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1. Introduction

Using the hyperlink structure of web pages, Google’s PageRank becomes one of the most
successful methods for measuring the importance of each page [1]. From the viewpoint of numerical
computations, the core of PageRank problems can be regarded as the problem of solving a dominant
eigenvector of the Google matrix A:

Ax = x, A = αP + (1 − α)veT, ‖x‖1 = 1, (1.1)

where x ∈ Rn is the PageRank vector, α ∈ (0, 1) is a damping factor, e = [1, 1, · · · , 1]T ∈ Rn, v = e/n,
P ∈ Rn×n is a column-stochastic matrix, see [2] for details.
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As an iterative method based on matrix-vector products, the power method is widely used for
computing PageRank [1, 3]. However, when the damping factor α is close to 1, the power method
suffers from slow convergence such that some accelerated techniques are developed. For example,
based on the inner-outer iteration method proposed by Gleich et al. [4], Tian et al. [5] developed a
general inner-outer iteration method for solving PageRank problems. Using the trace of the Google
matrix A, Tan [6] introduced an extrapolation strategy and presented the power method with
extrapolation process based on trace (PET) for improving the computation of PageRank problems.

On the other hand, Krylov subspace methods based on the Arnoldi process have been applied to
compute PageRank problems. Golub and Greif [7] proposed an Arnoldi-type method by using the
singular value decomposition (SVD), where the known largest eigenvalue 1 is considered as a shift such
that the computation of the largest Ritz value is avoided. Wu and Wei [8] developed a Power-Arnoldi
algorithm by periodically combining the power method with the thick restarted Arnoldi algorithm [9].
Hu et al. [10] proposed a variant of the Power-Arnoldi algorithm by employing the PET method.

Recently, the idea of introducing weighted inner products into an Arnoldi process has successfully
been applied to many academic fields [11,12]. Yin et al. [13] proposed an adaptive generalized Arnoldi
(GArnoldi) method for computing PageRank by applying a weighted inner product into an Arnoldi-
type method. Wen et al. [14] developed an adaptive Power-GArnoldi algorithm by making use of the
power method and the adaptive GArnoldi method together. Motivated by these works, with the aim
of accelerating the adaptive GArnoldi method, a new method is proposed by periodically knitting the
PET method with the adaptive GArnoldi method for PageRank problems. The new method is denoted
as GArnoldi-PET method. Convergence performance of our proposed method is studied in detail, and
numerical results are used to show its feasibility and effectiveness.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the PET
method and the adaptive GArnoldi method for PageRank problems. In Section 3, we propose the
GArnoldi-PET method and discuss its convergence. In Section 4, numerical results and comparisons
are reported. Finally, conclusions are given in Section 5.

2. Previous work

In this section, we give simple introductions of the PET method and the adaptive GArnoldi method
for computing PageRank.

2.1. The PET method for computing PageRank

Here, we first give the algorithmic version of the PET method for PageRank problems as follows,
see [6] for more details.

Algorithm 1. The PET method

Input: an initial guess x(0), a prescribed tolerance tol, a positive integer m1, r = 1 and k = 0.
Output: PageRank vector x.
1. Compute the number of dangling nodes l and µ = 1 + α

(
l
n − 1

)
.

2. Run the power iteration m1 steps to obtain x(m1−1) and x(m1).
2.1. for i = 1 : m1
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2.2. x(i) = Ax(i−1);
2.3. r = ‖x(i) − x(i−1)‖2;
2.4. x(i) = x(i)/‖x(i)‖1;
2.5. if r ≤ tol, break; endif
2.6. end
3. Use the extrapolation scheme based on x(m1−1), x(m1) and µ:
3.1. x(0) = x(m1) − (µ − 1)x(m1−1);
3.2. x(0) = x(0)/‖x(0)‖1;
3.3. r = ‖x(0) − x(m1)‖2;
3.4. if r ≤ tol, break; else, goto step 2; endif

Now, some illustrations of Algorithm 1 are given as follows.

• In step 1, the parameter µ is the trace of the Google matrix A.
• In step 2, the power method is run m1 steps, which means the extrapolation technique is not

employed to the power method in each iteration, but is used every m1 power iterations.
• In step 3, we can see that the extrapolation strategy based on x(m1−1), x(m1) and µ is easy to

implement as given in step 3.1.

2.2. The adaptive GArnoldi method for computing PageRank

As described in [13], let G = (gi j) be an n × n symmetric positive definite (SPD) matrix, then the
GArnoldi process based on a weighted inner product is presented as Algorithm 2.

Algorithm 2. The GArnoldi process

Input: an initial vector v1, and the steps m of GArnoldi process, a SPD matrix G.
Output: Vm, Hm.
1. Compute ṽ1 = v1/‖v1‖G.
2. for j = 1, 2, · · · ,m
3. q = Ãv j;
4. for i = 1, 2, · · · , j
5. hi, j = (q, ṽi)G, q = q − hi, j̃vi;
6. end
7. h j+1, j = ‖q‖G;
8. if h j+1, j = 0, break; endif
9. ṽ j+1 = q/h j+1, j;
10. end

In Algorithm 2, (·, ·)G is a G-inner product defined as (x, y)G = xTGy,∀x ∈ Rn, y ∈ Rn, and ‖ · ‖G is a
G-norm defined by

‖x‖G =
√

(x, x)G =
√

xTGx =
√

xTQTDQx =

√√
n∑

i=1

di(Qx)2
i , ∀x ∈ Rn, (2.1)
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where Q ∈ Rn×n is an orthogonal matrix, D = diag{d1, d2, · · · , dn} is a n × n diagonal matrix with
di > 0, i = 1, 2, · · · , n, and G = QTDQ is a diagonalized decomposition of G. Let em ∈ R

m be the m-th
co-ordinate vector, then the GArnoldi process has the following relations [13]

AVm = VmHm + hm+1,mvm+1eT
m = Vm+1Hm+1,m, VT

mGAVm = Hm, Hm+1,m =

(
Hm

hm+1,meT
m

)
,

where the matrix Vk = [̃v1, ṽ2, · · · , ṽk] (k = m,m + 1) is an n × k G-orthogonal matrix, Hm = (hi j) is an
m × m Hessenberg matrix.

From Algorithm 2, it is obvious that different SPD matrices G will lead to different GArnoldi
methods. Since every SPD matrix can be diagonalized, for simplicity, we let G = diag{d1, d2, · · · , dn},
di > 0, i = 1, 2, · · · , n. It is seen that in each outer iteration of the GArnoldi method, we hope
to find a vector v satisfying min‖Av − v‖G, where v is taken from a Krylov subspace Km(A, v1) =

span(v1, Av1, · · · , Am−1v1). Denote r = Av− v , [r1, r2, · · · , rn]T, it has min‖Av− v‖G = min
√∑n

i=1 dir2
i ,

which leads to a weighted least squares problem where di is actually the weight for the i-th component
of residual ri, i = 1, 2, · · · , n. In order to speed up the computation of PageRank problems, Yin et
al. [13] changed the weights adaptively according to the changing of the current residual corresponding
to the approximate PageRank vector. Therefore, one choice of the matrix G is that

G = diag{d1, d2, · · · , dn}, di = |ri|/‖r‖1, i = 1, 2, · · · , n,

where r is the residual vector computed by the last calculation, and
∑n

i=1 di = 1. And the algorithmic
version of the adaptive GArnoldi algorithm for computing PageRank is presented as Algorithm 3.

Algorithm 3. The adaptive GArnoldi method

Input: an initial vector x(0), the steps m of the GArnoldi process, a prescribed tolerance tol.
Output: PageRank vector x.
1. Set G = I.
2. for i = 1, 2, · · · , until convergence,
3. Run Algorithm 2 for computing Vm, Vm+1 and Hm+1,m.
4. Compute singular value decomposition UΣS T = Hm+1,m − [I; 0]T.
5. Compute x = Vmsm, r = σmVm+1um.
6. if ‖r‖2 ≤ tol, break; endif
7. Set G = diag{|r|/‖r‖1}.
8. end

Note that, in step 5 of Algorithm 3, sm and um denote the right and left singular vector of Hm+1,m −

[I; 0]T associated with the minimal singular value σm, respectively.

3. The GArnoldi-PET method for computing PageRank

In order to accelerate the computation of PageRank problems, we develop a new method by
combining the PET method with the adaptive GArnoldi method. The new method is called
GArnoldi-PET method. Here we first describe the construction of the GArnoldi-PET method, and
then discuss its convergence.

AIMS Mathematics Volume 6, Issue 1, 893–907.
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3.1. The GArnoldi-PET method

As described in the subsection 2.1, based on the trace of the Google matrix A, an extrapolation
strategy has been presented to speed up the convergence of the power method. Numerical experiments
in [6] have illustrated that the PET method has a faster convergence than the power method when the
damping factor α is close to 1. On the other hand, since the Arnoldi method is more computationally
intense than applying the same number of iterations of the power method [8], thus it is natural to
consider using the extrapolation strategy based on trace and the adaptive GArnoldi method together.

Similar to the construction of the Power-Arnoldi algorithm [8], the mechanism of our proposed
method can be presented as follows: Given a unit positive vector x(0), and an approximate PageRank
vector is obtained by iterating the adaptive GArnoldi method (Algorithm 3) for a few times (e.g., 2–3
times). If this approximate PageRank vector does not satisfy our prescribed tolerance, then we run the
PET method to obtain another approximate vector with the resulting vector as the initial guess. If this
approximate PageRank vector still can not satisfy our accuracy, then we return to Algorithm 3 with the
new approximation as the starting vector. Repeating the above procedure until the described accuracy
is achieved.

There is a problem about how to control the conversion between the PET method and the adaptive
GArnoldi method. Many strategies have been developed to deal with this problem. Here, as given
in [8], three parameters β, restart, maxit are used to control the procedure. Let τ(curr) be the residual
norm of the current iteration, and τ(prev) be the residual norm of the previous iteration. Computing
ratio = τ(curr)/τ(prev), if ratio > β, then restart = restart + 1. If restart ≥ maxit, then we terminate the
PET method and trigger the adaptive GArnoldi method. The specific implementation of the GArnoldi-
PET method is given as follows.

Algorithm 4. The GArnoldi-PET method

Input: an initial guess x(0), the dimension of the Krylov subspace m, a prescribed tolerance tol, the
parameters β, maxit and m1. Set k = 1, restart = 0, τ = 1, τ0 = τ, τ1 = τ.
Output: PageRank vector x.
1. Compute the number of dangling nodes l and µ = 1 + α

(
l
n − 1

)
.

2. Run Algorithm 3 for a few times (2–3 times): iterate all steps of Algorithm 3 for the first run and
steps 2–8 otherwise. If the approximation is satisfactory, then stop, else continue.
3. Run the modified PET method with the resulting vector x̃1 as the initial guess, where x̃1 is obtained
from the adaptive GArnoldi method:
3.1. restart = 0;
3.2. while restart < maxit & τ > tol
3.3. ratio = 0; τ0 = τ; τ1 = τ;
3.4. while ratio < β & τ > tol
3.5. x(k) = Ax(k−1); x(k) = x(k)/‖x(k)‖1;
3.6. r = x(k) − x(k−1); τ = ‖r‖2;
3.7. if mod(k,m1) = 0
3.8. x(0) = x(k) − (µ − 1)x(k−1); x(0) = x(0)/‖x(0)‖1;
3.9. r = x(0) − x(k); τ = ‖r‖2; x(k) = x(0);
3.10. if τ ≤ tol, break; endif
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3.11. end
3.12. ratio = τ/τ0; τ0 = τ; k = k + 1;
3.13. end
3.14. if τ/τ1 > β, restart = restart + 1; endif
3.15. end
3.16. if τ ≤ tol, stop, else set G = diag

{
|r|
‖r‖1

}
and goto step 2.

Now, some remarks about the GArnoldi-PET method are given as follows.

• As shown in the step 3.16, the matrix G is adaptively changed according to the current residual.
• According to the construction of the GArnoldi-PET method, it is natural to treat the PET method

as an accelerated technique for the adaptive GArnoldi method.
• In each iteration of the GArnoldi-PET method, the storage requirements are approximately m + 1

length−n vectors in the adaptive GArnoldi method and two vectors in the PET method. Its main
computational cost consists of m matrix-vector products, m(m+1)

2 inner products in the adaptive
GArnoldi method and one matrix-vector product in the PET method.

3.2. Convergence analysis of the GArnoldi-PET method

Here we discuss the convergence analysis of the GArnoldi-PET algorithm. Particularly, we focus
on the procedure when turning from the PET method to the adaptive GArnodli method.

Assume σ(A) denote the set of eigenvalues of the Google matrix A, and its eigenvalues are
arranged as 1 = |λ1| > |λ2| ≥ · · · ≥ |λn|. Let Lm−1 be the set of polynomials of degree not exceeding
m − 1, and Km(A, v1) be a Krylov subspace. If (λi, ϕi), i = 1, 2, · · · , n are the eigenpairs of A, and
(̃λ j, ỹ j), j = 1, 2, · · · ,m are the eigenpairs of Hm, then λ̃ j is often used to approximate λ j, and
ϕ̃ j = Vmỹ j is applied to approximate ϕ j in the standard Arnoldi method. However, instead of using
Ritz vectors ϕ̃ j as approximate eigenvectors, Jia [15] proposed a new strategy such that for each λ̃ j, a
unit norm vector ũ j ∈ Km(A, v1) satisfying the condition∥∥∥(A − λ̃ jI )̃u j

∥∥∥
2

= min
u∈Km(A,v1)

∥∥∥(A − λ̃ jI)u
∥∥∥

2
(3.1)

is used to approximate ϕ j. Here ũ j is called a refined approximate eigenvector corresponding to λ j.
The convergence of the refined Arnoldi method is given as follows.
Theorem 1 [15]. Assume that v1 =

∑n
i=1 γixi with respect to the eigenbasis {xi}i=1,2,··· ,n in which ‖xi‖2 =

1, i = 1, 2, · · · , n and γi , 0, let S = [x1, x2, · · · , xn], and

ξ j =
∑
i, j

∣∣∣λi − λ̃ j

∣∣∣ · |γi|

|γ j|
.

Then ∥∥∥(A − λ̃ jI )̃u j

∥∥∥
2
≤
σmax(S )
σmin(S )

(∣∣∣λ j − λ̃ j

∣∣∣ + ξ j min
p∈Lm−1,p(λ j)=1

max
i, j
|p(λi)|

)
,

where ũ j is a refined approximate eigenvector as above, σmax(S ) andσmin(S ) are the largest and smallest
singular value of the matrix S , respectively.

Before analyzing the convergence of the GArnoldi-PET algorithm, some useful conclusions are
introduced as follows.

AIMS Mathematics Volume 6, Issue 1, 893–907.



899

Lemma 1 [14]. Let G = diag{d1, d2, · · · , dn}, di > 0, 1 ≤ i ≤ n, be a diagonal matrix. Then for any
vector x ∈ Rn, according to the definitions of the G-norm and the 2-norm, it has

min
1≤i≤n

di · ‖x‖22 ≤ ‖x‖
2
G ≤ max

1≤i≤n
di · ‖x‖22 . (3.2)

Lemma 2 [10]. Let v1 be the initial vector for the PET method, which is from the previous adaptive
GArnoldi method. Then the PET iteration in Algorithm 4 produces the vector

vnew
1 = ηT kv1,T = Am1−1[A − (µ − 1)I], (3.3)

where k ≥ maxit, η is the normalizing factor, µ is the trace of the matrix A, m1 is a given number, T is
called as the iterative matrix and I is an n × n identity matrix.
Theorem 2 [16]. Assume that the spectrum of the column-stochastic matrix P is {1, λ2, · · · , λn}, then
the spectrum of the matrix A = αP + (1 − α)veT is {1, αλ2, · · · , αλn}, where 0 < α < 1, v is a vector
with nonnegative elements such that eTv = 1.
Theorem 3 [17]. Let P be an n × n column-stochastic matrix. Let α be a real number such that
0 < α < 1. E is the n × n rank-one column-stochastic matrix E = veT, where e is the n-vector of all
ones and v is an n-vector whose elements are all non-negative and sum to 1, A = αP + (1−α)veT is the
n × n column-stochastic matrix, then its dominant eigenvalue λ1 = 1, |λ2| ≤ α.

In the next cycle of the GArnoldi-PET method, vnew
1 will be used as the initial vector for an m-step

GArnoldi process, so that the new Krylov subspace

Km(A, vnew
1 ) = span(vnew

1 , Avnew
1 , · · · , Am−1vnew

1 )

is constructed. The following theorem shows the convergence of the GArnoldi-PET method.
Theorem 4. Assume that v1 =

∑n
i=1 γixi with respect to the eigenbasis {xi}i=1,2,··· ,n in which ‖xi‖2 = 1, i =

1, 2, · · · , n and γ1 , 0. Let G = diag{d1, d2, · · · , dn}, di > 0, i = 1, 2, 3, · · · , n, S = [x1, x2, x3, · · · , xn],
and

ξ =

n∑
i=2

|λi − 1|
|γi|

|γ1|
, ζ =

√
max1≤i≤n di

min1≤i≤n di
.

Then

‖(A − I)u‖G ≤
ξ · ζ

σmin(S )
·

(
αm1−1(α − µ + 1)

2 − µ

)k

· min
p∈Lm−1,p(λ1)=1

max
λ∈σ(A)/{λ1}

|p(λ)| ,

where u is taken from the Krylov subspace Km(A, v1), µ = 1 + α
(

l
n − 1

)
with the number of dangling

nodes l, k ≥ maxit, σmin(S ) is the smallest singular value of the matrix S .

Proof. Let {1, π2, · · · , πn} be the eigenvalue set of the matrix P, then {1, λ2 = απ2, · · · , αn = απn} is the
eigenvalue set of the matrix A by Theorem 2. According to (3.3), we have

T xi =

{
(2 − µ)xi, i = 1
λm1−1

i (λi − µ + 1)xi, i = 2, 3, · · · , n
.

Let ϕi (i = 1, 2, · · · , n) be eigenvalues of the iterative matrix T . Then, we have

ϕi =

{
2 − µ, i = 1
λm1−1

i (λi − µ + 1), i = 2, 3, · · · , n
. (3.4)
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Since µ = 1 +α
(

l
n − 1

)
with the number of dangling nodes l, it has 1− µ = α

(
1 − l

n

)
≥ 0. On the other

hand, according to Theorem 3 and 1 = |λ1| > |λ2| ≥ · · · ≥ |λn|, it has |λi| ≤ α and

−α + µ − 1 ≤ −α + 1 − µ ≤ λi + 1 − µ ≤ α + 1 − µ, i = 2, · · · , n.

Hence, we obtain |λi − µ + 1| ≤ α − µ + 1, i = 2, · · · , n, and

|ϕi| ≤ α
m1−1(α − µ + 1) < 2 − µ, i = 2, 3, · · · , n. (3.5)

For any u ∈ Km(A, vnew
1 ), there exists q(x) ∈ Lm−1 such that

‖(A − I)u‖G = min
q∈Lm−1

‖(A − I)q(A)vnew
1 ‖G

‖q(A)vnew
1 ‖G

= min
q∈Lm−1

‖(A − I)q(A)ηT kv1‖G

‖q(A)ηT kv1‖G

= min
q∈Lm−1

‖(A − I)q(A)T kγ1x1 +
∑n

i=2(A − I)q(A)T kγixi‖G

‖
∑n

i=1 q(A)T kγixi‖G

= min
q∈Lm−1

‖
∑n

i=2(λi − 1)q(λi)ϕk
i γixi‖G

‖
∑n

i=1 q(λi)ϕk
i γixi‖G

, (3.6)

where we used the facts that λ1 = 1, Axi = λixi,T xi = ϕixi, i = 1, 2, · · · , n. According to (3.2) and
(3.5), for the numerator of (3.6), it has∥∥∥∥∥∥∥

n∑
i=2

(λi − 1)q(λi)ϕk
i γixi

∥∥∥∥∥∥∥
G

≤
√

max
1≤i≤n

di ·

∥∥∥∥∥∥∥
n∑

i=2

(λi − 1)q(λi)ϕk
i γixi

∥∥∥∥∥∥∥
2

≤
√

max
1≤i≤n

di ·

n∑
i=2

|λi − 1| · |ϕk
i | · |γi| · |q(λi)|

≤
√

max
1≤i≤n

di ·

n∑
i=2

[αm1−1(α − µ + 1)]k · |λi − 1| · |γi| · |q(λi)|. (3.7)

For the denominator of (3.6), it has∥∥∥∥∥∥∥
n∑

i=1

q(λi)ϕk
i γixi

∥∥∥∥∥∥∥
2

G

≥ min
1≤i≤n

di ·

∥∥∥∥∥∥∥
n∑

i=1

q(λi)ϕk
i γixi

∥∥∥∥∥∥∥
2

2

≥ min
1≤i≤n

di · σ
2
min(S ) ·

n∑
i=1

|ϕk
i |

2 · |γi|
2 · |q(λi)|2. (3.8)

Combining (3.5), (3.7) and (3.8) into (3.6), we have

‖(A − I)u‖G ≤ min
q∈Lm−1

√
max1≤i≤n di ·

∑n
i=2[αm1−1(α − µ + 1)]k · |λi − 1| · |γi| · |q(λi)|√

min1≤i≤n di · σ
2
min(S )

∑n
i=1 |ϕ

k
i |

2 · |γi|
2 · |q(λi)|2

≤
1

σmin(S )
·

√
max1≤i≤n di

min1≤i≤n di
· min

q∈Lm−1

∑n
i=2[αm1−1(α − µ + 1)]k · |λi − 1| · |γi| · |q(λi)|

(2 − µ)k · |γ1| · |q(λ1)|

AIMS Mathematics Volume 6, Issue 1, 893–907.



901

≤
1

σmin(S )
·

√
max1≤i≤n di

min1≤i≤n di
·

(
αm1−1(α − µ + 1)

2 − µ

)k

· min
q∈Lm−1

n∑
i=2

|λi − 1|
|γi|

|γ1|
·
|q(λi)|
|q(λ1)|

,

where αm1−1(α−µ+1)
2−µ < 1. Let p(λ) = q(λ)/q(1), where p(1) = 1, then we get

‖(A − I)u‖G ≤
ξ · ζ

σmin(S )
·

(
αm1−1(α − µ + 1)

2 − µ

)k

· min
p∈Lm−1,p(λ1)=1

max
λ∈σ(A)/{λ1}

|p(λ)| .

�

4. Numerical experiments

In this section, we test the effectiveness of the GArnoldi-PET method and compare it with the PET
method (Algorithm 1) [6], the Power-Arnoldi algorithm (called as PA) [8] and the adaptive GArnoldi
method (called as A-Arnoldi) [13] in terms of the number of matrix-vector products (Mv) and the
computing time in seconds (CPU). All the numerical results are obtained by using MATLAB 2018b
on the Windows 10 (64 bit) operating system with 1.7 GHz Intel(R) Core(TM) i5 CPU and RAM 4.00
GB.

In Table 1, we list the characteristics of test matrices including the matrix size (n), the number of
nonzero elements (nnz), the number of dangling nodes (numd) and the density (den) which is defined
by den = nnz

n×n × 100.

Table 1. The characteristic of test matrices.

Name n nnz numd den
wb-cs-stanford 9,914 36,854 2,861 0.375 × 10−1

web-Stanford 281903 2,312,497 172 0.291 × 10−2

wikipedia-20051105 1,634,989 19,753,078 72,556 0.739 × 10−3

For a fair comparison, all algorithms use the same initial guess x(0) = v = e/n with e = [1, 1, · · · , 1]T.
The tolerance is chosen as tol = 10−8. The values of the damping factor α are 0.990, 0.993, 0.995 and
0.997, respectively. The parameter β = α − 0.1. We run the thick restarted Arnoldi procedure, with the
number of approximate eigenpairs p, two times per cycle in the Power-Arnoldi method. Similarly, we
run the adaptive GArnoldi procedure two times per cycle in the GArnoldi-PET method. In addition,
for describing the efficiency of the GArnoldi-PET method, we define

speedup =
CPUPA − CPUGArnoldi-PET

CPUPA
× 100%.

Example 1. The first test matrix is the wb-cs-stanford matrix, which contains 9914 pages, 36854
links and 2861 dangling nodes. It is available from https://sparse.tamu.edu/Gleich/wb-cs-stanford. In
this example, we set the parameters m = 5, p = 3,maxit = 6 and m1 = 40. Numerical results of
the PET method, the adaptive GArnoldi method, the Power-Arnoldi algorithm and the GArnoldi-PET
algorithm are reported in Table 2. Figure 1 plots the convergence history of the four methods with
different values of α.
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From Table 2, we can see that the Power-Arnoldi algorithm works better than the PET method and
the adaptive GArnoldi method in terms of the number of matrix-vector products and the computing
time. However, the GArnoldi-PET algorithm performs the best. For example, when α = 0.997, the
Power-Arnoldi algorithm needs 0.1473 seconds to reach the desired accuracy, while the GArnoldi-PET
algorithm only uses 0.1038 seconds, and the speedup is 29.53%.

From Figure 1, it is easy to find that the GArnoldi-PET algorithm has a faster convergence speed
than the PET method and Power-Arnoldi algorithm, even though its iteration counts are slightly inferior
to the adaptive GArnoldi method. Obviously, only the number of iterations can not describe the whole
story.

Table 2. Numerical results of the four methods on the wb-cs-stanford matrix.
α PET A-Arnoldi PA GArnoldi-PET
α = 0.99
Mv 712 290 169 158
CPU 0.1805 0.1589 0.0727 0.0692
speedup 4.81%
α = 0.993
Mv 960 350 238 194
CPU 0.2045 0.1862 0.0961 0.0801
speedup 16.65%
α = 0.995
Mv 1253 400 305 211
CPU 0.2916 0.1965 0.1325 0.0945
speedup 28.68%
α = 0.997
Mv 1804 530 362 255
CPU 0.3515 0.2778 0.1473 0.1038
speedup 29.53%
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Figure 1. Convergence behaviors of the four methods on the wb-cs-stanford matrix.
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Example 2. The second test matrix is the web-Stanford matrix, which contains 281903 nodes,
2312497 links and 172 dangling nodes. It is available from https://sparse.tamu.edu/SNAP/

web-Stanford. In this example, we choose the parameters m = 5, p = 3,maxit = 12 and m1 = 35.
Numerical results of the PET method, the adaptive GArnoldi method, the Power-Arnoldi algorithm
and the GArnoldi-PET algorithm are given in Table 3. Figure 2 depicts the convergence of the four
methods with different values of α.

From Table 3, it observes that the GArnoldi-PET algorithm outperforms the other three methods
in terms of the number of matrix-vector products and the computing time. Although the speedup is
only 6.57% relative to the Power-Arnoldi algorithm when α = 0.993. However, when α increases,
e.g., α = 0.997, the Power-Arnoldi algorithm needs 13.7626 seconds to reach the desired accuracy, the
GArnoldi-PET algorithm only takes 10.7224 seconds, and the speedup becomes 22.09%.

From Figure 2, it shows that the GArnoldi-PET algorithm converges faster than the PET method
and the Power-Arnoldi algorithm. When α is close to one, e.g., α = 0.995 and α = 0.997, the iteration
counts of the GArnoldi-PET algorithm are less than those of the adaptive GArnoldi method. This
suggests that our new algorithm has some potential.

Table 3. Numerical results of the four methods on the web-Stanford matrix.

α PET A-Arnoldi PA GArnoldi-PET
α = 0.99
Mv 717 715 303 273
CPU 11.4552 24.1209 7.4254 6.5659
speedup 11.58%
α = 0.993
Mv 966 905 395 349
CPU 14.6271 29.3734 9.0469 8.4525
speedup 6.57%
α = 0.995
Mv 1281 1185 464 397
CPU 19.6235 38.7536 11.6585 9.6601
speedup 17.14%
α = 0.997
Mv 1937 1795 601 481
CPU 29.5376 58.5102 13.7626 10.7224
speedup 22.09%
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Figure 2. Convergence behaviors of the four methods on the web-Stanford matrix.

Example 3. The last test matrix is the wikipedia-20051105 matrix, which contains 1634989
nodes, 19753078 links and 72556 dangling nodes. It is available from https://sparse.tamu.edu/

Gleich/wikipedia-20051105. In this example, we make the parameters m = 5, p = 3,maxit = 8 and
m1 = 50. Numerical results of the PET method, the adaptive GArnoldi method, the Power-Arnoldi
algorithm and the GArnoldi-PET algorithm are listed in Table 4. Figure 3 shows the convergence
curves of the four methods with different values of α.

From Table 4, we also see that the GArnoldi-PET algorithm makes great improvements on the PET
method, the adaptive GArnoldi method and the Power-Arnoldi algorithm in terms of the number of
matrix-vector products and the computing time. For a large damping factor such as α = 0.997, the
Power-Arnoldi algorithm takes 56.5771 seconds to reach the desired accuracy, while the GArnoldi-
PET algorithm takes 41.9286 seconds to achieve the same accuracy, and the speedup is 25.89%.

From Figure 3, we again find that the GArnoldi-PET algorithm converges faster than the PET
method, the adaptive GArnoldi method and the Power-Arnoldi algorithm. For different values of α,
the iteration counts of the GArnoldi-PET algorithm are the least.
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Table 4. Numerical results of the four methods on the wikipedia-20051105 matrix.

α PET A-Arnoldi PA GArnoldi-PET
α = 0.99
Mv 555 380 124 104
CPU 110.2113 113.5793 30.1254 25.1583
speedup 16.49%
α = 0.993
Mv 793 475 162 121
CPU 156.2311 139.5610 39.0841 29.0992
speedup 25.55%
α = 0.995
Mv 1111 595 171 141
CPU 221.5114 177.1960 43.4769 33.0091
speedup 24.08%
α = 0.997
Mv 1849 830 239 172
CPU 356.8225 247.7716 56.5771 41.9286
speedup 25.89%
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Figure 3. Convergence behaviors of the four methods on the wikipedia-20051105 matrix.
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5. Conclusions

In this paper, by combining the PET method with the adaptive GArnoldi method, we propose a
new method called as GArnoldi-PET method for accelerating the computation of PageRank problems.
Its construction and theoretical analysis can be found in Section 3. Numerical results in Section 4
show that our proposed method is quite efficient and better than the existing methods, especially when
the damping factor is close to 1. However, much research still needs further study. For example,
determining the optimal choice of the parameters, or considering to use some preconditioning strategies
as given in [18–20] for the GArnoldi method.
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