of the system (2.18) is the global
asymptotical input-to-state stability. That is, the switched system (2.18) is said to be the global
asymptotical stability in the meaning of switching.

�

Remark 4. The global stability in the meaning of switching has practical significance. In fact, the
global financial crisis often erupts periodically, which illuminates that the global stability in the
classical sense is actually meaningless. For example, in [45], there were only some numerical
simulations and stability analysis of dynamics of the delayed feedback financial system. Besides, in
[46] and [47], only the stability and instability of some equilibrium points of financial system were
analyzed. And in [7], only global stabilization of an equilibrium point of the financial system was
considered. All the results obtained in the mentioned literature are not suitable for real finance, for
economic crisis always appears periodically, which is the essence of financial market in the real
world. However, the switching system model of this paper accords with this essential characteristic.
Therefore, Theorem 3.1 has this novelty and originality.

4. Main result in the case of fuzzy system

Define the switching law as follows,
switching law F: At each switching we determine the next mode according to the following

minimum law :

σ(t) = arg min
n∑

r=1

XT
[1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ + Λσ1 + eςτqασI + Dσ + D
T
σ + Ψ

]
X. (4.1)

(F1) Choose the initial mode σ(t) = i0, if X(t0) ∈ Υi0 .
(F2) For each t > t0, if σ(t−) = i and X ∈ Υi, keep σ(t) = i. On the other hand, if σ(t−) = i but

X < Υi. i.e., hitting a switching surface, choose the next mode by applying (4.1) and begin to switch.
Here, Ψ is a positive definite symmetric matrix with λminΨ = λ > 0, and Υσ is defined as follows,

Υσ =

{
X ∈ R3

∣∣∣XT
(1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ + Λσ1 + eςτqασI + Dσ + D
T
σ + Ψ

)
X < 0

}
,

where λminΨ represents the minimum of all the eigenvalues of the symmetric matrix Ψ > 0.

Theorem 4.1. Suppose that the conditions (A1),(A2) and (A4) hold, and there is a sequence of

nonnegative constants βσ (σ = 1, 2, 3) with
3∑

σ=1
βσ = 1 and 0 6 βσ 6 1 and positive constants ς > 0

and q > 1 such that

3∑
σ=1

βσ

[1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ + Λσ1 + eςτqασI + Dσ + D
T
σ

]
+ Ψ < 0, (4.2)

then the fuzzy switched system (2.17) is globally asymptotical input-to-state stability.
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Proof. Consider the following Lyapunov function:

V(t) = V(t, X(t)) = XT (t)X(t).

Let R+ be the set of positive numbers. Denote by C1,2(R+ × Rn → R+) the family of nonnegative
functions V(t, X) on R+ × Rn which are continuous once differentiable in t and twice differentiable in
X. For each such V , we define an operator LV associated with equations (2.17) as

LV =Vt(t, X(t)) + VX(t, X(t))[(
n∑

r=1

%r(ω̂(t))Hσr)X(t) + f (X(t)) + v(t)]

+
1
2

trace[ϕT
σ(X(t), X(t − τ(t)))VXX(t, X(t))ϕσ(X(t), X(t − τ(t)))]

6XT (t)
(1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ + Dσ + D
T
σ

)
X(t)

+

(
XT (t)Λσ1X(t) + XT (t − τ(t))Λσ2X(t − τ(t))

)
,

where

VX(t, X(t)) =

(
∂V(t, X(t))

∂X1
,
∂V(t, X(t))

∂X2
,
∂V(t, X(t))

∂X3

)
, VXX(t, X(t)) =

(
∂2V(t, X(t))
∂Xi∂X j

)
3×3
.

Let γ be a positive number with 0 < γ < min{λ, ς, 1
2λ2} and

U(t, X(t)) =

 eγtXT (t)X(t), t > 0,
XT (t)X(t), t ∈ [−τ, 0],

where λ2 > 0 is the first positive eigenvalue of the following Neumann boundary problem (−∆ + 1)z = λz, in Ω,

∂νz = 0, on ∂Ω,
(4.3)

and Ω is a bounded domain in R3 with smooth boundary ∂Ω.

It is obvious that U is continuous for t > −τ. For t > 0 and γ > 0,

dU(t, X(t)) = eγt
(
γXT (t)X(t)dt + d[XT (t)X(t)]

)
.

Ito formula yields
dV(t) = LV(t)dt + VX(t)ϕσ(X(t), X(t − τ(t)))dw(t),

and hence

dU(t, X(t)) = eγt
(
γXT (t)X(t)dt +LV(t)dt + VX(t)ϕσ(X(t), X(t − τ(t)))dw(t)

)
.

Integrating the above inequality from t to t + ε, and taking the mathematical expectation, one may
derive that, for all t > 0 and any ε > 0,

EU(t + ε, X(t + ε)) − EU(t, X(t)) = E

∫ t+ε

ε

eγs
(
γXT (s)X(s) +LV(s)

)
ds
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and then
D+EU(t, X(t)) =eγt

(
γE[XT (t)X(t)] + ELV(t)

)
(4.4)

Now we claim that there is a positive constants C0 > 1 and K ∈ R with K > 1 such that

EU(t, X(t)) 6 KC0E‖ξ‖
2
τ, ∀ t > 0, (4.5)

where ‖ξ‖τ = sup
s∈[−τ,0]

√
ξT (s)ξ(s).

Indeed, suppose this assertion is not true, then it is not difficult to prove (see, e.g. [7]) that there
exists positive constant q with K > q > 1 such that

EU(t, X(t)) 6 KC0E‖ξ‖
2
τ, t ∈ [−τ, t∗] (4.6)

and

EU(t∗∗, X(t∗∗)) =
1
q

KC0E‖ξ‖
2
τ ; EU(t∗∗, X(t∗∗)) 6 EU(t, X(t)) 6 EU(t∗, X(t∗)) = KC0E‖ξ‖

2
τ, ∀ t ∈ [t∗∗, t∗].

(4.7)
It follows from (4.6), (4.7) and the definition of U(t, X(t)) that for s ∈ [−τ, 0] and t ∈ [t∗∗, t∗]

eςsE[XT (t + s)X(t + s)] 6eγsE[XT (t + s)X(t + s)]

=

 e−γtEU(t + s, X(t + s)), t + s > 0
eγsEU(t + s, X(t + s)), t + s 6 0

6e−γtEU(t + s, X(t + s))
6e−γtqeγtE[XT (t)X(t)]
=qE[XT (t)X(t)],

(4.8)

which yields that for any s ∈ [−τ, 0],

E[XT (t − τ(t))X(t − τ(t))] 6 eςτqEXT (t)X(t). (4.9)

Combining (4.9) and (A1) results in

E[XT (t − τ(t))Λσ2X(t − τ(t))] 6 eςτqασE[XT (t)X(t)], (4.10)

which derives

ELV 6E[XT (t)
(1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ + Dσ + D
T
σ

)
X(t)]

+ E
(
XT (t)Λσ1X(t) + XT (t − τ(t))Λσ2X(t − τ(t))

)
6E

[
XT (t)

(1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ + Λσ1 + eςτqασI + Dσ + D
T
σ

)
X(t)

] (4.11)

For any given t > t0, according to the switching law F, when σ(t−) = i and X(t) ∈ Υi, then keep
σ(t) = i, and we can conclude that

ELV(t, X(t)) 6E
[
XT (t)

(1
n

n∑
r=1

(
Hσr + HT

σr

)
+ Eσ + ET

σ + Λσ1 + eςτqασI + Dσ + D
T
σ

)
X(t)

]
6E

[
XT (t)(−Ψ)X(t)

]
6 −λE[XT X] = −λEV(t, X(t)).

(4.12)
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When σ(t−) = i and X(t) < Υi, which means that the trajectory hits a switching surface. On the other

hand, it is not difficult to deduce from (4.2) that
3⋃

i=1
Υi = R3 \ {0}, which together with the minimum

law (4.1) yields (4.12), too.
(4.12) together with (4.4) implies

D+EU(t, X(t)) =eγt
(
γE[XT (t)X(t)] + ELV(t)

)
6eγt

(
(γ − λ)E[XT (t)X(t)]

)
= (γ − λ)EU(t, X(t)) 6 0,

(4.13)

which derives that EU(t∗, X(t∗)) 6 EU(t∗∗, X(t∗∗)). However, (4.7) yields

EU(t∗∗, X(t∗∗)) =
1
q

KC0E‖ξ‖
2
τ < KC0E‖ξ‖

2
τ = EU(t∗, X(t∗)).

So we have prove (4.5), which means

eγtXT (t)X(t) 6 KC0E‖ξ‖
2
τ, ∀ t > 0,

or

XT (t)X(t) 6 KC0E‖ξ‖
2
τe
−γt, ∀ t > 0,

which together with Definition 2 implies that the fuzzy switched system (2.17) is globally asymptotical
input-to-state stability. �

Remark 5. It is the first paper to design and investigate the stability of switched fuzzy delayed feedback
financial system with stochastic perturbation, which is in line with the fact that a prosperous and stable
financial market may not necessarily pursue a equilibrium point with a fixed interest rate. In most cases,
financial market is more stable through switching law under macro control and market self-regulation.

Remark 6. Although our ordinary differential equations model successfully explains the financial
market stability criterion under switching law, state variables are still related to regions, such as certain
countries and regions. So we consider the partial differential equations model for the financial system
(2.17). 

du(t, X) =∆u(t, X)dt + [
n∑

r=1

%r(ω̂(t))Hσru(t, X) + f (u(t, X)) − v(t, X)]dt

+ ϕσ(u(t, X), u(t − τ(t), X))dw(t), t > 0, X ∈ Ω

u(s, X) =ξ(s, X), s ∈ [−τ, 0], X ∈ Ω

∂ui

∂X j
=0, X j ∈ ∂Ω, i, j = 1, 2, 3,

(4.14)

where ∆ is the Laplace operator(see, e.g. [28, 30,31]).

Remark 7. Considering that the interest rate, the investment demand and the price index are usually
invariable in a country, we see, the state variable u(t, X) = (u1(t, X), u2(t, X), u3(t, X))T is actually
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uniform with respect to the region, which implies that the system (4.14) is exactly the system (2.17).
That is, ui(t, X) of the system (4.14) is exactly equivalent to Xi(t) in the system (2.17).

Remark 8. From [40, Lemma 2.3] in the case of p = 2, we know that the fuzzy system (4.14) is
exponentially stable under the same assumptions of Theorem 4.1.

To obtain the boundedness criterion of the system (4.14) or (2.17), we need the following
assumption on the Laplace operator.

(A3) There exist M > 0 and ζ > 0 such that ‖et∆‖ 6 Me−ζt.

Below, we assume that the condition (A3) holds. Besides, due to the meaning of Remark 7, we
propose the boundedness definition on the system (2.17) or (4.14).

Definition 3. The fuzzy system (2.17) is said to be bounded under the meaning of L∞ if for any given
T > τ1 > 0 such that for all t ∈ [τ1,T ], the each state variable ui(t, X) of the system (4.14) satisfies

‖ui(t, ·)‖L∞(Ω) 6 C, ∀ i = 1, 2, 3.

Remark 9. The initial function ξ(s) is bounded for s ∈ [−τ, 0],

Theorem 4.2. Under the assumptions of Theorem 4.1, the fuzzy system (2.17) is bounded under the
meaning of L∞.

In order to verify the correctness of Theorem 4.2, we may firstly present the following technical
lemma with regard to the system (4.14).

Lemma 4.3. Under the same assumptions of Theorem 4.1, the fuzzy system (4.14) is bounded under
the meaning of L∞.

Proof. For the convenience of the proof, we may rewrite the system (4.14) as follows,



dui(t, X) = ∆ui(t, X)dt + [
n∑

r=1

%r(ω̂(t))
3∑

j=1

hσri ju j(t, X) + fi(u(t, X)) + vi(t, X)]dt

+

3∑
j=1

ϕσi j(ui(t, X), ui(t − τ(t), X))dw j(t), t > 0, X ∈ Ω

u(s, X) = ξ(s, x), s ∈ [−τ, 0], x ∈ Ω

∂ui

∂X j
= 0, X j ∈ ∂Ω, i, j = 1, 2, 3,

(4.15)

where Hσr = (hσri j)3×3.

It follows from the system (4.15) that for any given τ1 > 0,
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

dui(t, X) = [∆ui(t, X) − ui(t, X)]dt +

[ n∑
r=1

%r(ω̂(t))
3∑

j=1

hσri ju j(t, X) + fi(u(t, X))

+ vi(t, X) + ui(t, X)
]
dt +

3∑
j=1

ϕσi j(ui(t, X), ui(t − τ(t), X))dw j(t), t > 0, X ∈ Ω

u(s, X) = ξ(s, X), s ∈ [−τ, 0], x ∈ Ω

∂ui

∂X j
= 0, X j ∈ ∂Ω, i, j = 1, 2, 3,

which implies that for any given τ1 > 0,

ui(t, X) =et(∆−1)ui(τ1, X) +

∫ t

τ1

e(t−s)(∆−1)
n∑

r=1

%r(ω̂(s))
3∑

j=1

hσri ju j(s, X)ds

+

∫ t

τ1

e(t−s)(∆−1)[ fi(u(s, X)) + vi(t, X) + ui(s, X)]ds

+

∫ t

τ1

e(t−s)(∆−1)
3∑

j=1

ϕσi j(ui(s, X), ui(s − τ(s), X))dw j(s).

(4.16)

We can see it from the proof of Theorem 4.1 that

eγtXT (t)X(t) 6 KC0E‖ξ‖
2
τ, ∀ t > 0,

or

eγt
3∑

i=1

X2
i 6 KC0E‖ξ‖

2
τ, ∀ t > 0,

which implies that

e2γt f 2
i (Xi) 6 e2γt f T (X) f (X) = e2γt(X2

1 X2
2 + X4

1) 6 e2γt
3∑

i=1

X2
i

3∑
i=1

X2
i 6 (KC0E‖ξ‖

2
τ)

2

then we know from Remark 8 that

eγt
3∑

i=1

‖ui(t, X)‖2L2(Ω) 6 C, and e2γt‖ f 2
i (ui(t, X))‖2L2(Ω) 6 C2, t > 0, (4.17)

where 2γ < λ2, and C > 0 is a constant which is big enough.
Since C is big enough, we can make a series of estimates with Lemma 1.1,

E‖et∆ui(τ1, X)‖L∞(Ω)

6C1C2Mt−δe−λ2tE‖ui(τ1, X)‖L2(Ω) 6 C,
(4.18)
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where δ ∈ ( 1
3 ,

2
3 ), and λ2 is defined in (4.3).

E‖

∫ t

τ1

e(t−s)(∆−1)
n∑

r=1

%r(ω̂(s))
3∑

j=1

hσri ju j(s, X)ds‖L∞(Ω)

6
n∑

r=1

3∑
j=1

|hσri j|C1C2ME
∫ t

τ1

(t − s)−δe−λ2(t−s)‖u j(s, X)‖L2(Ω)ds

6
n∑

r=1

3∑
j=1

|hσri j|C1C2C.

(4.19)

Similarly, we can get by (4.17)

E‖

∫ t

τ1

e(t−s)(∆−1)[ fi(u(s, X)) + vi(t, X) + ui(s, X)]ds‖L∞(Ω)

6C1C2ME
∫ t

τ1

(t − s)−δe−λ2(t−s)‖ fi(u(s, X))‖L2(Ω)ds

+ C1C2ME
∫ t

τ1

(t − s)−δe−λ2(t−s)(‖vi(s, X)‖L2(Ω) + ‖ui(s, X)‖L2(Ω))ds

6C1C2C2 + C1C2C2

(4.20)

Since the constant C is big enough, the condition (A1) yields

(
3∑

j=1

ϕσi j(ui(s, X), ui(s − τ(s), X)))2 6 C
3∑

i=1

[u2
i (s, X) + u2

i (s − τ(s), X))].

Moreover, since the constant C is big enough, we can estimate

E‖

∫ t

τ1

e(t−s)(∆−1)
3∑

j=1

ϕσi j(ui(s, X), ui(s − τ(s), X))dw j(s)‖L∞(Ω)

6CE

√√
C1

∫ t

τ1

∥∥∥∥∥(−∆ + 1)δe2(t−s)(∆−1)
3∑

i=1

[u2
i (s, X) + u2

i (s − τ(s), X))]
∥∥∥∥∥

L2(Ω)
ds

6C
3∑

i=1

E

√
C1C2M

∫ t

τ1

(2t − 2s)−δe−2λ2(t−s)[‖u2
i (s, X)‖L2(Ω) + ‖u2

i (s − τ(s), X))‖L2(Ω)]ds

6C2.

(4.21)

Finally, combining (4.18)–(4.21) results in

‖ui(t, X)‖L∞(Ω) 6 C3, i = 1, 2, 3.

And then the proof is completed.
�

Now we can know from Remark 7 that Theorem 4.2 has been proved.
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5. Numerical example

Example 5.1. Let T = {1, 2} in the system (2.18).

In the case σ = 1,

 dX(t) =

[
H1X(t) + f (X(t)) + v(t)

]
dt + ϕσ(X(t), X(t − τ(t)))dw(t), t > 0

X(s) = ξ(s), s ∈ [−τ, 0]
(5.1a)

In the case σ = 2,

 dX(t) =

[
H2X(t) + f (X(t)) + v(t)

]
dt + ϕσ(X(t), X(t − τ(t)))dw(t), t > 0

X(s) = ξ(s), s ∈ [−τ, 0]
(5.1b)

Let a = 2, b = 0.4, c = 2, then

H1 =


1
c θ 1
−2θ −b 0
−1 0 −c

 =


0.5000 0 1.0000

0 −0.4000 0
−1.0000 0 −2.0000

 =


1
b − a 0 1

0 −b 0
−1 0 −c

 = H2.

Besides, set α1 = 0.85, ε = 0.5, ψ = 0.001I,Λσ1 ≡ 0.0001I ≡ Λσ2, and

and

D1 = 0, D2 =


−2.5 −1.5 −1.2

0 0 0
0 0 0



Using the computer Matlab LMI toolbox to solve the LMI condition (3.2) results in the following
feasible data:

β1 = 0.0107, β2 = 0.9893, P =


0.9993 0 0

0 0.9993 0
0 0 0.9976

 ; Q =


0.6873 0 0.0011

0 0.5987 0.0001
0.0011 0.0001 0.6676


Now, according to Theorem 3.1, the switched system (5.1) is said to be the global asymptotical stability
in the meaning of switching (see Figure 1 and 2).
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Figure 1. State trajectories of the interest rate (red), investment demand (blue), and price
index (green).

Figure 2. State trajectories of the interest rate (red), investment demand (blue), and price
index (green).

AIMS Mathematics Volume 6, Issue 1, 1040–1064.



1058

Example 5.2. Consider the following fuzzy switched financial system with n = 2 (the number of the
IF-THEN rules),

Fuzzy Rule 1: IF ω̂1(t) is ν11 and ω̂2(t) is ν12 THEN dX(t) = [Hσ1X(t) + f (X(t)) + v(t)]dt + ϕσ(X(t), X(t − τ(t)))dw(t), t > 0
X(s) = ξ(s), s ∈ [−τ, 0]

(5.2a)

In the case r = 1 equipped with a = 0.9, b = 0.63, c = 1.5, then

H11 =


1
c θ 1
−2θ −b 0
−1 0 −c

 =


0.6667 0.1140 1.0000
−0.2280 −0.6300 0
−1.0000 0 −1.5000


H21 =


1
b − a 0 1

0 −b 0
−1 0 −c

 =


0.6873 0 1.0000

0 −0.6300 0
−1.0000 0 −1.5000


H31 =


1
c −θ 1

2θ −b 0
−1 0 −c

 =


0.6667 −0.1140 1.0000
0.2280 −0.6300 0
−1.0000 0 −1.5000


Fuzzy Rule 2: IF ω̂1(t) is ν21 and ω̂2(t) is ν22 THEN dX(t) = [Hσ2X(t) + f (X(t)) + v(t)]dt + ϕσ(X(t), X(t − τ(t)))dw(t), t > 0

X(s) = ξ(s), s ∈ [−τ, 0]
(5.2b)

In the case r = 2 equipped with a = 0.8, b = 0.6, c = 1.2, then

H12 =


0.8333 0.1414 1.0000
−0.2828 −0.6000 0
−1.0000 0 −1.2000


H22 =


0.8667 0 1.0000

0 −0.6000 0
−1.0000 0 −1.2000


H32 =


0.8333 −0.1414 1.0000
0.2828 −0.6000 0
−1.0000 0 −1.2000


Set

E1 =


0.1000 0.06385 0

0.06385 0.0500 0
0 0 0.3000

 , E2 =


0.0900 0 0

0 0.0160 0
0 0 0.1600

 E3 =


0.1000 −0.06385 0
−0.06385 0.1150 0

0 0 0.3000



D1 = 0 = D3, D2 =


−1.0544 0 0

0 0 0
0 0 0


AIMS Mathematics Volume 6, Issue 1, 1040–1064.
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Due to 0 6 %r(ω̂(t)) 6 1 and
2∑

r=1
%r(ω̂(t)) = 1, we can get by computing

2∑
r=1

%r(ω̂(t))
(
H1r + HT

1r

)
= %1(ω̂(t))(H11 + HT

11) + %2(ω̂(t))(H12 + HT
12)]

=%1(ω̂(t))


1.3333 −0.1140 0
−0.1140 −1.2600 0

0 0 −3.0000

 + %2(ω̂(t))


1.6667 −0.1414 0
−0.1414 −1.2000 0

0 0 −2.4000


6 max

s∈[0,1]

[
s


1.3333 −0.1140 0
−0.1140 −1.2600 0

0 0 −3.0000

 + (1 − s)


1.6667 −0.1414 0
−0.1414 −1.2000 0

0 0 −2.4000

 ]

<


1.7000 0 0

0 −1.1300 0
0 0 −2.1000


=


1.5000 −0.1277 0
−0.1277 −1.2300 0

0 0 −2.7000

 + 2


0.1 0.06385 0

0.06385 0.0500 0
0 0 0.3


=

1
2

2∑
r=1

(
H1r + HT

1r

)
+ E1 + ET

1

(5.3)

Similarly, we get

2∑
r=1

%r(ω̂(t))
(
H2r + HT

2r

)
= %1(ω̂(t))(H21 + HT

21) + %2(ω̂(t))(H22 + HT
22)

=%1(ω̂(t))


1.3746 0 0

0 −1.2600 0
0 0 −3.0000

 + %2(ω̂(t))


1.7333 0 0

0 −1.2000 0
0 0 −2.4000


6


1.7333 0 0

0 −1.2000 0
0 0 −2.4000


<


1.7339 0 0

0 −1.1980 0
0 0 −2.3800


=


1.5539 0 0

0 −1.2300 0
0 0 −2.7000

 + 2


0.0900 0 0

0 0.0160 0
0 0 0.1600


=

1
2

2∑
r=1

(
H2r + HT

2r

)
+ E2 + ET

2

(5.4)
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and
2∑

r=1

%r(ω̂(t))
(
H3r + HT

3r

)
= %1(ω̂(t))(H31 + HT

31) + %2(ω̂(t))(H32 + HT
32)]

=%1(ω̂(t))


1.3333 0.1140 0
0.1140 −1.2600 0

0 0 −3.0000

 + %2(ω̂(t))


1.6667 0.1414 0
0.1414 −1.2000 0

0 0 −2.4000


6 max

s∈[0,1]

[
s


1.3333 0.1140 0
0.1140 −1.2600 0

0 0 −3.0000

 + (1 − s)


1.6667 0.1414 0
0.1414 −1.2000 0

0 0 −2.4000

 ]

<


1.7000 0 0

0 −1.0000 0
0 0 −2.1000


=


1.5000 0.1277 0
0.1277 −1.2300 0

0 0 −2.7000

 + 2


0.1000 −0.06385 0
−0.06385 0.115 0

0 0 0.3000


=

1
2

2∑
r=1

(
H3r + HT

3r

)
+ E3 + ET

3 .

(5.5)

Combining (5.3)–(5.5) means that the fuzzy estimate condition (A2) is satisfied.
Set

ϕσ(X(t), X(t − τ(t))) ≡


0.15X1(t − τ(t)) 0 0

0 0.15X2(t − τ(t)) 0
0 0 0.13X3(t − τ(t))

 ,
then we let

Λσ1 ≡ 0.0001I ≡ Λσ2, ασ ≡ 0.03,

which implies that the condition (A2) holds.
Let ς = 0.05, q = 1.2, τ = 5, and then employing computer Matlab LMI toolbox to solve (4.2)

results in

β1 = 0.0150, β2 = 0.9750, β3 = 0.0100, Ψ =


0.01856 0 0

0 0.01396 0
0 0 0.01766

 > 0.

According to Theorem 4.1, the fuzzy switched system (5.2) is globally exponential input-to-state
stability in the meaning of switching.

6. Conclusions and further considerations

Although the non-Lipschitz functions make the free weight matrix technique unsuitable for
financial systems, in this paper, LMI-based criterion of globally asymptotical stability in the meaning
of switching for chaos delayed feedback switched stochastic financial system was obtained, and the
globally asymptotical stability in the meaning of switching is more suitable for the financial system,
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which implies that when the time t is big enough, the dynamic of any subsystem must approach its
unique equilibrium point. Besides, the global financial crisis often erupts periodically, which
illuminates that the global stability in the classical sense is actually meaningless. In addition,
boundedness result and the exponential stability criterion was also derived for fuzzy financial system
in the meaning of switching. Numerical examples shows the effectiveness of the proposed methods.

Very recently, Xiaodi Li and his coauthors consider the finite-time stability and event-triggered
impulsive control on dynamical systems ([37, 40]) . Since finite-time stability of the financial system,
or event-triggered impulsive control of the financial system is seldom investigated, how to propose a
suitable finite-time stability criterion ? It is an interesting problem.
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