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1. Introduction

Fractional integral inequalities are useful generalizations of classical inequalities. The Hadamard
inequality is the geometric interpretation of convex functions which has been analyzed by many
researchers for fractional integral and differentiation operators. For fractional versions of the
Hadamard inequality we refer the researchers to [1-9]. Convex functions proved very useful for the
establishment of new inequalities which have interesting consequences in the theory of classical
inequalities. The Hadamard inequality is the most classical inequality for convex functions which is
stated in the undermentioned theorem:

Theorem 1. [9]If f : I — R is a convex function on the interval I of real numbers and a,b € I with

a < b, then
b
f(“”)stf(x)de,
b-aJ, 2

2
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In recent years the theory of mathematical inequalities is analyzed via fractional integral operators
of different kinds (see, [1-15] and references in there). Inequalities have a significant role in the field
of convex analysis, while the classical Hadamard inequality is equivalent to the definition of convex
functions.

Definition 1. A function f : I — R, where I is an interval in R, is said to be convex function if

fx+ A =ry) <rf(x)+ 1 -n)fQy) (1.1)
holds for all x,y € I and r € [0, 1].
In [16], Qiang et al. introduced the notion of exponentially (s, m)-convex function as follows:

Definition 2. Let s € [0,1] and I C [0,00) be an interval. A function f : I — R is said to be
exponentially (s, m)-convex function if

frx+m(l —r)y) < ﬁ@ +m(1 - r)s@
e e

holds for all m € [0, 1] and n € R.

Remark 1. By selecting suitable values of parameters s, m and n, the above definition reproduces the
well-known functions as follows:

(i) By setting n = 0, (s, m)-convex function [17] can be obtained.
(ii) By settingn = 0 and s = 1, m-convex function [18] can be obtained.
(iii) By setting n = 0 and m = 1, s-convex function [19] can be obtained.
(iv) By settingn =0, s = 1 and m = 1, convex function [20] can be obtained.
(v) By setting s = 1, exponentially m-convex function [21] can be obtained.
(vi) By setting m = 1, exponentially s-convex function [19] can be obtained.
(vii) By setting s = 1 and m = 1, exponentially convex function [22] can be obtained.

The well known beta function is frequently used in the presented results, defined as follows:

Definition 3. [23] The beta function of two variables x and y are define as:

1
B(x,y) = f N1 -ty dt
0
for Re(x) > 0, Re(y) > 0.

The objective of this article is to obtain k-fractional integral inequalities for a generalized class
of convex functions namely exponentially (s, m)-convex functions. The classical fractional integral
operators namely Riemann-Liouville (RL) fractional integrals are defined as follows:

Definition 4. Let f € L;[a, b]. Then RL fractional integrals IS, f and I}, f of order a € C, Re(a) > 0 of
f are defined by

I f(x) = ﬁ j;x(x —- N f(rdr, x>a
and

1 b
I f(x) = e f (r—x)"f(rdr, x<b

respectively. Here I'(@) is the gamma function and 12+ f(x) = Ig, f(x) = f(x).
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In [24], Mubeen and Habibullah gave the Riemann-Liouville k-fractional integrals as follows:

Definition 5. Let f € L,[a, b]. Then RL k-fractional integrals IZ;k fand IZ‘,’k f of order @ € C, Re(a) > 0
of f are defined by

1 * .
1% f(x) = mf (x=nt ' f(dr, x>a

and

1 b o
IZ_’kf(X) = mf (r-— X)%_lf(l’)dr, x<b

respectively. Here I'y(a) = fom t"_le%dt and 12;1 fx) = Ig:l f(x) = f(x).

In Section 2, we prove k-fractional integral inequality of Hadamard type for exponentially (s, m)-
convex functions and deduce some related results. In Section 3, we prove a version of k-fractional
integral inequality of Hadamard type for differentiable functions f so that |f’| is exponentially (s, m)-
convex. In Section 4, we give some particular cases of results given in Sections 2 & 3.

2. Main results

In the undermentioned theorem, we give k-fractional integral inequality of Hadamard type for
exponentially (s, m)-convex functions.

Theorem 2. Let f : [0, 00) — R be an exponentially (s, m)-convex function with m € (0, 1], n € R with
f€Lila,bl,0<a<b. If,-5 mb € [a,b], then we will have

1 (bm+a) . Tula+h [mi+1lg’kf(a)+lj;kf(mb)]

h(mn) 2 " 25(mb — a)t m 2.1
« fGe) D] (@ fb) | f@] k ‘
= {[mZ o +mﬁ]ﬁ(?s+ 1)+[m o T ona a+ks}

where h(n) = ﬁ for n <0 and h(n) = 4= for n>0.

e

Proof. Since f is an exponentially (s, m)-convex function, we have

2 25\ em e

f(um+v)< l(mf(”) + ]%) u,v € [a,b].

Since £,mb € [a,b], forr € [0, 1], (1-r)%+rb < band (1-r)mb+ra > a. By settingu = (1-r)2+rb <
b and v = m(1 — r)b + ra > a in the above inequality, then by integrating over [0, 1] after multiplying
with i~ we have

1
f(bm+a)f rildr
2 0

< %{f r%_lmf((l D +rb)dr+fl o/l =nbtra)
0 0

en((l -r)4+rb) enm(1=rb+ra)
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Now, if we let w = (1 — r)= + rb and z = m(1 — r)b + ra in right hand side of above inequality, we get
bm+a\ k
/ ( 2 ) @
1 fb w =2\ fn)dw N f'"b mb—z\{"" f(2)dz
2| Js \b- 2 enw(b_z) « \mb-—a er(mb —a) |
Further, it gives the following inequality which provide the first inequality of (2.1):

f (bm + a) < h(mi(a + Ij)
2 25(mb — a)*

[ +1Iakf( ) Ia,kf(mb):l
m
On the other hand by using exponentially (s, m)-convexity of f, we have

mf ((1 - r)% ; rb) + f(m(1 = )b + ra)
r ‘Vf(':,?) + mr‘gfe(nl;) + «f(B) + r“'@

<m’(1-r) m(l—r)'—2 e

em?

By multiplying both sides of above inequality with « (%)Y ri~! and integrating over [0, 1], after some
calculations we get

ZI;k(Cl: + k; [ ”+11akf( )+ I(ka(mb)]
S(m a)r

f(mz) f(b) f(b) f(a) Pl
o o)

By using definition of the beta function, from aforementioned inequality the second inequality of (2.1)
is obtained. O

In the following we give consequences of above theorem:

Corollary 1. The undermentioned inequality holds for exponentially (s, m)-convex functions via RL
fractional integrals

1 f(bm+a)s IN'a+1)
h(n) 2 25(mb — a)®

st{[ f(’,?f)+mf(nbb)]ﬁ(k +1)

em

[m“”Ig f(m) s f(mb)]
f (D) f (a)

e e

(2.2)

1
a+s)’

Proof. By setting k = 1 in inequality (2.1) of Theorem 2, we get the above inequality (2.2). O

Corollary 2. The undermentioned result holds for convex functions via RL k-fractional integrals

b
(104 (@) + 17 £ ) < w 2.3)

f(b +a) < Fk(a+k3
2 2(b —a)x
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Proof. By settingn = 0, s = 1 and m = 1 in (2.1) of Theorem 2, we get the above inequality (2.3)
which is given in [3]. O

Corollary 3. The undermentioned result holds for convex functions via RL fractional integrals

b+a\l T(a+1) fla) + f(b)
f( 2 )—2(19 2 ’

1 f (@) + I;. f(b)] < (2.4)

Proof. By settingn =0, s = 1,m = 1 and k = 1 in (2.1) of Theorem 2, we get the above inequality
(2.4) which is given in [9]. ]

3. Bounds of Hadamard inequality

In this section k-fractional integral inequalities of Hadamard type for exponentially (s, m)-convex
function in terms of the first derivatives has been obtained. For the proof of next result we will use the
undermentioned lemma.

Lemma 1. [3] Let function f : [a,b] — R be differentiable on interval (a, b). If f' € L|a, b], then one
has

fl@)+ f(b) Tila+k)
2 2(b - a)t

1
_ b;a f [(1 =N = rE1f (ra+ (1 - r)b)dr.
0

FF (D) + I f(@)]

Theorem 3. Let f : [0,00) — R be a differential function such that [a, b] C [0, o), and f’ € L,[a,b].
If|f'| is an exponentially (s, m)-convex function with m € (0, 1], n € R, ¢ > 1. Then for RL k-fractional
integrals we have

f@+f) Ta+k) ., o
. 26— L O+ I (@)
mlf Gl | @l
(b ) r]h ena
< ( em )
- 2

3.1

q

Nf+stl _ 9 1 ”[ 2as+l _ 1
2 (G e s+ D) [200(p+ D] |20 (gs + 1)

J

q

el |? 1
+ a
2671 (2p + 1) [%ﬂ(qs +1)
where L +1 =1,
P q
Proof. By using Lemma 1, we have

fl@)+ f(b) Tila+k)

.k .k
o O I @)

AIMS Mathematics Volume 6, Issue 1, 882—-892.



887

b—a

1
fﬂa—rﬁ—rmfua+a—rwmn
0
By using exponentially (s, m)-convexity of |f’| we will get

f@+f®) Tila+k)
2 2(b - a)t

— % / f’ %
< af [(l_r)(’:_Vz]lrsw+m(l—r)su

2 0 ena e%

1 (e
+f [rf — (1- l |f( )| m(l = r)y (me)|
_b-a {lf'f]f)l f2(1 oty (a)lf o

’ 2 1
‘ K n f m ‘ 7 a K
”b (1 —r)’dr — B re(1 —r)’dr
em 0
1

_If’(a)l f (1= vy s L@
ela ena

2 F(b) + I7F f(a)]

dr

dr

em

Now, by using Holder inequality, one has

2 . B 1
f (1-nirdr<|—— ;
0 [ 257 (&p+ 1) | (29 (gs + 1)

J
Q=

[ -% s+1 1
f (1 =r)ir'dr < |— : =l Lr :
L »2(%p+1(%p+ D |29t (gs+1)]
3 [ -% [ gs+1 _ 14
fz ri(1—r)y'dr < | = ! 2 ! ,
0 [ 257t (Ep + 1) | |25+ (gs + 1)
and .
t, ot P[]
f re(1 —=r)’dr <|—= - : .
1 27 (Ep + 1) ] | 295t (gs + 1) |

By using the above inequalities in the right hand side of (3.2), we have

fl@+ f(b) Tila+k)

.k .k
. 2~ oy L O+ T (@)

%
G mlr G }
W f(l r)sdr+T 1 rk(l—r)sdr .
ém 3

;[ 2qs+1 -1

_b-allf@l|_ 2t -2 1
T2 | e 2@ 4s+]) [200(8p+ )

2a5+l(gs + 1)

1
q

(3.2)
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piptl 1 » 1 ‘

i [Z‘klp*l(%p +1) [2‘1S+1(qs +1)

R T g H i1
% 22 45+ 1)  [281(2p+ )] [29%(gs + 1)
R R

’ [2‘5“‘(%19 +1) [2‘”“(qs +1) }

Corollary 4. The undermentioned inequality holds for exponentially (s, m)-convex functions of
Riemann-Liouville fractional integrals

fl@+f(b) T(@+1) 5
‘ 2 T 2b—ay [ f(D) + 1 f(a)]

(b _ a) (mlf’ﬂ(l)%)l + M)

end

<
- 2
1 3.3)

q

% 2qs+1 _ 1
[2‘”+1(qs +1)

2a+s+1 -2 1
2005t @+ 5+ 1) |25 (ap + 1)

)

Proof. By setting k = 1 in inequality (3.1) of Theorem 3 we get the above inequality (3.3). m|

2&p+1 -1
+
[2“”“(0{]9 +1)

» 1
[2‘1s+1(qs +1)

4. Results for (s, m)-convex functions

In this section we discuss some particular cases of the results established in Sections 2 and 3.

Theorem 4. Let f : [0, 00) — R be an (s, m)-convex function withm € (0, 1], f € L,[a, b], a,b € [0, )
where %, %, mb € [a, b]. Then we will have the undermentioned inequality:

miH [k f( ) I f(mb)]

a
m

f(bm+a)s I“k(a/+k)a
2 25(mb — a)*
«

G () mrw) (1) @.1)
+ Imf) + fla)] — }

<

a+ks

Proof. Its proof is alike to the proof of Theorem 2 or directly (4.1) can be obtained from (2.1) by taking
n= 0. O
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Corollary 5. The undermentioned inequality holds for m-convex functions via RL k-fractional integrals

(bm+a)< I(a +k)
2 ~ 2(mb - a)¥

[m‘i“l;j;" ¥ (n%) L f(mb)]

4.2)
k[mf(®) + f(@)] [ ( ) ] ( )
= 2% { @tk ) mi® ‘
Proof. By setting s = 1 in inequality (4.1) of Theorem 4 we get the above inequality (4.2). m|

Corollary 6. The undermentioned inequality holds for s-convex functions via RL k-fractional integrals

f(b+a) Fk(a+k)
2 25(b -

[1“ “f (@) + 12 £ (b))

<= +,8( s+1)}

Proof. By setting m = 1, in inequality (4.1) of Theorem 4 we get the above inequality (4.3). O

4.3)

Lf(a)4-f(b)]{

Theorem 5. Let f : [0,00) — R be a function and [a,b] C [0,00) with f € Li[a,b]. If |f’| is an
(s, m)-convex function with m € (0, 1] and g > 1. Then for RL k-fractional integrals we have

fl@+f®b) Tila+k)
2 2(b - a)t

b= (mlr (2)|- 17 @)
= 2

2%+s+1 ) 1 % 2gs+l _q é (4’4)
200(& 4 g4 1) - [275”“(%19 + 1)} [2‘1S+1(qs +1)
| }
Proof. Its proof is alike to the proof of Theorem 3, or directly (4.4) can be obtained from (3.1) by
taking n = 0. O

UFf ) + I f(a)]

N 2eptl 1|7 1
21 (&p + 1) | [29%1(gs + 1)

where L + 1 =1,
P q

Corollary 7. The undermentioned inequality holds for m-convex functions via RL k-fractional integrals

f@+f®) Tua+k) . o
. 2o~y L FO)+ 1 f @]
(b= (mlr (2)|- 17 @)
<
) 2 1 (4.5)
2%+2 _ 9 _[ 1 p[ 29t _ 1 e ’
2022 +2) |28 1(4p+ 1| [297M(g+ 1)

|2t o1
WiEp+ ) (277G |
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Proof. By setting s = 1 in inequality (4.4) of Theorem 5, we get the above inequality (4.5). O

Corollary 8. The undermentioned inequality holds for s-convex functions via RL k-fractional integrals

fl@)+ f(b) Tila+k)

U F D) + I f(a
R U R 0]
L O-a(f Ol -1f (@D
- 2
DE+stl _ 9 1 b g5+l _ 1 2 (4.6)
ﬂﬂ“@+s+n_lﬂ“%aﬂwJ LW«w+1)
2%+l _ 1 | 1 q
+ .
2%17“(%17 + 1| [2¢t(gs+ 1)
Proof. By setting m = 1 in inequality (4.4) of Theorem 5, we get the above inequality (4.6). O

Corollary 9. The undermentioned inequality holds for convex functions via RL k-fractional integrals

f@+ f) Ta+k) . ok
> b —a) [ () + 1,7 f(a)]
L G- (f DI -1 @)
- 2
28+2 -2 1 AR “.7)
2825 +2) lZf”“(%p + D] [27g+ 1)

Q=
J

N N
@] (2] |[°

Proof. By setting m = 1 and s = 1 in inequality (4.4) of Theorem 5 we get the above inequality
4.7). )

5. Conclusions

In this article we have presented fractional versions of the Hadamard inequality for exponentially
(s, m)-convex functions. By applying definitions of exponentially (s, m)-convex function and Riemann-
Liouville fractional integrals we have obtained Hadamard type inequalities in different forms. An
identity is used to get error estimations of these Hadamard inequalities. Connections of the results
of this paper with already known results are also established. In our future work we are finding the
refinements of fractional integral inequalities.
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