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Abstract: The analysis of Cerebral Angiographies are an essential tool for the assessment of the future
of patients that underwent thrombolysis after a stroke event. Many semi-qualitative visual diagnostic
scales have been developed for this purpose. Perfusion angiographies show essentially three phases:
the arterial (early), the capillary (intermediate), and venous (late) phase. We call parenchymogram the
image sequence corresponding to the capillary phase only. Unfortunately the parenchymogram is often
under exploited in practice, despite containing many pertinent hints on the quality of reperfusion. In
this paper we propose a set of methods for the extraction of the parenchymogram from raw Cerebral
Angiographies. These methods rely on basis pursuit and on the representation of images with an over-
complete basis arising from an redundant wavelet transform. We will show that the extraction of the
parenchymogram by applying the aforementioned methods on real clinical data allows us to recover
essential information for the comparison of blood flow before and after thrombolysis.
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1. Introduction

Cerebral Angiography is an invasive diagnostic and therapeutic tool for neurovascular imaging. It is
based on arterial vascular opacification using iodine contrast agents. It allows the neurointerventionnal
radiologists to navigate along the arterial tree using catheters to diagnose and treat neurovascular
diseases. It presents specificities related to acquisition and interpretation modalities.

The first specificity is the dynamical acquisition over time according to 2 planes in 2 dimensions.
While 2D acquisition can be a source of potentially misleading superimpositions and constructed
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images, the use of two orthogonal planes reduces interpretation errors. The main advantage of this
temporal dynamic acquisition in arteriography is the real-time evaluation of the evolution of the
contrast agent within the traveled vascular structures: arteries, arterioles, capillaries, parenchyma,
venules and then veins. From this evaluation, important therapeutic decisions are made in case
of abnormalities: mechanical thrombectomy, preventive embolization, coiling, in situ thrombolysis,
angioplasty, etc.

The second specificity is related to the interpretation of the images. This is carried out in immediate
procedure. The main interpretation lies in the large number of anatomical variants of the cerebral
arterial and venous vascularization. In the majority of cases, this is based on a qualitative or semi-
quantitative dynamic reading procedure of the images. The qualitative analysis is based on the presence
of stenosis, occlusion, outward bulging, the presence of early venous drainage or delayed arterial
opacification in the venous phase. The exploration of the parenchymographic phase is a fundamental
but often neglected step in cerebral arteriography. This phase represent the cerebral vascular dynamics
counterpart. Yet, delayed parenchymogram will constitute the turning point for the radiologist when
looking for vascular abnormality. Last, the parenchymogram is not subject to variation from one
healthy subject to another. Such is not the case for the other angiographic phases.

In practice, semi-quantitative analysis can be carried out based on visual diagnostic scales: Capillary
Index Score for predicting tissue viability before thrombectomy, TICI Score for vascular tree re-
constructions after thrombectomy, Raymond Scale for aneurysmal recanalization etc... Until today,
the only validated quantitative measure is the measurement the size of stenosis. Other studies have
focused on quantitatively evaluating the flow within the structures of interest by studying perfusion
in particular. Unfortunately, theses methods have not being used in clinical routine. Thus, despite
the therapeutic consequences related to the interpretation of arteriographic images, interventional
radiologists do not benefit from reliable quantitative evaluation tools. We will distinguish three sets of
images corresponding to the decomposition of the angiogram in three phases (Arterial, Parenchymo-
gram and Venous phase). These three phases rely on blood brain specific physiology : limited blood
brain barrier permeability [3], polymorphic arterial vasculature and homogenized parenchymogram.
The three phases decomposition were designed to fit the best to the radiologist reading method with
the development of the dynamic three step reading grid.

Indeed, the angiogram reading relies on heuristic dynamic three-step analysis. The first step is
the arterial phases. While analysis the Willis circle, the radiologists try to identify a slowed down
or abnormally present artery. Due to the numerous anatomical variations [4], the reading is made
simple by identifying 2 mains arteries: anterior cerebral artery and middle cerebral artery. From
then, the collaterals and distals bifurcations are analyzed looking for lack of opacification and/or
and hyperdense artery. Density of collaterals arteries is also analyzed to have an overview of the
blood supply in the ischemic area. The second step is the parenchymogram (or capillary) reading.
Whereas many anatomical variations have been described regarding the Willis circle, parenchymogram
phase is a reproducible, reliable tool to identify abnormal brain perfusion [1]. The abnormalities are
characterized by a lack of enhancement in the pathological areas. As this abnormal opacification can
be multifactorial, radiologists usually review the arterial phase in the light of the parenchymogram
phase.

The third step is the venous phase. Hemorrhagic changes and alternative diagnosis can be depicted
at this phase. Since the venous drainage is inconsistent between subject, it provides less information
than the two previous phases. Nevertheless, some slowed down arteries can still be seen at this late
phase, highly suggestive for occlusion. The third step is the venous phase. Hemorrhagic changes
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and alternative diagnosis can be depicted at this phase. Since the venous drainage is inconsistent
between subject, it provides less information than the two previous phases. Nevertheless, some slowed
down arteries can still be seen at this late phase, highly suggestive for occlusion. Frequently, due to
superposition and artifacts, the angiogram reading cannot be made this way. It relies on an analysis
of the phases altogether mixed and therefore could lead to misinterpretation or discrepancies. A
possibility to decompose the three phases in three set of images provide homogenized data cleaned
from artifact and superposition. Therefore, it facilitates the 3 steps reading grid. Nevertheless, the
utility has to be proven and mandate a clinical trial.

From a technical point of view, we will discriminate the three aforementioned phases by scale
and time of occurrence. Indeed the arterial phase is characterized by relatively small scale features
(blood vessels) in the image, and occurs at early stages; the parenchymogram phase is a large scale
phenomenon (whole organ) and appears at intermediate times; and finally the venous phase is a
small scale (blood vessel) phenomenon appearing at later stage of the perfusion angiography. In
this paper we will use a redundant base for the representation of the image that is based on a multi-
scale decomposition. This representation of the image is based on the Isotropic Undecimated Wavelet
Transform (IUWT) which was proposed in [10, 11] and used in astronomy where it is labeled “starlet
transform”, and in medicine for then analysis of retinal images [2]. One of the difficulties here is
to separate positive contributions to the initial image with the sparsest set of coefficients. In order
to achieve this we use a filter bank designed so that synthesis from positive coefficients produces a
positive image (see [10]), and we apply a basis pursuit algorithm (see [7, 10]).

The article is organised as follows: first, in section 2 we give a description of the method we
have used for the separation of scales in original images, then in section 3 we show how this method
has allowed us to obtain a proper parenchymographic and arterial/venous components on real clinical
data. In section 3 we will first give an description of the origin of the data along with a primary
medical analysis of the cases, then we will describe the pre-treatment pipeline that is applied on these
sequences of images before using the scale separation procedure. Finally, a later medical analysis of the
images is performed by using the information provided by the parenchymogram and the arterial/venous
component.

2. Separation of space scales

In this section we focus on the separation of the different scales present in the images by the
means of the isotropic undecimated wavelet transform (IUWT). The IUWT is a popular method for
the analysis, denoising and the compression of images. Initially developed for astronomy (see [11]),
it relies on the same idea of multiscale decomposition as wavelets, but lacks the decimation step
(elimination of even or odd coefficients) classically applied between each step of the decomposition.
One consequence of this is the redundancy of the representation of the image through its coefficients:
an image of N pixels will be represented with N(3M + 1) coefficients, where M is the number of levels
in the decomposition.

Let Yi, j for i ∈ J0,N1 − 1K and j ∈ J0,N2 − 1K be the (real) greyscale values of an image of size
N1 × N2, let fi for i ∈ J−a, aK be the real coefficients of a filter kernel. Let us define the vertical and
horizontal convolution operators:

( f
h
? Y)i, j =

a∑
k=−a

Yi,k fi−k , ( f
v
? Y)i, j =

a∑
k=−a

Yk, j fi−k. (2.1)
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Let us define the 2D separable kernel convolution operator:

( f ⊗ g) ? Y = f
v
? (g

h
? Y) (2.2)

Finally, in order to compute the Undecimated Wavelet Transform (UWT) of an image with Mallat’s
a trous algorithm [6, 9], we introduce the n-th level filter f (n):

f (n)
2nk = fk (2.3)

and f (n)
i = 0 for indexes i that are not a multiple of 2n. Given two analysis filter banks h and g, the

M-level UWT of an image Y is defined by the coefficients α = (αa
(M), α

h,v,d
(M) , α

h,v,d
(M−1), . . . , α

h,v,d
(1) ) which

can be obtained with the following recursive definition: set αa
(0) = Y and then, for n ∈ J0,M − 1K,

αa
(n+1) = (h̄(n)⊗ h̄(n)) ? αa

(n) , (2.4)

αh
(n+1) = (h̄(n)⊗ ḡ(n)) ? αa

(n) , (2.5)

αv
(n+1) = (ḡ(n)⊗ h̄(n)) ? αa

(n) , (2.6)

αd
(n+1) = (ḡ(n)⊗ ḡ(n)) ? αa

(n) , (2.7)

where h̄ and ḡ denote the “reversed” filters defined by h̄k = h−k (r.p. for g). The superscripts a, h, v,
and d in the above description refer respectively to approximation, horizontal, vertical and diagonal
sub-bands (see Figure 1).

Figure 1. Illustration of an undecimated wavelet transform on 2 levels and its reconstruction.
The red color indicates the image, the green colors indicates the retained coefficients, the
black color indicates intermediary coefficients that necessary for the computation of the UWT
but are not retained.

Let h̃ and g̃ be two reconstruction filters, the original image Y can be recovered from α with:

Y(n) = (h̃(n)⊗ h̃(n)) ? Y(n+1)+(h̃(n)⊗ g̃(n)) ? αh
(n+1)

+(g̃(n)⊗ h̃(n)) ? αv
(n+1) (2.8)

+(g̃(n)⊗ g̃(n)) ? αd
(n+1) .
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The original image is then recovered with: Y = Y (0). The filter bank (h, g, h̃, g̃) has to satisfy the
following condition to achieve perfect reconstruction with the above equations (see [7] for details):

H(z−1) H̃(z) + G(z−1) G̃(z) = 1 , (2.9)

where H, H̃, G, G̃ are the z-transforms of h, h̃, g, g̃, respectively.
We define Φ : α → Y as defined in (2.4)-(2.7), and W : Y → α as defined in (2.8). Clearly,

from the reconstruction condition,W is a right-inverse of Φ, hence the following mapping Π defines
a projection onto the set {α ∈ R3NM+1 | Φα = Y}:

Πα = α −W(Φα − Y) (2.10)

Using Φ as an overcomplete basis, our goal is to find the sparsest set of coefficients α that recovers the
original image i.e. Φα = Y . One difficulty is to ensure the positivity of the image that is reconstructed
from coefficients at each scale. In [10], J.-L. Starck et. al. have proposed a symmetric filter bank
satisfying the property (2.9), for which the reconstruction filters are positive:

h = (
−2
1 ,
−1
4 ,

0
6,

1
4,

2
1)/16 (2.11)

g = (
−4
−1,

−3
−8,

−2
−28,

−1
−56,

0
186,

1
−56,

2
−28,

3
−8,

4
−1)/256 (2.12)

h̃ = (
−2
1 ,
−1
4 ,

0
6,

1
4,

2
1)/16 (2.13)

g̃ = (
0
1) (2.14)

where the above greyed superscripts denote the array indexes. With the above synthesis filters, if the
coefficients α are all positive, the image obtained from any subset of coefficient will be positive, which
is particularly useful when separating scales. Our goal is hence to solve the basis pursuit problem:

min
αΦ=Y
α≥0

|α|1 (2.15)

which can be recast as:

min
αΦ=Y
|α|1 + ια≥0 (2.16)

where ια≥0 is the indicator of the cone of positive values of α. Denoting J(α) = |α|1 + ια≥0, we have that
(see ref for details) :

ProxλJ(α) = (α − λ)+ (2.17)

The (projected) iterative soft thresholding algorithm 1 proposed in [12] aims at solving the above
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problem. It is based on the proximal algorithm with a projection step for the constraint Φα = Y .
Data: The image Y , a number of levels M, a number of iterations Niter, a sequence (λi)i=0..Niter

Result: The coefficients α

for i = 0 . . .Niter − 1 do
/* Projection step */

Compute Φαi using the inverse UWT
ComputeW(Φαi − Y) using the UWT
Compute the projection Παi = αi −W(Φαi − Y)
/* Proximal step */

αi+1 = Proxλi J(Παi) = (Παi − λi)+

end
Algorithm 1: The projected iterative threshold algorithm proposed in (ref).

Note that in this algorithm the given projection is not an orthogonal projection sinceW is a right
inverse of Φ (ensured by the condition (2.9)) but not its pseudo-inverse. This would requireWΦ to be
Hermitian, which in terms of the filter bank writes :

G(z−1)G̃(z) = G(z)G̃(z−1) (2.18)

H(z−1)H̃(z) = H(z)H̃(z−1) (2.19)

H(z−1)G̃(z) = G(z)H̃(z−1) (2.20)

which cannot be achieved with a set of symmetric FIR filters (see appendix for the proof in one
dimension of space).

3. Results

In the following section we show the result of the method described in the previous section on the
separation of the different morphological scales involved in the perfusion (i.e. arteries, veins and the
parenchyma).

3.1. Data acquisition

All anonymized data were acquired from anonymized patients (Patient 1 and Patient 2) referring for
at the emergency department for cerebral thrombus on the middle cerebral artery requiring mechanical
thrombectomy. For the 2 anonymized patient, informed consent was obtained, and study was approved
by the local ethics committee. Patient 1 is a 50 y.o male patient, referring for right hemicorporeal motor
impairment. Patient 2 is a 67 y.o female referring for left hemicorporeal paresthesia.

For each patient, a cerebral angiography was performed using the same methodology: A Newton
TERUMO catheter (n RFEH15010M), 5 French, was inserted through the femoral artery to the internal
carotid artery and the radiological study was performed on a conventional antero-posterior view and
left-right view with an Axium - Artis biplane sensor (Siemens Healthineers, Erlagen, Germany). The
acquisition parameters were a voltage of 76kV and an amperage of 120mA, collimation of 4.8 cm, and
a rate of 3 images per second). The contrast agent (Iomeron 300mg/ml, Iomeprol, BRACCO, Italy),
was injected into the internal carotid artery at a rate of 4 cc/sec, at a dose of 8 mL, using a MEDRAD
automatic injector (Mark V pro VIS, Bayer Healthcare, USA). Contrast agent are used to opacified the
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brain vasculature: injection is made in arterial phase to have access to the arterial tree. The, the agent
process into the capillaries and reflects the parenchymal phase. Finally, the venous drainage is visible.

An X-Ray acquisition was performed before and after mechanical thrombectomy. Dynamic X-rays
acquisitions were performed over time: 2 images per sec during 20 seconds after intra arterial injection
resulting in a set of 40 images from arterial phase, parenchymal phase and then venous phase. The
data were then extracted using Maincare PACS station in DICOM files and then processed using our
algorithms.

3.2. Primary medical analysis of the images

The primary analysis was performed on real time reading. The site of occlusion was determined
using heuristic method based on the defect from expected arterial vasculature. Then the parenchymal
phase was analyzed to assess abnormal hypodensity in a brain area expected to be opacified. Latter
opacification was also recorded as an indirect sign of hypoperfusion. Finally, the venous phase was
used to assess delayed venous drainage as another indirect sign for occlusion.

After removing the thrombus from the cerebral middle artery using mechanical thrombectomy, the
same 3 step analysis was performed to assess complete filling of all of the expected vascular territory.
The speed of the filling was also qualitatively evaluated in order to evaluate the vascular restitution and
its consequences on brain perfusion.

In the two patients, same findings were identified. Before mechanical thrombectomy, arterial
vasculature was impaired at the site of occlusion (proximal middle cerebral artery). No parenchymal
phase nor venous opacification were visible in the corresponding brain territory. After mechanical
thrombectomy, arterial vasculature was restituted and both parenchymal phase and venous drainage
were identified. Filling speed and venous drainage were similar as expected.

The results of the mechanical thrombectomy was scored using an established reading grid: the TICI
score. This qualitative and semi quantitative evaluation was performed by the neurointerventionnal
radiologist.

3.3. Pre-treatment

A pre-treatment is applied to these sequences of images in order to obtain proper opacification
maps. A summary of this procedure is described in Figure 2. One crucial step is is the rigid alignment
of the time sequences in order to compensate for the patient’s motion during the aquisition. This
rigid registration is obtained from a modified version of the images that show only the skull contour
obtained from a simple thresholding of the initial images. The alignement procedure is based on the
phase-correlation method, involving the Fourier-Mellin transfom for the estimation of the rotation.
This phase-corellation pipeline has been developped in [8] and, once refined, allows for a sub-pixel
alignement of the images. We follow the same procedures as in [8] to estimate the alignement
parameters (translation, rotation and scale) on the skull contours. The initial sequence of images is
then aligned and a subtraction with the initial image is applied in order to reveal the opacifiation of the
valcular structures only.

While the rigid alignment compensates for the patients motion in the plane of aquisition, it cannot
take into account any rotation in a plane orthogonal to the plane of aquisition. Hence some undesired
artifacts remain in the final images that reveal anatomical features of the skull. After subtraction, only
positive values are supposed to appear since no pixel should appear brighter during perfusion than
before perfusion. Finally an affine transform is applied to the pixel values in order to obtain maps of
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opacification rate instead of raw subtracted values of illumination.
The Figure 3 shows a sample from a sequence of 82 images obtained by the procedure described

above (patient 1, frontal view, post-thrombolysis). We can clearly see the different perfusion
components: the first image essentially reveals the arteries, the opacification of the parenchyma
(capillary flow) can be seen on the second image, and the veins are shown in the third image. Our
goal for the rest of the paper is to use the mathematical methods introduced in section 2 in order to
separate these three perfusion phases.

Figure 2. Illustration of the pre-treatment pipeline.

Figure 3. Example of a sequence of images obtained after the application of the pre-
treatment pipeline.

3.4. Separation of perfusion components

Once the above described post-treatment is applied on the raw data, we use the algorithm detailed
in section ref, with the goal of separating small scale features (blood vessels) and the large scale
(parenchym perfusion) features in the images sequences. The Figures 4 and 5 show the separation of
these two components on the frontal and sagittal views before and after thrombolysis for respectively
Patient 1 and Patient 2 at the time of maximal capillary perfusion (between arterial perfusion and
venous drainage). The small scale component (middle column) is obtained by a back-projection
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(through Φ) of the details coefficients (αh
i , α

v
i , α

d
i )i=1..6 on 6 levels obtained through the basis pursuit

algorithm described in section 2. The large scale (right column) is simply the last approximation
coefficient array αa

6. The fact that α is projected on the set of constraints {Φα = Y} ensures that, by
summing of the small scale and the large scale image, we recover is the initial image (left column).

Figure 4. Scale separation on Patient 1 at the time of maximal capillary perfusion. The
two first rows (r.p. two last rows) show the front view (r.p. sagittal view) before and after
thrombolysis. The left column shows the inital images, the middle column shows the small
scale components, the right column show the large scale components.
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Figure 5. Scale separation on Patient 2 at the time of maximal capillary perfusion. The
two first rows (r.p. two last rows) show the front view (r.p. sagittal view) before and after
thrombolysis. The left column shows the inital images, the middle column shows the small
scale components, the right column show the large scale components.

3.5. Posterior medical analysis of the processed images

The Figure 4 illustrates the angiogram before and after successful mechanical thrombectomy for
Patient 1. The even lines correspond to the pathological condition and the odd lines to the images
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after successful mechanical thrombectomy. The black arrow illustrates the lack of enhancement
of the impaired ischemic area that is reperfused on the final set of post therapeutic images. The
parenchymogram phase can be used as a confirmation of the normal findings, nevertheless the
retrograde opacification of the external carotid artery has to be considered when interpretating the
parenchymogram. It is in agreement with the reading methodology that includes the three phases
analysis to overcome the artifacts that can be misinterpreted using only one of the three phases.

The Figure 5 illustrates another set of images from Patient 2. On the arterial and venous phases
form the pretreatment set of images it is difficult to identify pathological ischemic area. Whereas
on the parenchymogram phase, a lack of enhanced area is easily depicted (grey arrow). The
findings are similar on the post treatment acquisition. The perfusion seems to be better on the post
treatment parenchymogram whereas still confusing at the arterial and venous phases. Indeed, it could
be misinterpreted as a superposition arising from the external carotid artery. On the light of the
parenchymal results, the two others phases provide supplementary medical information that were not
initially identified.

4. Conclusion

In this article we have shown that basis pursuit in the context of undecimated wavelet
transforms yield interesting applications for the analysis of angiographic sequences. In particular
the discrimination of the arterial/venous and the capillary (or parenchymographic) phases with a scale
criterion can be very efficient. Further improvements of this method (for instance by exploiting the time
dynamics of each phase) should lead to better results and are currently under investigation. Our long
term goal is to introduce physiologically-driven image representations that are both computationally
tractable and that capture in the sparsest way possible the essential information for the medical experts.

By seeking the sparsest representation of angiograms we also set the scene for the use of statistical
learning for the detection of subtle anomalies in a patient, which would lead to improve the existing
qualitative scoring methods for the prediction of the patient state after thrombolysis.

In a near future we will consider applying this type of methodology to other organs, such as heart,
kidney or liver angiographies. We expect each case to require a different pre-treatment in order
to take into acocunt the specificity of each case. For instance, coronarographies may require non-
rigid registration before any substraction is applied in order to compensate for the large mechanical
deformations of the heard during the aquisition (this may even require the use of a biomechnical model
of the heart).
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Appendix

In this appendix we give further details on the exact reconstruction condition and pseudo-inverse
condition for FIR filters bank, restricting the study to one dimensional transforms on one level (for the
sake of simplicity). We define the convolution of y with a Finite Impulse Response (FIR) filter h by :

( f ? y)i =

a∑
k=−a

fk yi−k (4.1)

we assume that y is extended by periodicity (i.e. yi+N = yi). The discrete Fourier transform of f writes:

ŷ j =

N−1∑
k=0

yk e
−2πi jk

N (4.2)
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hence :

( f̂ ? y) j =

N−1∑
k=0

 a∑
l=−a

fl yk−l

 e
−2πi jk

N =

 a∑
l=−a

fl e
−2πi jl

N

 N−1∑
k=0

yk e
−2πi jk

N

 (4.3)

If we define the z-transform of ( fl)l=−a,..a as :

F(z) =

a∑
l=−a

fl zl (4.4)

and if we denote z j = e
−2πi j

N , we then have :

( f̂ ? y) j = F(z j) ŷ j (4.5)

Let us consider a 1-Level UWT with kernels (h, g, h̃, g̃). The analysis writes :

αd = ḡ ? y , αa = h̄ ? y , (4.6)

where ḡ (r.p. h̄) is the reversed filter of g (r.p. h), i.e. ḡl = g−l. Note that the z-transform of a reversed
filter is the conjugate of the z-transform of the said filter. The synthesis writes :

ỹ = g̃ ? αd + h̃ ? αa (4.7)

Perfect reconstruction happens when ỹ = y, in other words, when :

y = g̃ ? ḡ ? y + h̃ ? h̄ ? y (4.8)

which, in the Fourier space writes :

ŷ j =
(
G̃(z j)Ḡ(z j) + H̃(z j)H̄(z j)

)
ŷ j (4.9)

hence perfect reconstruction is achieved if and only if, for j = 1..N − 1:

G̃(z j)Ḡ(z j) + H̃(z j)H̄(z j) = 1 , (4.10)

which, since Ḡ(z j) = G(z j) = G(z̄ j) = G(z−1
j ) (since |z j| = 1), leads to the perfect reconstruction

condition:
G̃(z j)G(z−1

j ) + H̃(z j)H(z−1
j ) = 1 . (4.11)

Denoting Φ the synthesis operator andW the analysis operator, we clearly have that ΦW = Id, which
means that W is a right-inverse of Φ. Because there is no decimation step in this analysis/synthesis
process, there is no aliasing condition to be satisfied here. Let us seek the required conditions that need
to be satisfied so thatW is the pseudo-inverse of Φ. The only additional condition we need to have is
thatWΦ is Hermitian. We have :

WΦ

(
αd

αa

)
=

(
ḡ ? g̃ ? αd + ḡ ? h̃ ? αa

h̄ ? g̃ ? αd + h̄ ? h̃ ? αa

)
(4.12)

Then, in the Fourier space we have :

F

(
WΦ

(
αd

αa

))
j

=

(
Ḡ(z j)G̃(z j) Ḡ(z j)H̃(z j)
H̄(z j)G̃(z j) H̄(z j)H̃(z j)

) (
α̂d

j

α̂a
j

)
(4.13)
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Hence,WΦ is Hermitian if and only if the matrix (again we exploit the fact that (Ḡ(z) = G(z−1) and
F̄(z) = F(z−1) for |z| = 1) : (

G(z−1
j )G̃(z j) G(z−1

j )H̃(z j)
H(z−1

j )G̃(z j) H(z−1
j )H̃(z j)

)
(4.14)

is Hermitian, which leads to the following conditions:

G(z−1
j )G̃(z j) = G(z−1

j )G̃(z j) (4.15)

H(z−1
j )H̃(z j) = H(z−1

j )H̃(z j) (4.16)

H(z−1
j )G̃(z j) = G(z−1

j )H̃(z j) (4.17)

We now restrict our study to symmetric filters, which satisfy the property : F(zi) = F(zi) =

F(z−1
i ) = F(zi). In this case, the two first conditions (4.15) and (4.16) are satisfied automatically.

Hence, from (4.11) and (4.17) for symmetric FIR, W is the pseudo-inverse of Φ if and only if, for
j = 0..N − 1 :

G̃(z j)G(z j) + H̃(z j)H(z j) = 1 , (4.18)

G(z j)H̃(z j) − H(z j)G̃(z j) = 0 . (4.19)

Let m be the maximum width of the stencil of the filter bank, if we consider that N > 2m (which is
usually the case in practice: we chose stencils much smaller than the image size), the above expression
can be recast as equations on Laurent polynomials

G̃G + H̃H = 1 , (4.20)

GH̃ − HG̃ = 0 , (4.21)

The following theorem states that it is not possible to find a symmetric FIR filter bank that satisfy both
the exact reconstruction condition, and for which the analysis operator is the pseudo-inverse of the
synthesis operator.

Theorem. Let H, H̃, G, G̃ be symmetric Laurent polynomials (i.e. Q(X) = Q(X−1) for any such
polynomial). If the equations (4.20)-(4.21) are satisfied, then H, H̃, G, G̃ are constant.

Proof. Since H, H̃, G, G̃ are symetric we can define H , G, H̃ , H̃ ∈ R[X] by : H(X) = H(X + X−1),
G(X) = G(X + X−1), H̃(X) = H̃(X + X−1), G̃(X) = G̃(X + X−1). Then equations (4.20) and (4.21) imply:

(G + iH)(G̃ − iH̃) = 1

which means that the polynomials G + iH , G̃ + iH̃ ∈ C[X] are inverses of each other and are therefore
constant. SinceH , G, H̃ , H̃ ∈ R[X], each of these polynomials is constant. �
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