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Abstract: The topic of finite-time stability criterion for neural networks with time-varying delays via
a new argument Lyapunov-Krasovskii functional (LKF) was proposed and the time-varying delay of
the system is without differentiable. For sufficient conditions of this study, a new (LKF) is combined
with improved triple integral terms, namely the functionality of finite-time stability, integral inequality,
and a positive diagonal matrix without using a free weighting matrix. The improved finite-time
sufficient conditions for the neural network with time varying delay are given in terms of linear matrix
inequalities (LMIs) and the results show improvement on previous studies. Numerical examples are
given to illustrate the effectiveness of the proposed method.
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1. Introduction

Problems of artificial intelligence (AI) can involve complex data or tasks; consequently neural
networks (NNs) as in [1–36] can be beneficial to overcome the design AI functions manually.
Knowledge of NNs has been applied in various fields, including biology, artificial intelligence, static
image processing, associative memory, electrical engineering and signal processing. The connectivity
of the neurons is biologically weighted. Weighting reflects positive excitatory connections while a
negative value inhibits the connection.

Activation functions will determine the outcome of models of learning and depth accuracy in the
calculation of the training model which can make or break a large NN. Activation functions are also
important in determining the ability of NNs regarding convergence speed and convergence, or in some
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cases, the activation may prevent convergence in the first place as reported in [1–28]. NNs are used in
processing units and learning algorithms. Time-delay is one of the common distinctive actions in the
operation of neurons and plays an important role in causing low levels of efficiency and stability, and
may lead to dynamic behavior involving chaos, uncertainty and differences as in [1–25]. Therefore,
NNs with time delay have received considerable attention in many fields, as in [1–25].

It is well known that many real processes often depend on delays whereby the current state of
affairs depends on previous states. Delays often occur in many control systems, for example, aircraft
control systems, biological modeling, chemicals or electrical networks. Time-delay is often the main
source of ambivalence and poor performance of a system.

There are two different kinds of time-delay system stability: delay dependent and delay
independent. Delayed dependent conditions are often less conservative than independent delays,
especially when the delay times are relatively small. The delayed security conditions depend mainly
on the highest estimate and the extent of the delay allowed. The delay-dependent stability for interval
time-varying delay has been broadly studied and adapted in various research fields
in [3, 13–16, 19, 22–24, 28]. Time-delay that varies the interval for which the scope is limited is called
interval time-varying delay. Some researchers have reported on NN problems with interval
time-varying delay as in [1–5, 7, 11–15, 21, 25], while [16] reported on NN stability with additive
time-varying delay.

There are two types of stability over a finite time interval, namely finite-time stability and
fixed-time stability. With finite-time stability, the system converges in a certain period for any default,
while with fixed-time stability, the convergence time is the same for all defaults within the domain.
Both finite-time stability and fixed-time stability have been extensively adapted in many fields such
as [26, 29–35, 37, 38]. In [34], J. Puangmalai and et. al. investigated Finite-time stability criteria of
linear system with non-differentiable time-varying delay via new integral inequality based on a
free-matrix for bounding the integral

∫ b

a
żT (s)Mż(s)ds and obtained the new sufficient conditions for

the system in the forms of inequalities and linear matrix inequalities. The finite-time stability criteria
of neutral-type neural networks with hybrid time-varying delays was studied by using the definition of
finite-time stability, Lyapunov function method and the bounded of inequality techniques, see in [37].
Similarly, in [38], M. Zheng and et. al. studied the finite-time stability and synchronization problems
of memristor-based fractional-order fuzzy cellular neural network. By applying the existence and
uniqueness of the Filippov solution of the network combined with the Banach fixed point theorem, the
definition of finite-time stability of the network and Gronwall–Bellman inequality and designing a
simple linear feedback controller.

Stability analysis in the context of time-delay systems usually applies the appropriate
Lyapunov-Krasovskii functional (LKF) technique in [1–4, 6–28, 34, 36, 39] , estimating the upper
bounds of its derivative according to the trajectories of the system. Triple and fourth integrals may be
useful in the LKF to solve the solution as in [1, 2, 5, 8, 10–13, 16, 18, 19, 23, 25, 36, 39]. Many
techniques have been applied to approximate the upper bounds of the LKF derivative , such as Jensen
inequality [1, 2, 5, 6, 8, 11, 18, 19, 24, 25, 28, 34, 36, 39], Wirtinger-based integral inequality [4, 10],
tighter inequality lemma [20], delay-dependent stability [3, 13–16, 19, 22–24, 28], delay partitioning
method [9, 15, 27], free-weighting matrix variables method [1, 10, 15, 17, 18, 23, 26, 34], positive
diagonal matrix [2, 5, 6, 8, 10–13, 16, 17, 19, 25, 27, 28] and linear matrix inequality (LMI)
techniques [1, 3, 8, 9, 11–13, 15, 21, 23, 24, 26, 28, 39] and other techniques [9, 13, 14, 16, 18, 36]. In [4],
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H. B. Zeng investigated stability and dissipativity analysis for static neural networks (NNs) with
interval time-varying delay via a new augmented LKF by applying Wirtinger-based inequality. In [6],
Z.-M. Gao and et. al proposed the stability problem for the neural networks with time-varying delay
via new LKF where the time delay needs to be differentiable.

Based on the above, the topic of finite-time exponential stability criteria of NNs was investigated
using non-differentiable time-variation. As a first effort, this article addresses the issue and it main
contributions are:

–We introduce a new argument of LKF V1(t, xt) =

xT (t)P1x(t) + 2xT (t)P2

∫ t

t−h2
x(s)ds +

(∫ t

t−h2
x(s)ds

)T
P3

∫ t

t−h2
x(s)ds + 2xT (t)P4

∫ 0

−h2

∫ t

t+s
x(δ)dδds +

2
(∫ t

t−h2
x(s)ds

)T
P5

∫ 0

−h2

∫ t

t+s
x(δ)dδds +

(∫ 0

−h2

∫ t

t+s
x(δ)dδds

)T
P6

∫ 0

−h2

∫ t

t+s
x(δ)dδds to analyze the

problem of finite-time stability criteria of NNs. The augmented Lyapunov matrices
Pi, i = 1, 2, 3, 4, 5, 6 do not to be positive definiteness.

–To apply to finite-time stability problems of NNs, the time-varying delay is non-differentiable
which is different from the time-delay cases in [1–7, 15, 20].

–To illustrate the effectiveness of this research as being much less conservative than the finite-time
stability criteria in [1–7, 15, 20] as shown in numerical examples.

To improve the new LKF with its triple integral, consisting of utilizing Jensen’s and a new
inequality from [34] and the corollary from [39], an action neural function and positive diagonal
matrix, without free-weighting matrix variables and with finite-time stability. Some novel sufficient
conditions are obtained for the finite-time stability of NNs with time-varying delays in terms of linear
matrix inequalities (LMIs). Finally, numerical examples are provided to show the benefit of using the
new LKF approach. To the best of our knowledge, to date, there have been no publications involving
the problem finite-time exponential stability of NNs.

The rest of the paper is arranged as follows. Section 2 supplies the considered network and
suggests some definitions, propositions and lemmas. Section 3 presents the finite-time exponential
stability of NNs with time-varying delay via the new LKF method. Two numerical examples with
theoretical results and conclusions are provided in Sections 4 and 5, respectively.

2. Problem formulation

This paper will use the notations as follows: R stands for the sets of real numbers; Rn means the
n−dimensional space; Rm×n is the set of all m × n real matrix; AT and A−1 signify the transpose and
the inverse of matrices A, respectively; A is symmetric if A = AT ; If A and B are symmetric matrices,
A > B means that A − B is positive definite matrix; I means the properly dimensioned identity matrix.
The symmetric term in the matrix is determined by ∗; and sym{A} = A + AT ; Block of diagonal matrix
is defined by diag{...}.

Let us consider the following neural network with time-varying delays:

ẋ(t) = −Ax(t) + B f (Wx(t)) + Cg(Wx(t − h(t))), (2.1)
x(t) = φ(t), t ∈ [−h2, 0],

where x(t) = [x1(t), x2(t), ..., xn(t)]T denotes the state vector with the n neurons;
A = diag{a1, a2, ..., an} > 0 is a diagonal matrix; B and C are the known real constant matrices with
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appropriate dimensions; f (W(.)) = [ f1(W1x(.)), f2(W2x(.)), ..., fn(Wnx(.))] and
g(W(.)) = [g1(W1x(.)), g2(W2x(.)), ..., gn(Wnx(.))] denote the neural activation functions;
W = [WT

1 ,W
T
2 , ...,W

T
n ] is delayed connection weight matrix; φ(t) ∈ C[[−h2, 0],Rn] is the initial

function. The time-varying delay function h(t) satisfies the following conditions:

0 ≤ h1 ≤ h(t) ≤ h2, h1 , h2, (2.2)

where h1, h2 are the known real constant scalars.
The neuron activation functions satisfy the following condition:

Assumption 1. The neuron activation function f (·) is continuous and bounded which satisfies:

k−i ≤
fi(θ1) − fi(θ2)
θ1 − θ2

≤ k+
i , ∀θ1, θ2 ∈ R, θ1 , θ2, i = 1, 2, ..., n, (2.3)

when θ2 = 0, Eq (2.3) can be rewritten as the following condition:

k−i ≤
fi(θ1)
θ1
≤ k+

i , (2.4)

where f (0) = 0 and k−i , k
+
i are given constants.

From (2.3) and (2.4), for i = 1, 2, ..., n, it follows that

[ fi(θ1) − fi(θ2) − k−i (θ1 − θ2)][k+
i (θ1 − θ2) − fi(θ1) + fi(θ2)] ≥ 0, (2.5)

[ fi(θ1) − k−i θ1][k+
i θ1 − fi(θ1)] ≥ 0. (2.6)

Based on Assumption 1, there exists an equilibrium point x∗ = [x∗1(t), x∗2(t), ..., x∗n(t)]T of neural
network (2.1).

To prove the main results, the following Definition, Proposition, Corollary and Lemmas are useful.

Definition 1. [34] Given a positive matrix M and positive constants k1, k2,T f with k1 < k2, the time-
delay system described by (2.1) and delay condition as in (2.2) is said to be finite-time stable regarding
to (k1, k2,T f , h1, h2,M), if the state variables satisfy the following relationship:

sup
−h2≤s≤0

{zT (s)Mz(s), żT (s)Mż(s)} ≤ k1 ⇒ zT (t)Mz(t) < k2, ∀t ∈ [0,T f ].

Proposition 2. [34] For any positive definite matrix Q, any differential function z : [bdL, bdU] → Rn.

Then, the following inequality holds:

6bdUL

∫ bdU

bdL

żT (s)Qż(s)ds ≥ ζ̄T


−22Q −10Q 32Q
∗ −16Q 26Q
∗ ∗ −58Q

 ζ̄,
where ζ̄T =

[
z(bdU) z(bdL) 1

bdUL

∫ bdU

bdL
z(s)ds

]
and bdUL = bdU − bdL.
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Lemma 3. [40] (Schur complement) Given constant symmetric matrices X,Y,Z satisfying X = XT

and Y = YT > 0, then X + ZT Y−1Z < 0 if and only if[
X ZT

Z −Y

]
< 0, or

[
−Y Z
ZT X

]
< 0.

Corollary 4. [39] For a given symmetric matrix Q > 0, any vector ν0 and matrices J1, J2, J3, J4 with
proper dimensions and any continuously differentiable function z : [bdL, bdU] → Rn, the following
inequality holds:

−

∫ bdU

bdL

∫ bdU

δ

żT (s)Qż(s)dsdδ ≤ νT
0 (2J1Q−1JT

1 + 4J2Q−1JT
2 )ν0 + 2νT

0 (2J1γ1 + 4J2γ2),

−

∫ bdU

bdL

∫ δ

bdL

żT (s)Qż(s)dsdδ ≤ νT
0 (2J3Q−1JT

3 + 4J4Q−1JT
4 )ν0 + 2νT

0 (2J3γ3 + 4J4γ4),

where bdUL = bdU − bdL,

γ1 = z(bdU) − 1
bdUL

∫ bdU

bdL
z(s)ds, γ2 = z(bdU) + 2

bdUL

∫ bdU

bdL
z(s)ds − 6

(bdUL)2

∫ bdU

bdL

∫ bdU

δ
z(s)dsdδ,

γ3 = 1
bdUL

∫ bdU

bdL
z(s)ds − z(bdL), γ4 = z(bdL) − 4

bdUL

∫ bdU

bdL
z(s)ds + 6

(bdUL)2

∫ bdU

bdL

∫ bdU

δ
z(s)dsdδ.

Lemma 5. [39] For any matrix Q > 0 and differentiable function z : [bdL, bdU] → Rn, such that the
integrals are determined as follows:

bdUL

∫ bdU

bdL

żT (s)Qż(s)ds ≥ κT
1 Qκ1 + 3κT

2 Qκ2 + 5κT
3 Qκ3,

where κ1 = z(bdU) − z(bdL), κ2 = z(bdU) + z(bdL) − 2
bdUL

∫ bdU

bdL
z(s)ds,

κ3 = z(bdU) − z(bdL) + 6
bdUL

∫ bdU

bdL
z(s)ds − 12

(bdUL)2

∫ bdU

bdL

∫ bdU

δ
z(s)dsdδ and bdUL = bdU − bdL.

Lemma 6. [41] For any positive definite symmetric constant matrix Q and scalar τ > 0, such that the
following integrals are determined, it has

−

∫ 0

−τ

∫ t

t+δ
zT (s)Qz(s)dsdδ ≤ −

2
τ2

( ∫ 0

−τ

∫ t

t+δ
z(s)dsdδ

)T
Q
( ∫ 0

−τ

∫ t

t+δ
z(s)dsdδ

)
.

3. Main results

Let h1, h2 and α be constants,
h21 = h2 − h1, ht1 = h(t) − h1, h2t = h2 − h(t),
N1 = 1−e−αh1

α
, N2 = 1−e−αh2

α
, N3 =

1−(1+αh1)e−αh1

α2 , N4 =
(1+αh1)e−αh1−(1+αh2)e−αh2

α2 , N5 =
1−(1+αh2)e−αh2

α2 ,

N6 = −3+2αh2+4e−αh2−e−2αh2

4α3 , N7 = −3+2αh1+4e−αh1−e−2αh1

4α3 , N8 =
−3−2(2+αh1)e−αh1 +e−2αh1

4α3 ,

N9 =
4(αh21−1)e−αh1−(2αh21−1)e−2αh1 +4e−αh2−e−2αh2

4α3 , N10 =
4e−αh1−e−2αh1−4e−αh2 +(1−2αh21)e−2αh2

4α3 ,

I = M
1
2 M− 1

2 = M− 1
2 M

1
2 , P̄i = M− 1

2 PiM− 1
2 , i = 1, 2, 3, ..., 6, Q̄ j = M− 1

2 Q jM− 1
2 , j = 1, 2,

R̄k = M− 1
2 RkM− 1

2 , k = 1, 2, 3, S̄ = M− 1
2 S M− 1

2 , T̄l = M− 1
2 TlM− 1

2 , l = 1, 2, 3, 4,
M = λmin{P̄i}, i = 1, 2, 3, ..., 6,
N = λmax{P̄1} + 2λmax{P̄2} + λmax{P̄3} + 2λmax{P̄4} + 2λmax{P̄5} + λmax{P̄6}
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+N1λmax{Q̄1} + N2λmax{Q̄2} + h1N3λmax{R̄1} + h21N4λmax{R̄2} + h2N5λmax{R̄3}

+N6λmax{S̄ } + 2λmax{L1} + 2λmax{L2} + 2λmax{G1} + 2λmax{G2}

+N7λmax{T̄1} + N8λmax{T̄2} + N9λmax{T̄3} + N10λmax{T̄4},

L1 =
∑n

i=1 λ1i, L2 =
∑n

i=1 λ2i, G1 =
∑n

i=1 γ1i, G2 =
∑n

i=1 γ2i.

The notations for some matrices are defined as follows:
f (t) = f (Wx(t)) and gh(t) = g(Wx(t − h(t))),
W1(t) = 1

h1

∫ t

t−h1
x(s)ds, W2(t) = 1

ht1

∫ t−h1

t−h(t)
x(s)ds, W3(t) = 1

h2t

∫ t−h(t)

t−h2
x(s)ds,

W4(t) = 1
h2

∫ t

t−h2
x(s)ds, W5(t) = 1

h2

∫ 0

−h2

∫ t

t+s
x(δ)dsdδ, W6(t) = 1

h2
1

∫ t

t−h1

∫ t

τ
x(s)dsdτ,

W7(t) = 1
h2

t1

∫ t−h1

t−h(t)

∫ t−h1

τ
x(s)dsdτ, W8(t) = 1

h2
2t

∫ t−h(t)

t−h2

∫ t−h(t)

τ
x(s)dsdτ,

$1(t) = [xT (t) xT (t − h1) xT (t − h(t)) xT (t − h2) f T (t) gT
h (t)]T ,

$2(t) = [W T
1 (t) W T

2 (t) W T
3 (t) W T

4 (t) W T
5 (t) ẋT (t) W T

6 (t) W T
7 (t) W T

8 (t)]T ,

$ = [$T
1 (t) $T

2 (t)]T ,

D1 = diag{k+
11, k

+
21, ..., k

+
n1},D2 = diag{k+

12, k
+
22, ..., k

+
n2} and D = max{D1,D2},

E1 = diag{k−11, k
−
21, ..., k

−
n1}, E2 = diag{k−12, k

−
22, ..., k

−
n2} and E = max{E1, E2},

ζ1(t) = [xT (t) xT (t − h1) W T
1 (t)], ζ2(t) = [xT (t − h1) xT (t − h(t)) W T

2 (t)],
ζ3(t) = [xT (t − h(t)) xT (t − h2) W T

3 (t)], ζ4(t) = [xT (t) xT (t − h2) W T
4 (t)],

G1 = x(t) −W1(t), G2 = x(t) + 2W1(t) − 6W6(t),
G3 = W1(t) − x(t − h1), G4 = x(t − h1) − 4W1(t) + 6W6(t),
G5 = x(t − h1) −W2(t), G6 = x(t − h1) + 2W2(t) − 6W7(t),
G7 = x(t − h(t)) −W3(t), G8 = x(t − h(t)) + 2W3(t) − 6W8(t),
G9 = W2(t) − x(t − h(t)), G10 = x(t − h(t)) − 4W2(t) + 6W7(t),
G11 = W3(t) − x(t − h2), G12 = x(t − h2) − 4W3(t) + 6W8(t).

Let us consider a LKF for stability criterion for network (2.1) as the following equation:

V(t, xt) =

10∑
i=1

Vi(t, xt), (3.1)

where

V1(t, xt) = xT (t)P1x(t) + 2xT (t)P2

∫ t

t−h2

x(s)ds +

(∫ t

t−h2

x(s)ds
)T

P3

∫ t

t−h2

x(s)ds

+2xT (t)P4

∫ 0

−h2

∫ t

t+s
x(δ)dδds + 2

(∫ t

t−h2

x(s)ds
)T

P5 ×∫ 0

−h2

∫ t

t+s
x(δ)dδds +

(∫ 0

−h2

∫ t

t+s
x(δ)dδds

)T

P6

∫ 0

−h2

∫ t

t+s
x(δ)dδds,

V2(t, xt) =

∫ t

t−h1

eα(s−t)xT (s)Q1x(s)ds,

V3(t, xt) =

∫ t

t−h2

eα(s−t)xT (s)Q2x(s)ds,

V4(t, xt) = h1

∫ 0

−h1

∫ t

t+s
eα(s−t) ẋT (δ)R1 ẋ(δ)dδds,
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V5(t, xt) = h21

∫ −h1

−h2

∫ t

t+s
eα(s−t) ẋT (δ)R2 ẋ(δ)dδds,

V6(t, xt) = h2

∫ 0

−h2

∫ t

t+s
eα(s−t) ẋT (δ)R3 ẋ(δ)dδds,

V7(t, xt) =

∫ 0

−h2

∫ 0

τ

∫ t

t+s
eα(δ+s−t) ẋT (δ)S ẋ(δ)dδdsdτ,

V8(t, xt) = 2e−αt
n∑

i=1

∫ Wi x

0

[
λ1i(σ+

i s − fi(s)) + λ2i( fi(s) − σ−i s)
]
ds,

V9(t, xt) = 2e−αt
n∑

i=1

∫ Wi x

0

[
γ1i(η+

i s − gi(s)) + γ2i(gi(s) − η−i s)
]
ds,

V10(t, xt) =

∫ 0

−h1

∫ 0

τ

∫ t

t+s
eα(δ+s−t) ẋT (δ)T1 ẋ(δ)dδdsdτ

+

∫ 0

−h1

∫ τ

−h1

∫ t

t+s
eα(δ+s−t) ẋT (δ)T2 ẋ(δ)dδdsdτ

+

∫ −h1

−h2

∫ −h1

τ

∫ t

t+s
eα(δ+s−t) ẋT (δ)T3 ẋ(δ)dδdsdτ

+

∫ −h1

−h2

∫ τ

−h2

∫ t

t+s
eα(δ+s−t) ẋT (δ)T4 ẋ(δ)dδdsdτ.

Next, we will show that the LKF (3.1) is positive definite as follows:

Proposition 7. Consider an α > 0. The LKF (3.1) is positive definite, if there exist matrices Qi >

0, (i = 1, 2), R j > 0, ( j = 1, 2, 3), Tk > 0, (k = 1, 2, 3, 4), S > 0 and any matrices P1 = PT
1 , P3 = PT

3 ,
P6 = PT

6 , P2, P4, P5, such that the following LMI holds:

H =


H11 H12 H13

∗ H22 P5

∗ ∗ H33

 > 0, (3.2)

where

H11 = P1 + h2e−2αh2R3 + 0.5h2e−2αh2S ,

H12 = P2 − e−2αh2R3, H13 = P4 − h−1
2 e−2αh2S ,

H22 = P3 + h−1
2 e−2αh2(R3 + Q2), H33 = P6 + h−3

2 e−2αh2(S + S T ).

Proof. We let z1(t) = h2W4(t), z2(t) = h2W5(t), then

V1(t, xt) = xT (t)P1x(t) + 2xT (t)P2z1(t) + zT
1 (t)P3z1(t) + 2xT (t)P4z2(t)

+2zT
1 (t)P5z2(t) + zT

2 (t)P6z2(t),

V3(t, xt) ≥ e−2αh2

∫ t

t−h2

xT (s)Q2x(s)ds

= h−1
2 e−2αh2zT

1 (t)Q2z1(t),
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V6(t, xt) ≥ h2e−2αh2

∫ 0

−h2

∫ t

t+s
ẋT (δ)R3 ẋ(δ)dδds

≥ h2e−2αh2

∫ 0

−h2

−s−1
(∫ t

t+s
ẋ(δ)dδ

)T

R3

(∫ t

t+s
ẋ(δ)dδ

)
ds

≥ e−αh2

∫ 0

−h2

[x(t) − x(t + s)]T R3[x(t) − x(t + s)]ds

=

[
x(t)
z1(t)

]T [
h2e−αh2R3 −e−αh2R3

∗ h−1
2 e−αh2R3

] [
x(t)
z1(t)

]
,

V7(t, xt) ≥ e−αh2

∫ 0

−h2

∫ 0

τ

∫ t

t+s
ẋT (δ)S ẋ(δ)dδdsdτ

≥ e−αh2

∫ 0

−h2

∫ 0

τ

−s−1
(∫ t

t+s
ẋ(δ)dδ

)T

S
(∫ t

t+s
ẋ(δ)dδ

)
dsdτ

≥ h−1
2 e−αh2

∫ 0

−h2

∫ 0

τ

[x(t) − x(t + s)]T S [x(t) − x(t + s)]dsdτ

=

[
x(t)
z2(t)

]T [
0.5h2e−2αh2S −h−1

2 e−2αh2S
∗ h−3

2 e−2αh2(S + S T )

] [
x(t)
z2(t)

]
.

Combining with V2(t, xt), V4(t, xt), V5(t, xt), V8(t, xt) − V10(t, xt), it follows that if the LMIs (3.2) holds,
the LKF (3.1) is positive definite. �

Remark 8. It is worth noting that most of previous paper [1–7, 15, 20] , the Lyapunov martices P1,
P3 and P6 must be positive definite. In our work, we remove this restriction by utilizing the technique
of constructing complicated Lyapunov V1(t, xt), V3(t, xt), V6(t, xt) and V7(t, xt) as shown in the proof
of Proposition 7, therefore, P1, P3 and P6 are only real matrices. We can see that our work are less
conservative and more applicable than aforementioned works.

Theorem 9. Given a positive matrix M > 0, the time-delay system described by (2.1) and delay
condition as in (2.2) is said finite-time stable with respect to (k1, k2,T f , h1, h2,M), if there exist
symmetric positive definite matrices Qi > 0, (i = 1, 2), R j > 0 ( j = 1, 2, 3), Tk > 0 (k = 1, 2, 3, 4),
Kl > 0 (l = 1, 2, 3, ..., 10), diagonal matrices S > 0, Hm > 0, m = 1, 2, 3, and matrices P1 = PT

1 ,
P3 = PT

3 , P6 = PT
6 , P2, P4, P5 such that the following LMIs hold:

H =


H11 H12 H13

∗ H22 P5

∗ ∗ H33

 > 0, (3.3)

Ω1 =

[
Ω1,1 Ω1,2

∗ Ω2,2

]
< 0, (3.4)
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Ω1,1 =



Π1,1 Π1,2 Π1,3 Π1,4 Π1,5 Π1,6 Π1,7 0
∗ Π2,2 Π2,3 0 0 0 Π2,7 Π2,8

∗ ∗ Π3,3 Π3,4 Π3,5 Π3,6 0 Π3,8

∗ ∗ ∗ Π4,4 0 0 0 0
∗ ∗ ∗ ∗ Π5,5 Π5,6 0 0
∗ ∗ ∗ ∗ ∗ Π6,6 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π7,7 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π8,8


< 0, (3.5)

Ω1,2 =



0 Ξ1,2 Ξ1,3 Ξ1,4 0 0 0
0 0 0 0 0 Ξ2,6 0

Ξ3,1 0 0 Ξ3,4 0 Ξ3,6 Ξ3,7

Ξ4,1 Ξ4,2 Ξ4,3 0 0 0 Ξ4,7

0 0 0 Ξ5,4 0 0 0
0 0 0 Π6,4 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 Ξ8,6 0


< 0, (3.6)

Ω2,2 =



Σ1,1 0 0 0 0 0 Σ1,7

0 Σ2,2 Σ2,3 Σ2,4 0 0 0
0 0 Σ3,3 Ξ3,4 0 0 0
0 0 0 Σ4,4 0 0 0
0 0 0 0 Σ5,5 0 0
0 0 0 0 0 Σ6,6 0
0 0 0 0 0 0 Σ7,7


< 0, (3.7)

Ω2 = diag{χi} < 0, (3.8)

where i = 1, 2, 3, ..., 12, b1 = 1
6 , b2 = 1

ht1
, b3 = 1

h2t
,

χ1 = −2e2αh1T1, χ2 = −4e2αh1T1, χ3 = −2e2αh1T2, χ4 = −4e2αh1T2, χ5 = χ7 = −2e2αh2T3,
χ6 = χ8 = −4e2αh2T3, χ9 = χ11 = −2e2αh2T4, χ10 = χ12 = −4e2αh2T4,
and

N k1

M
≤ k2e−αT f , (3.9)

H11 = P1 + h2e−2αh2R3 + 0.5h2e−2αh2S ,

H12 = P2 − e−2αh2R3, H13 = P4 − h−1
2 e−2αh2S ,

H22 = P3 + h−1
2 e−2αh2(R3 + Q2), H33 = P6 + h−3

2 e−2αh2(S + S T ),
Π1,1 = −P1A − AT P1 + 2P2 + 2h2P4 + Q1 + Q2 − 22e−αh1R1b1

−22e−αh2R3b1 − 2e−2αh2S − 2QA − 2WT ET
1 HT

1 D1W
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−2WT ET H3DW − αP1 + 4K1e−2αh1 + 8K2e−2αh1 ,

Π1,2 = −10e−αh1R1b1, Π1,3 = WT ET HT
3 DW + WT DT HT

3 EW,

Π1,4 = −P2 − 10e−αh2R3b1,

Π1,5 = P1B + QB + WT DT
1 H′T1 + WT ET

1 H1 + WT DT HT
3 + WT ET H3,

Π1,6 = P1C + QC −WT DT HT
3 −WT ET H3, Π1,7 = −32e−αh1R1b1,

Π2,2 = −e−αh1 Q1 − 16e−αh1R1b1 − 22e−αh2R2b1 − 4K3e−2αh1 + 8K4e−2αh1

−9h2e−2αh2T3b2 + 4K5e−2αh2 + 8K6e−2αh2 ,

Π2,3 = −10e−αh2R2b1 + 3h2te−2αh2T3b2, Π2,7 = 26e−αh1R1b1,

Π2,8 = 32e−αh2R2b1 − 24h2te−2αh2T3b2,

Π3,3 = −16e−αh2R2b1 − 22e−αh2R2b1 − 2WT ET
2 H2D2W − 2WT ET H3DW

−9h2te−2αh2T3b2 + 4K7e−2αh2 + 8K8e−2αh2 − 9ht1e−2αh2T4b3

−4K9e−2αh2 + 8K10e−2αh2 ,

Π3,4 = −10e−αh2R2b1 + 3ht1e−2αh2T4b3, Π3,5 = −WT DT HT
3 −WT ET H3,

Π3,6 = WT DT
2 HT

2 + WT ET
2 H2 + WT DT HT

3 + WT ET H3,

Π3,8 = 26e−αh2R2b1 + 36h2te−2αh2T3b3,

Π4,4 = −e−αh2 Q2 − 16e−αh2R2b1 − 16e−αh2R3b1 − 9ht1e−2αh2T4b3

−4K11e2αh2 + 8K12e−2αh2 ,

Π5,5 = −2H1 − 2H3, Π6,6 = −2H2 − 2H3,

Π7,7 = −58e−αh1R1b1 − 4K1e2αh1 + 16K2e2αh1 + 4K3e2αh1 − 32K4e2αh1 ,

Π8,8 = −58e−αh2R2b1 − 192h2te−2αh2T3b2 − 4K5e−2αh2 + 16K6e−2αh2 + 4K9e−2αh2

−32K10e−2αh2 ,

Ξ1,2 = h2P3 − h2P4 + h2
2PT

5 + 32e−αh2R3b1 + e−2αh2S − αh2P2,

Ξ1,3 = h2P5 + h2
2P6 − αh2P4, Ξ1,4 = WT DT

1 L1W −WT ET
1 L2W − Q − AT QT ,

Ξ2,6 = 60h2te−2αh2T3b3, Ξ3,1 = 32e−αh2R2b1 − 24e−2αh2T4,

Ξ3,4 = WT DT
2 G1W −WT ET

2 G2W, Ξ3,6 = −60h2te−2αh2T3b2, Ξ3,7 = 60ht1e−2αh2T4b3,

Ξ4,1 = 26e−2αh2R2b1 + 36ht1e−2αh2T4b3, Ξ4,2 = −h2P3 + 26e−2αh2R3b1,

Ξ4,3 = −h2P5, Ξ4,7 = −60ht1e−2αh2T4b3, Ξ5,4 = −L1W + L2W + BT QT ,

Ξ6,4 = −G1W + G2W + CT QT , Ξ8,6 = 360h2te−2αh2T3b2,

Σ1,1 = −58e−2αh2R2b1 − 4K7e−2αh2 + 16K8e−2αh2

−192h1te−2αh2T4b3 + 4K11e−2αh2 − 32K12e−2αh2 ,

Σ1,7 = 360h1e−2αh2T4b3, Σ2,2 = −h2
2P5 − 58e−αh2R3b1 − 2e−2αh2S − αh2

2P3,

Σ2,3 = −h2
2P6 − αh2

2P5, Σ2,4 = h2P2, Σ3,3 = −αh2
2P6, Σ3,4 = h2P4,

Σ4,4 = h2
1R1 + h2

21R2 + h2
2R3 + 3h2

2S b1 − 2Q + 3h2
1(T1 + T2)b1 + 3h2

21(T3 + T4)b1,

Σ5,5 = −48K2e−2αh1 + 48K4e−2αh1 ,

Σ6,6 = −720h2te−2αh2T3b2 − 48K6e−2αh2 + 48K10e−2αh2 ,

Σ7,7 = −48K8e−2αh2 − 720ht1e−2αh2T4b3 + 48K12e−2αh2 .
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Proof. Let us choose the LKF defined as in (3.1). By Proposition 7, it is easy to check that

M ‖x(t)‖2 ≤ V(t, xt), ∀t ≥ 0 and V(0, x0) ≤ N ‖φ(t)‖2.

Taking the derivative of Vi(t, xt), i = 1, 2, 3, ..., 10 along the solution of the network (2.1), we get

V̇1(t, xt) = −2xT (t)AP1x(t) + 2xT (t)P1B f (t) + 2xT (t)P1Cgh(t)
+2xT (t)P2

[
x(t) − x(t − h2)

]
+ 2h2W

T
4(t)P2 ẋ(t)

+2h2
[
x(t) − x(t − h2)

]T P3W4(t) + 2h2xT (t)P4
[
x(t) −W4(t)

]
(3.10)

+2h2W
T

5 (t)P4 ẋ(t) + 2h2
2W

T
4 (t)P5

[
x(t) −W4(t)

]
+2h2

[
x(t) − x(t − h2)

]T P5W5(t) + 2h2
2
[
x(t) −W4(t)

]T P6W5(t),
V̇2(t, xt) = xT (t)Q1x(t) − e−αh1 xT (t − h1)Q1x(t − h1) − αV2(t, xt),
V̇3(t, xt) = xT (t)Q2x(t) − e−αh2 xT (t − h2)Q2x(t − h2) − αV3(t, xt),

V̇4(t, xt) ≤ h2
1 ẋT (t)R1 ẋ(t) − h1e−αh1

∫ t

t−h1

ẋT (s)R1 ẋ(s)ds − αV4(t, xt),

V̇5(t, xt) ≤ h2
21 ẋT (t)R2 ẋ(t) − h21e−αh2

∫ t−h1

t−h2

ẋT (s)R2 ẋ(s)ds − αV5(t, xt),

V̇6(t, xt) ≤ h2
2 ẋT (t)R3 ẋ(t) − h2e−αh2

∫ t

t−h2

ẋT (s)R3 ẋ(s)ds − αV6(t, xt),

V̇7(t, xt) ≤ h2
2 ẋT (t)S ẋ(t) − e−2αh2

∫ 0

−h2

∫ t

t+τ
ẋT (s)S ẋ(s)dsdτ − αV7(t, xt), (3.11)

V̇8(t, xt) ≤ 2[L1(D1WxT (t) − f (WxT (t))) + L2( f (WxT (t))) − E1WxT (t)]Wẋ(t)
−αV8(t, xt),

V̇9(t, xt) ≤ 2[G1(D2WxT (t − h(t)) − g(WxT (t − h(t))))
+2G2(g(WxT (t − h(t)))) − E2WxT (t − h(t))]Wẋ(t) − αV9(t, xt),

V̇10(t, xt) =
h2

1

2
ẋT (t)[T1 + T2]ẋ(t) +

h2
21

2
ẋT (t)[T3 + T4]ẋ(t)

−e−2αh1

∫ t

t−h1

∫ t

τ

ẋT (s)T1 ẋ(s)dsdτ

−e−2αh1

∫ t

t−h1

∫ τ

t−h1

ẋT (s)T2 ẋ(s)dsdτ

−e−2αh2

∫ t−h1

t−h2

∫ t−h1

τ

ẋT (s)T3 ẋ(s)dsdτ

−e−2αh2

∫ t−h1

t−h2

∫ τ

t−h2

ẋT (s)T4 ẋ(s)dsdτ − αV10(t, xt).

Define

χi =


22Ri 10Ri −32Ri

∗ 16Ri −26Ri

∗ ∗ 58Ri

 , i = 1, 2, 3, 4.
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Applying Proposition 2, we obtain

−h1e−αh1

∫ t

t−h1

ẋT (s)R1 ẋ(s)ds ≤ −
e−αh1

6
ζT

1 (t)χ1ζ1(t), (3.12)

−h21e−αh2

∫ t−h2

t−h1

ẋT (s)R2 ẋ(s)ds ≤ −
e−αh2

6
ζT

2 (t)χ2ζ2(t) −
e−αh2

6
ζT

3 (t)χ3ζ3(t), (3.13)

−h2e−αh2

∫ t

t−h2

ẋT (s)R3 ẋ(s)ds ≤ −
e−αh2

6
ζT

4 (t)χ4ζ4(t). (3.14)

Applying Lemma 6, this leads to

−e−αh2

∫ 0

−h2

∫ t

t+τ
ẋT (s)S ẋ(s)dsdτ ≤ −2h2

2e−2αh2[x(t) −W4(t)]T S [x(t) −W4(t)].

From Corollary 4, we have

−e−αh1

∫ t

t−h1

∫ t

τ

ẋT (s)T1 ẋ(s)dsdτ ≤ −2e−αh1$T (t)[K1T−1
1 KT

1 + 2K2T−1
1 KT

2

+2K1G1 + 4K2G2]$(t),

−e−αh1

∫ τ

t−h1

∫ t

t−h1

ẋT (s)T2 ẋ(s)dsdτ ≤ −2e−αh1$T (t)[K3T−1
2 KT

3 + 2K4T−1
2 KT

4

+2K3G3 + 4K4G4]$(t),

−e−αh2

∫ t−h1

t−h2

∫ t−h1

τ

ẋT (s)T3 ẋ(s)dsdτ ≤ −h2te−αh2

∫ t−h1

t−h(t)
ẋT (s)T3 ẋ(s)ds

+2e−αh2$T (t)[K5T−1
3 KT

5 + 2K6T−1
3 KT

6 (3.15)
+2K5G5 + 4K6G6]$(t)
+2e−αh2$T (t)[K7T−1

3 KT
7 + 2K8T−1

3 KT
8

+2K7G7 + 4K8G8]$(t),

−e−αh2

∫ t−h1

t−h2

∫ τ

t−h2

ẋT (s)T4 ẋ(s)dsdτ ≤ −ht1e−αh2

∫ t−h(t)

t−h2

ẋT (s)T4 ẋ(s)ds

+2e−αh2$T (t)[K9T−1
4 KT

9

+2K10T−1
4 KT

10 + 2K9G9 + 4K10G10]$(t)
+2e−αh2$T (t)[K11T−1

4 KT
11 + 2K12T−1

4

×KT
12 + 2K11G11 + 4K12G12]$(t).

By Lemma 5, we obtain

−h2te−αh2

∫ t−h1

t−h(t)
ẋT (s)T3 ẋ(s)ds − ht1e−αh2

∫ t−h1

t−h(t)
ẋT (s)T4 ẋ(s)ds

≤ −
h2t

ht1
e−αh2

([
(x(t − h1) − x(t − h(t))

]T T3
[
x(t − h1) − x(t − h(t))

]
+3

[
x(t − h1) + x(t − h(t)) − 2W2(t)

]T T3
[
x(t − h1) + x(t − h(t)) − 2W2(t)

]
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+5
[
x(t − h1) − x(t − h(t)) + 6W2(t) − 12W7(t)

]T T3 × (3.16)[
x(t − h1) − x(t − h(t)) + 6W2(t) − 12W7(t)

])
−

ht1

h2t
e−αh2

([
x(t − h(t)) − x(t − h2))

]T T4
[
x(t − h(t)) − x(t − h2)

]
+3

[
x(t − h(t)) + x(t − h2) − 2W3(t)

]T T4
[
x(t − h(t)) + x(t − h2) − 2W3(t)

]
+5

[
x(t − h(t)) − x(t − h2) + 6W3(t) − 12W8(t)

]T T4 ×[
x(t − h(t)) − x(t − h2) + 6W3(t) − 12W8(t)

])
.

Taking the assumption of activation functions (2.5) and (2.6) for any diagonal matrices H1,H2,H3 > 0,
it follows that

2[ f (t) − E1Wx(t)]T H1[D1Wx(t) − f (t)] ≥ 0,
2[gh(t) − E2Wx(t − h(t))]T H2[D2Wx(t − h(t)) − gh(t)] ≥ 0, (3.17)

2[ f (t) − gh(t) − E(Wx(t) −Wx(t − h(t)))]T ×

H3[D(Wx(t) −Wx(t − h(t))) − f (t) + gh(t)] ≥ 0.

Multiply (2.1) by (2Qx(t) + 2Qẋ(t))T , we have the following identity:

−2xT (t)Qẋ(t) − 2xT (t)QAx(t) + 2xT (t)QB f (t) + 2xT (t)QCgh(t)
−2ẋ(t)Qẋ(t) − 2ẋ(t)QAx(t) + 2ẋ(t)QB f (t) + 2ẋ(t)QCgh(t) = 0. (3.18)

From (3.10)–(3.18), it can be obtained

V̇(t, xt) + αV(t, xt) ≤ $T (t)[Ω1 + Ω2]$(t),

where Ω1 and Ω2 are given in Eqs (3.4) and (3.8). Since Ω1 < 0 and Ω2 < 0 , V̇(t, xt) + αV(t, xt) ≤ 0,
then, we have

V̇(t, xt) ≤ −αV(t, xt), ∀t ≥ 0. (3.19)

Integrating both sides of (3.19) from 0 to t with t ∈ [0,T f ], we obtain

V(t, xt) ≤ V(0, x0)e−2αt, ∀t ≥ 0.

with

V1(0, x0) = xT (0)P1x(0) + 2h2xT (0)P2W
T

4 (0) + h2
2W4(0)P3W4(0)

+2h2xT (0)P4W5(0) + 2h2
2W

T
4 (0)P5W5(0)

+h2
2P5W

T
5 (0)P6W5(0),

V2(0, x0) =

∫ 0

−h1

eαsxT (s)Q1x(s)ds,

V3(0, x0) =

∫ 0

−h2

eαsxT (s)Q2x(s)ds,
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V4(0, x0) = h1

∫ 0

−h1

∫ 0

s
eαs ẋT (δ)R1 ẋ(δ)dδds,

V5(0, x0) = h21

∫ −h1

−h2

∫ 0

s
eαs ẋT (δ)R2 ẋ(δ)dδds,

V6(0, x0) = h2

∫ 0

−h2

∫ 0

s
eαs ẋT (δ)R3 ẋ(δ)dδds,

V7(0, x0) =

∫ 0

−h2

∫ 0

τ

∫ 0

s
eα(δ+s) ẋT (δ)S ẋ(δ)dδdsdτ,

V8(0, x0) = 2
n∑

i=1

∫ Wi x

0

[
λ1i(σ+

i s − fi(s)) + λ2i( fi(s) − σ−i s)
]
ds,

V9(0, x0) = 2
n∑

i=1

∫ Wi x

0

[
γ1i(η+

i s − gi(s)) + γ2i(gi(s) − η−i s)
]
ds,

V10(0, x0) =

∫ 0

−h1

∫ 0

τ

∫ 0

s
eα(δ+s) ẋT (δ)T1 ẋ(δ)dδdsdτ

+

∫ 0

−h1

∫ τ

−h1

∫ 0

s
eα(δ+s) ẋT (δ)T2 ẋ(δ)dδdsdτ

+

∫ −h1

−h2

∫ −h1

τ

∫ 0

s
eα(δ+s) ẋT (δ)T3 ẋ(δ)dδdsdτ

+

∫ −h1

−h2

∫ τ

−h2

∫ s

0
eα(δ+s) ẋT (δ)T4 ẋ(δ)dδdsdτ.

Let I = M
1
2 M− 1

2 = M− 1
2 M

1
2 , P̄i = M− 1

2 PiM− 1
2 , i = 1, 2, 3, ..., 6,

Q̄ j = M− 1
2 Q jM− 1

2 , j = 1, 2, R̄k = M− 1
2 RkM− 1

2 , k = 1, 2, 3, T̄l = M− 1
2 TlM− 1

2 , l = 1, 2, 3, 4. Therefore,

V(0, x0) = xT (0)M
1
2 P̄1M

1
2 x(0) + 2h2xT (0)M

1
2 P̄2M

1
2 W4(0) + h2

2W4(0)M
1
2 P̄3M

1
2 W4(0)

+2h2xT (0)M
1
2 P̄4M

1
2 W5(0) + 2h2

2W
T

4 (0)M
1
2 P̄5M

1
2 W5(0)

+h2
2P5W

T
5 (0)M

1
2 P̄6M

1
2 W5(0) +

∫ 0

−h1

eαsxT (s)M
1
2 Q̄1M

1
2 x(s)ds

+

∫ 0

−h2

eαsxT (s)M
1
2 Q̄2M

1
2 x(s)ds + h1

∫ 0

−h1

∫ 0

s
eαs ẋT (δ)M

1
2 R̄1M

1
2 ẋ(δ)dδds

+h21

∫ −h1

−h2

∫ 0

s
eαs ẋT (δ)M

1
2 R̄2M

1
2 ẋ(δ)dδds

+h2

∫ 0

−h2

∫ 0

s
eαs ẋT (δ)M

1
2 R̄3M

1
2 ẋ(δ)dδds

+

∫ 0

−h2

∫ 0

τ

∫ 0

s
eα(δ+s) ẋT (δ)M

1
2 S̄ M

1
2 ẋ(δ)dδdsdτ

+2
[
L1(D1WxT (0) − f (WxT (0))) + L2( f (WxT (0)) − E1WxT (0)

]
+2

[
G1(D2WxT (0) − g(WxT (0))) + G2(g(WxT (0)) − E2WxT (0)

]
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+

∫ 0

−h1

∫ 0

τ

∫ 0

s
eα(δ+s) ẋT (δ)M

1
2 T̄1M

1
2 ẋ(δ)dδdsdτ

+

∫ 0

−h1

∫ τ

−h1

∫ 0

s
eα(δ+s) ẋT (δ)M

1
2 T̄2M

1
2 ẋ(δ)dδdsdτ

+

∫ −h1

−h2

∫ −h1

τ

∫ 0

s
eα(δ+s) ẋT (δ)M

1
2 T̄3M

1
2 ẋ(δ)dδdsdτ

+

∫ −h1

−h2

∫ τ

−h2

∫ s

0
eα(δ+s) ẋT (δ)M

1
2 T̄4M

1
2 ẋ(δ)dδdsdτ,

≤ k1[λmax{P̄1} + 2λmax{P̄2} + λmax{P̄3} + 2λmax{P̄4} + 2λmax{P̄5}

+λmax{P̄6} + N1λmax{Q̄1} + N2λmax{Q̄2} + h1N3λmax{R̄1}

+h21N4λmax{R̄2} + h2N5λmax{R̄3} + N6λmax{S̄ } + 2λmax{L1}

+2λmax{L2} + 2λmax{G1} + 2λmax{G2} + N7λmax{T̄1}

+N8λmax{T̄2} + N9λmax{T̄3} + N10λmax{T̄4}].

Since V(t, xt) ≥ V1(t, xt), we have

V(t, xt) ≥ xT (t)P̄1Mx(t) + 2h2xT (t)P̄2MW4(t) + h2
2W

T
4 (t)P̄3MW4(t)

+2h2xT (t)P̄4MW5(t) + 2h2
2W

T
4 (t)P̄5MW T

5 (t) + h2
2W

T
5 (t)P̄6MW5(t),

≥ λmin(P̄i)xT (t)Mx(t), i = 1, 2, 3, 4, 5, 6.

For any t ∈ [0,T f ], it follows that,

xT (t)Mx(t) ≤
k1eαT f

λmin(P̄i)
[λmax{P̄1} + 2λmax{P̄2} + λmax{P̄3} + 2λmax{P̄4}

+2λmax{P̄5} + λmax{P̄6} + N1λmax{Q̄1} + N2λmax{Q̄2}

+h1N3λmax{R̄1} + h21N4λmax{R̄2} + h2N5λmax{R̄3} + N6λmax{S̄ }

+2λmax{L1} + 2λmax{L2} + 2λmax{G1} + 2λmax{G2} + N7λmax{T̄1}

+N8λmax{T̄2} + N9λmax{T̄3} + N10λmax{T̄4}] < k2.

This shows that the condition (3.9) holds. Therefore, the delayed neural network described by (2.1)
and delay condition as in (2.2) is said finite-time stable with respect to (k1, k2,T f , h1, h2,M). �

Remark 10. The condition (3.9) is not standard form of LMIs. To verify that this condition is equivalent
to the relation of LMI, it needs to apply Schur’s complement lemma in Lemma 3 and let Bi, i =

1, 2, 3, ..., 21 be some positive scalars with

B1 = λmin{P̄i}, i = 1, 2, 3, ..., 6,
B2 = λmax{P̄1}, B3 = λmax{P̄2}, B4 = λmax{P̄3}, B5 = λmax{P̄4},

B6 = λmax{P̄5}, B7 = λmax{P̄6}, B8 = λmax{Q̄1}, B9 = λmax{Q̄2},

B10 = λmax{R̄1}, B11 = λmax{R̄2}, B12 = λmax{R̄3}, B13 = λmax{S̄ },

B14 = λmax{L1}, B15 = λmax{L2}, B16 = λmax{G1}, B17 = λmax{G2},
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B18 = λmax{T̄1}, B19 = λmax{T̄2}, B20 = λmax{T̄3}, B21 = λmax{T̄4}.

Let us define the following condition

k1
[
B2 + 2B3 + B4 + 2B5 + 2B6 + B7 + N1B8 + N2B9 + h1N3B10

+h21N4B11 + h2N5B12 + N6B13 + 2B14 + 2B15 + 2B16 + 2B17

+N7B18 + N8B19 + N9B20 + N10B21
]

< k2B1e−αT f .

It follows that condition (3.9) is equivalent to the relations and LMIs as follows:

B1I < P̄1 < B2I, 0 < P̄2 < B3I, 0 < P̄3 < B4I, 0 < P̄4 < B5I,

0 < P̄5 < B6I, 0 < P̄6 < B7I, 0 < Q̄1 < B8I, 0 < Q̄2 < B9I,

0 < R̄1 < B10I, 0 < R̄2 < B11I, 0 < R̄3 < B12I, 0 < S̄ < B13I, (3.20)
0 < L1 < B14I, 0 < L2 < B15I, 0 < G1 < B16I, 0 < G2 < B17I,

0 < T̄1 < B18I, 0 < T̄2 < B19I, 0 < T̄3 < B20I, 0 < T̄4 < B21I,

♦1 =


♦1,1 ♦1,2 ♦1,3

∗ ♦2,2 0
∗ ∗ ♦3,3

 < 0, (3.21)

♦1,1 =



ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ1,5 ψ1,6 ψ1,7

∗ −B2 0 0 0 0 0
∗ ∗ −B3 0 0 0 0
∗ ∗ ∗ −B4 0 0 0
∗ ∗ ∗ ∗ −B5 0 0
∗ ∗ ∗ ∗ ∗ −B6 0
∗ ∗ ∗ ∗ ∗ ∗ −B7


, (3.22)

♦1,2 =



ψ1,8 ψ1,9 ψ1,10 ψ1,11 ψ1,12 ψ1,13 ψ1,14

∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


, (3.23)

♦1,3 =



ψ1,15 ψ1,16 ψ1,17 ψ1,18 ψ1,19 ψ1,20 ψ1,21

∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


, (3.24)
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♦2,2 =



−B8 0 0 0 0 0 0
∗ −B9 0 0 0 0 0
∗ ∗ −B10 0 0 0 0
∗ ∗ ∗ −B11 0 0 0
∗ ∗ ∗ ∗ −B12 0 0
∗ ∗ ∗ ∗ ∗ −B13 0
∗ ∗ ∗ ∗ ∗ ∗ −B14


, (3.25)

♦3,3 =



−B15 0 0 0 0 0 0
∗ −B16 0 0 0 0 0
∗ ∗ −B17 0 0 0 0
∗ ∗ ∗ −B18 0 0 0
∗ ∗ ∗ ∗ −B19 0 0
∗ ∗ ∗ ∗ ∗ −B20 0
∗ ∗ ∗ ∗ ∗ ∗ −B21


, (3.26)

where I ∈ Rn×n is an identity matrix, ψ1,1 = −B1k2e−αT f , ψ1,2 = B2
√

k1, ψ1,3 = B3
√

2k1, ψ1,4 =

B4
√

k1, ψ1,5 = B5
√

2k1, ψ1,6 = B6
√

2k1, ψ1,7 = B7
√

k1, ψ1,8 = B8
√

k1N1, ψ1,9 =

B9
√

k1N2, ψ1,10 = B10
√

k1h1N3, ψ1,11 = B11
√

k1h21N4, ψ1,12 = B12
√

k1h2N5, ψ1,13 =

B13
√

k1N6, ψ1,14 = B14
√

2k1, ψ1,15 = B15
√

2k1, ψ1,16 = B16
√

2k1, ψ1,17 = B17
√

2k1, ψ1,18 =

B18
√

k1N7, ψ1,19 = B19
√

k1N8, ψ1,20 = B20
√

k1N9, ψ1,21 = B21
√

k1N10.

Corollary 11. Given a positive matrix M > 0, the time-delay system described by (2.1) and delay
condition as in (2.2) is said finite-time stable with respect to (k1, k2,T f , h1, h2,M), if there exist
symmetric positive definite matrices Qi > 0, (i = 1, 2), R j > 0 ( j = 1, 2, 3), Tk > 0 (k = 1, 2, 3, 4),
Kl > 0 (l = 1, 2, 3, ..., 10), diagonal matrices S > 0, Hm > 0, m = 1, 2, 3, and matrices P1 = PT

1 ,
P3 = PT

3 , P6 = PT
6 , P2, P4, P5 and positive scalars α, Bi, 1, 2, 3, ..., 21 such that LMIs and

inequalities (3.3)–(3.8), (3.20)–(3.26).

Remark 12. If the delayed NNs as in (2.1) are choosing as B = W0,C = W1,W = W2, then the system
turns into the delayed NNs proposed in [23],

ẋ(t) = −Ax(t) + W0 f (W2x(t)) + W1g(W2x(t − h(t))), (3.27)

where 0 ≤ h(t) ≤ hM and ḣ(t) ≤ hD, it follows that (3.27) is the special case of the delayed NNs in
(2.1).

Remark 13. Replacing W0 = B,W1 = C,W2 = W, d1(t) = d(t) = h(t) and d2(t) = 0 and external
constant input is equal to zero in Eq (1) of the delayed NNs as had been done in [16], we have

ẋ(t) = −Ax(t) + B f (Wx(t)) + Cg(Wx(t − h(t))), (3.28)

then (3.28) is the same NNs as in (2.1) that (2.1) is the particular case of the delayed NNs in [16].

Remark 14. If we choose B = 0,C = 1 and g = f and constant input is equal to zero in the delayed
NNs in (2.1), then it can be rewritten as

ẋ(t) = −Ax(t) + f (Wx(t − h(t))), (3.29)

then (3.29) is the special case of the NNs as in (2.1) which has been done in [2–6, 10, 12, 13, 20].
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Remark 15. If we set B = W0,C = W1 and W = 1 and constant input is equal to zero in the delayed
NNs in (2.1), then (2.1) turns into

ẋ(t) = −Ax(t) + W0 f (x(t)) + W1 f gx(t − h(t))), (3.30)

then (3.30) is the special case of the NNs as in (2.1) which has been done in [8, 11, 24, 28]. Similarly,
if we rearrange the matrices in the delayed NNs in (2.1) and set W = 1, it shows that it is the same
delayed NNs proposed in [9, 19, 22].

Remark 16. The time delay in this work is defined as a continuous function serving on to a given
interval that the lower and upper bounds for the time-varying delay exist and the time delay function
is not necessary to be differentiable. In some proposed researches, the time delay function needs to be
differentiable which are reported in [2–6, 8–13, 15–17, 19, 20, 22–24, 28].

4. Numerical solutions

In this section, we provide numerical examples with their simulations to demonstrate the
effectiveness of our results.

Example 17. Consider the neural networks (2.1) with parameters as follows:

A = diag{7.3458, 6.9987, 5.5949}, B = diag{0, 0, 0},C = diag{1, 1, 1},

W =


13.6014 −2.9616 −0.6938
7.4736 21.6810 3.2100
0.7290 −2.6334 −20.1300

 .
The activation function satisfies Eq (2.3) with

E1 = E2 = E = diag{0, 0, 0},
D1 = D2 = D = diag{0.3680, 0.1795, 0.2876}.

By applying Matlab LMIs Toolbox to solve the LMIs in (3.4)–(3.8), we can conclude that the upper
bound of hmax without nondifferentiable µ of NNs in (2.1) which is shown in Table 1 is to compare the
results of this paper with the proposed results in [1–7,15,20]. The upper bounds received in this work
are larger than the corresponding ones. Note that the symbol ‘–’ represents the upper bounds which
are not provided in those literatures and this paper.

The numerical simulation of finite-time stability for delayed neural network (2.1) with time-varying
delay h(t) = 0.6 + 0.5|sint|, the initial condition φ(t) = [−0.8,−0.3, 0.8], we have xT (0)Mx(0) = 1.37,
where M = I then we choose k1 = 1.4 and activation function g(x(t)) = tanh(x(t)). The trajectories
of x1(t), x2(t) and x3(t) of finite-time stability for this network is shown in Figure 1. Otherwise, Figure
2 shows the trajectories of xT (t)x(t) of finite-time stability for delayed neural network (2.1) with k2 =

1.575.
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Table 1. Upper bounds of time delay h for various values of µ.

hmax Method µ = 0.1 µ = 0.3 µ = 0.5 µ = 0.9 unknown µ
0.1 [1] 0.8411 0.5496 0.4267 0.3227 -

[2] 0.9282 0.5891 - 0.3399 -
[3] 0.9985 0.6062 - 0.3905 -
[4] 1.1243 0.6768 0.5168 0.4487 -
[5] 1.1278 0.6860 0.5325 0.4602 -

Thm 1 [6] 1.2080 0.6744 0.5149 0.4482 -
Prop. 2 [6] 1.2198 0.6771 0.5218 0.4601 -
Thm 2 [6] 1.3282 0.7547 0.6341 0.5245 -

[15] 0.9291 0.5916 - 0.3413 0.3413
[20] 1.1732 0.6848 - 0.4526 0.4526

This paper - - - - 2.4989
0.5 [2] 1.0497 0.6021 - 0.6021 -

[7] 1.1313 0.6509 - - -
[4] 1.1366 0.6896 0.6243 0.6186 -
[5] 1.1423 0.7206 0.6382 0.6219 -

Thm 1 [6] 0.2106 0.6727 0.5657 0.4360 -
Prop. 2 [6] 1.2327 0.6807 0.5766 0.4864 -
Thm 2 [6] 1.3417 0.7744 0.6635 0.6221 -

[15] 1.0521 0.6053 - 0.6053 0.6053
[20] 1.3046 0.7738 - 0.7704 0.7704

This paper - - - - 2.4997

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)
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Figure 1. The trajectories of x1(t), x2(t) and x3(t) of finite-time stability for delayed neural
network of Example 17.
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Figure 2. The trajectories of xT (t)x(t) of finite-time stability for delayed neural network (2.1)
with k2 = 1.575 of Example 17.

Example 18. Consider the neural networks (2.1) with parameters as follows:

A = diag{7.0214, 7.4367}, B = diag{0, 0},C = diag{1, 1},

W =

[
−6.4993 −12.0275
−0.6867 5.6614

]
,

The activation function satisfies Eq (2.3) with

E1 = E2 = E = diag{0, 0},
D1 = D2 = D = diag{1, 1}.

As shown in Table 2, the results of the obtained as in [2,3,5,6,20] and this work, by using Matlab LMIs
Toolbox, we can summarize that the upper bound of hmax is differentiable µ of NNs in (2.1). We can see
that the upper bounds received in this paper are larger than the corresponding purposed. Similarly,
the symbol ‘–’ represents the upper bounds which are not given in those proposed and this study.

The numerical simulation of finite-time stability for delayed neural network (2.1) with time-varying
delay h(t) = 0.6 + 0.5|sint|, the initial condition φ(t) = [−0.4, 0.5], we have xT (0)Mx(0) = 0.41, where
M = I then we choose k1 = 0.5 and activation function g(x(t)) = tanh(x(t)). The trajectories of x1(t)
and x2(t) of finite-time stability for this network is shown in Figure 3. Otherwise, Figure 4 shows the
trajectories of xT (t)x(t) of finite-time stability for delayed neural network (2.1) with k2 = 0.85.
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Table 2. Upper bounds of time delay h for various values of µ.

hmax Method µ = 0.3 µ = 0.5 µ = 0.9 unknown µ
0.1 [2] 0.4249 0.3014 0.2857 -

[3] 0.4764 0.3635 0.3255 -
[5] 0.5849 0.4433 0.3820 -

Thm 1 [6] 0.5756 0.4312 0.3707 -
Prop. 2 [6] 0.5783 0.4385 0.3860 -
Thm 2 [6] 0.6444 0.5329 0.4383 -

[20] 0.5123 0.4978 0.4625 0.4625
This paper - - - 0.8999

0.5 [2] 0.5147 0.4134 0.4134 -
[3] 0.5335 0.4229 0.4228 -
[5] 0.5992 0.4796 0.4373 -

Thm 1 [6] 0.5760 0.4418 0.3922 -
Prop. 2 [6] 0.5799 0.4583 0.4085 -
Thm 2 [6] 0.6511 0.5408 0.4535 -

[20] 0.6356 0.6356 0.6356 0.6356
This paper - - - 0.8999
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Figure 3. The trajectories of x1(t) and x2(t) of finite-time stability for delayed neural network
of Example 18.
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Figure 4. The trajectories of xT (t)x(t) of finite-time stability for delayed neural network (2.1)
with k2 = 0.85 of Example 18.

Example 19. Consider the neural networks (2.1) with parameters as follows:

A =


1.7 −1.7 0
−1.3 1 −0.7
−0.7 −1 0.6

 , B =


1.5 −1.7 0.1
−1.3 1 −0.5
−0.7 1 0.6

 ,C =


0.5 −0.7 0.1
−0.3 0.1 −0.5
−0.7 0.5 0.6

 ,
W = I,

and the activation function f (x(t)) = g(x(t)) = tanh(x(t)), the time-varying delay function satisfying
h(t) = 0.6 + 0.5|sint|. With an initial condition φ(t) = [0.4, 0.2, 0.4], the solution of the neural networks
is shown in Figure 5. We can see that the trajectory of xT (t)Mx(t) = ‖x(t)‖2 diverges as t → ∞ is
shown in Figure 6. To further investigate the maximum value of T f that the finite-time stability of the
neural networks (2.1) with respect to (0.6, k2,T f , 0.6, 1.1, I). For fixed k2 = 500, by solving the LMIs
in Theorem 9 and Corollary 11, we have the maximum value of T f = 8.395.
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Figure 5. The trajectories of x1(t), x2(t) and x3(t) of finite-time stability for delayed neural
network of Example 19.
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Figure 6. The trajectories of xT (t)x(t) of finite-time stability for delayed neural network (2.1)
with k2 = 500 and T f = 8.395 of Example 19.

5. Conclusions

In this research, the finite-time stability criterion for neural networks with time-varying delays
were proposed via a new argument based on the Lyapunov-Krasovskii functional (LKF) method was
proposed with non-differentiable time-varying delay. The new LKF was improved by including triple
integral terms consisting of improved functionality of finite-time stability, including integral
inequality and implementing a positive diagonal matrix without a free weighting matrix. The
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improved finite-time sufficient conditions for the neural network with time varying delay were
estimated in terms of linear matrix inequalities (LMIs) and the results were better than reported in
previous research.
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