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Abstract: In this paper, we are interested the following fractional Kirchhoff-type problem with
logarithmic nonlinearity

(a+b [, 'ﬁi"_;ziyzi'zdxdy) (=A)'u + V(@u = Q0)ulP2ulnu?, in Q,
u =0, inRY\ Q,

where Q c R" is a smooth bounded domain, N > 2s (0 < s < 1), (—A)* is the fractional Laplacian, V, Q

are continuous, V,Q > 0. a,b > 0 are constants, 4 < p < 2} := % By using constraint variational
method, a quantitative deformation lemma and some analysis techniques, we obtain the existence of

ground state sign-changing solutions for above problem.
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1. Introduction

In this paper, we consider the following fractional Kirchhoftf-Schrodinger-type problem with
logarithmic nonlinearity

() —u(y)P s - -2 2,
{ (a +(;j ffgz le—yIV+2s dXdy) A u+ Vu = Q) ulnw’, inQ, (1.1)
u =

inRV\ Q,
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where Q c R is a smooth bounded domain, N > 2s (0 < s < 1), (=A)* is the fractional Laplacian,
defined for any u € C2(R") by

(=A)'u(x) = 21lim u(x) —u(y)

dy, xeRY,
e\ Jp e X — yN¥2s

a,b > 0 are constants, 4 < p < 2} := N 2 -, and V, Q : Q — R satisfy

(H) V,0 € C(Q,[0,00)),and V, Q # 0.

We know that logarithmic nonlinearities have many applications in quantum optics, quantum
mechanics, transport, nuclear physics and diffusion phenomena etc (see [1] and the reference therein).

Recently, many authors have investigated the following logarithmic Schrodinger equation

(1.2)

—Au+V(x)u = Qx)|ufPulnu?, inQ,
u=>0, x € 0Q.

Many results about logarithmic Schrédinger equation like (1.2) have been obtained, see [2—7] and
reference therein. In [8], Chen and Tang studied the ground state sign-changing solutions to elliptic
equations with logarithmic nonlinearity of (1.2). The fractional Kirchhoff equation was first introduced
in [9]. Recently, Li, Wang and Zhang [10] considered the existence of ground state sign-changing
solutions for following p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity

{ (a+b [, IVulPdx) Ayu = [ululnu?, xe€Q, 13)

u=0, x € 0Q.

We refer to [11, 12] for a study of existence of sign-changing solutions to (1.2), or more general
problems like (1.2) with a logarithmic nonlinearity. Variational methods for non-local operators of
elliptic type was first introduced by Fiscela and Valdinoci in [13]. In these years, nonlinear problems
involving nonlocal operator have been extent studied, see for instance [14-22] and the references
therein. However, to the best of our knowledge, there seem no results on sign-changing solutions for
logarithmic fractional Kirchhoft-type problem.

Motivated and inspired by [8, 10] and the aforementioned works, in this paper, we investigate the
existence of sign-changing solutions to logarithmic fractional Kirchhoff-type problem (1.1). The main
results we get are based on constraint variational method, some analysis techniques and a quantitative
deformation lemma. Our result extends the theorem of Chen and Tang [8] from elliptic equations
with logarithmic nonlinearity to fractional Kirchhoff-type problem with logarithmic nonlinearity. This
article is organized as follows. In Section 2, we give some notations and preliminaries. Section 3 is
devoted to the proof of our main result.

2. Preliminaries

For any s € (0, 1), we define W*2(Q) as a linear space of Lebesgue measurable functions from RY
to R such that the restriction to Q of any function u in W*2(Q) belongs to L”(Q) and

|u(x) — u(y)
ff w oy e
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Equip W*2(€) with the norm

_ 2 /p
el = Il + ( [ it ylz(jﬁ'dd) .

Then W*2(Q) is a Banach space. The space W,*(Q) = {u € W**(Q) : u = 0 in RV \ Q} endowed with
the norm
lux) —u)? |\
(ff Ty ) |

E := {u e WA(Q) f V(x)luldx < +oo}
Q

1/2
||ell = (a[u]2+fV(x)|M|2dx) )
Q

Now, we define the energy functional J : E — R associated with problem (1.1) by

Let

endowed with the norm

Jw) = l||u||§ + é[u]4 + % f Q(x)|ulPdx - 1 f O()|ul” In u’dx. (2.1)
2 4 P Ja P Ja

For each g € (p, 2}), one has that

o)t In s OX)|tP~" In 2

=0, lim =0.
t—0 |[| t—co |t|q_1
Then for any &€ > 0, there exists C, > 0 such that
Q)P Inf| < el + C ™!, VYxeQ, teR. (2.2)

By (2.2), we know that J is well defined and J € C'(E,R) with
— u(y))(v(x) — V(y))

|X y|N+25

@ =@+ ) [[ 0

@ (2.3)

+ f V(x)uvdx — f Q)|ul’2uvInu’dx, Vu,vekE.
Q Q

Obviously, if u € E is a critical point of 7, then u is a weak solution of (1.1).
If u € E is a solution of (1.1) and u™ # 0, then u is a sign-changing solution of (1.1), where

u'(x) ;= max{u(x),0}, u (x):= minfu(x),0}.
The Nehari manifold for 7 is defined as
N ={ue E\{0}:(J (), u) = 0}.
Moreover, we define the nodal set
Mi={weN w0, (J'W),w") =(J"(w),w") =0}
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Lemma 2.1. The following inequalities hold :
(1).2(1 =x") + px’Inx* >0, VYxe[0,1)U(l,+c0), p>2;

-2 1—x
). 2x 2TV S0, Vxe[0, DU, +0), p>2;
p

2 xP —yP
(3)_1_xy_#
l—x 1-x
). 4x— Y20, V20, p>4

p
1—x2y2_2—xp—y”
2 p
6). 1y 273 =Y

>0, Vx,y>0, p>2;

(5).

>0, Vx,y=>0, p>4;

>0, VYx,y>0, p>4
Proof. Here we only prove (6) holds, the proof of other cases are similar, we can omit it. Let
4 —3xP —yP

flx,y)=1 —x3y—T, x,y>0.

The critical points of f must satisfy the system of equations :

0 = fi(x,y) = =3x%y + 3x"",

0= folx,y) =—x +y"".

Hence, the critical points of f are (0,0) and (1, 1). Since A = f1;(1,1) =3(p-3) >0, B = fi»(1,1) =
-3,C = fp»(1,1) = p—1,and B> — AC = 9 - 3(p — 3)(p — 1) < 0, which implies that f has a local
minimum value at (1, 1), and f(1, 1) = 0. Obviously, f(0,0) =1 — % > (. So, for any x,y > 0, we have
that f(x,y) > min f(x,y) = f(1,1) = 0.

Lemma 2.2. For eachu € E and a,8 > 0, we have

1- B

p 1 =8P
JW) > Jau® +Bu) + ——— (" (), u*) + — T @)

p
— 2 _ 2 3
+(1 2a = ap)llu*llﬁ+(1 £l ﬁp)uu-ug
" L 2.4)
_ 4 _ B B .
+b(1 o« 1 ap)[u+]4+b(1 £ ﬁp)[u‘]“
YY) _ _
+b(1 of l-er 1 ﬁp)[f]z[u-]?.
2 p p
Proof. From (2.3) in [8], one has
f O(x)lau™ + Bu”|P In(au™ + Bu~)*dx
. 2.5)

= f O()[Jaut? In(eu™)? + |Bu”|” In(Bu~)*1dx.
Q
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By a direct calculation, we easily obtain that

llaut + Bu”|> = o (a[Lf“]2 + f V(x)|u+|2dx) + B (a[u_]2 + f V(x)lu_lzdx)
Q Q

- v (2.6)
_5 W Q) + Q@)
%* oJao |x — y[NV+2s a
[ou® +pu ] = ' [T + Bl T + 2B P )
20412 1 p2r.—12 ut(Ou(y) + ut(y)u (x)
— 4o T + BluP) fg fg D Sy
+ - + - 2
+ 428 ( fg fg = (x)uliyz ;;‘ﬂiy)” (x)dxdy) :
and
<j,(l/l), ut) — (a + b[u]Z) [ut]Z _ u+(x)u_()’) + u+(y)u_(x)dxdy
aJa |x — y|NV+2s
+ f V(x)(u*)dx - f Q(x)|u|P In(u*)*dx
Q Q
= alu* ] + b P([u' ] + [u 1)
@+ b+ [+ 2L ) f f ut(u”(y) + ut(y)u (x) dxdy (2.8)
aJa |x — y[NV*2s

+ - + - 2
+2b(ffu (Du™(y) + u"(y)u (x)dxdy)
oJo |x_y|N+2s

+ f V(x)(u*)*dx - f Q)| |P In(u*)*dx.
Q Q

Thus, it follows from (2.5)—(2.8), Lemma 2.1 and u* (x)u"(y) + u*(y)u"(x) < 0 that

1
Jw) - J(au" +pu) = 5(”qu + M_||z — [lau” +ﬁ”_||2)
+ 2([u+ +u 1t —[au" +Bu 1Y) + I% f O)[lu™ +u|P = |lau™ + Bu”|Pldx
Q

- 119 f OQ)[lu” + u 1P In(u™ + u)? — lau™ + Bu|P In(au™ + Bu~)*1dx
Q

1 — P 1 _ RP
=12 gy + 2P g,y
p p

1-a? 1-a” 1-8%2 1-p47 B
+ - 2+ (=2 - LB e
2 p 2 p

_aft—ep- 12 _12F f f W)+ )
4 p QJo |x — y|V+2s
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_ 4 _ _ _
sp(iz 1 ap)[u+]4+b(1 £_1 ﬁp)[u_]4
4 P 4 P
— 232 _ _
pp(lzF _1ze? ] ﬁp)[uﬂz[u‘]z
2 P P
o1 —atpo30zan) 1‘ﬁ”)[u+]2ff ) @)
P P |x — y|NV+2s
b(1—ap - 12 3(1‘ﬁ”>) ff W) + )
p |.X' y|N+25
ipf1—apr - 2z 20 m) ( f f ur U () + ur () |
p |X y|N+2s
_ 2 _ 2
+(2(1 zafp) N a’Ina )fQ(x)Iu*Ipdx+(2(1 ZIBP) +’3P1nﬁ )fQ(x)lu_lpdx
4 P P P Q
l—a _Bp
> ﬁ (T )iy

Moot 1-a 2 opr\
+ - ||u+||§+ A LB e
2 p 2 p

l-a* 1-a’ 1- 1-p7
+b( < “)[u+]4+b( £ _ ﬁ)[u_]4
4 p 4 p
1-a?f 1-a? 1-p°
+ b( af 1o 1°5 )[u+]2[u—]2,
2 p p
which implies that (2.4) holds for all u € E and «,8 > 0.
According to Lemma 2.2, we have the following corollaries.

Corollary 2.3. Foreachu € E andt > 0, we get that

1-
Jw) = I (tu) +

-2 1-
T, u>+( - t)uuui-
p

Corollary 2.4. For each u € M, there holds
Ju+u) = (rlr}}z;)éj(af + Bu”).
Corollary 2.5. For each u € N, we have that
J W) = max J (tu).

Lemma 2.6. Let4 < p < 2. Foreachu € E, we have

(i) If u # 0, there exists a unique t, > 0 such that t,u € N;

(ii) If u* # 0, there exists a unique pair («,, 8,) of positive numbers such that a,u* + S,u~ € M.
Proof. (1) For any u € E \ {0}, set

fu(t) = (T (1), tu)

2.9
= 2\l + bt*[u]* - ¢ f Q(x)|ul” In(tu)*dx, t> 0. (3)
Q
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From (2.2), p > 4 and (2.9), it is easy to see that lim,_,+ f,(¢) = 0, f,(t) > O forz > 0 small and f,(¢) < 0
for ¢t large. Thanks to the continuity of f,(7), there is ¢, > 0 such that f,(#) = 0. In the following, we
prove that 7, is unique. Arguing by contradiction, we assume that there exist two positive constants
1) # t, such that f,(¢)) = f,(t,) = 0, that is tu, b,u € N. By Corollary 2.3 and Lemma 2.1 (2), we get

- ()

Jtu) > J(bu) + ——— > ———(J(tiu), tu)

2[1—2(2—?)2 ! 1(7)]

llll? > T (t20)

and

- ()
J(u) 2 J(hu) + ———— » ————(J" (thu), tyu)
(o) 1= (n)
+t§[ 2(”) o) ] ull; > T (tw),
p

which is absurd. Thus, #, > 0 is unique.
(ii) For each u € E with u*™ # 0, in view of Lemma 2.6 (i), there exists a pair (a,,[,) of positive
numbers such that a,u™,B,u” € N. Let

H(a,p) = (I (au” +pu”),au’)

= o?|lu*|? + ba'[u*]* + b’ B ut P [u]?
2r 412 2 ut(u= () + ut(y)u” (x)
_bCU,B(?’a’ [I/t ] +ﬁ )ff |x y|N+2v
(2.10)
22 u (u () + utyu” (x)
+2bap (fgfg |x — y[NV*2s )
- f O()|au'|? In(au™)dx,
Q
and
K(a,B) = (J(au™ + pu”),Bu”)
=Bl |2 + BB u 1" + ba?BPlut 1P lu 1P
2F. 412 2r —12 ut(u~(y) + ut(y)u" (x)
—baB(a[u]” + 36 [u"] )ff o — [
(2.11)

+ 2ba’* 3 (ff u* (u”(y) + u* (- (X) )
o Jo |x y|N+2s

- f Q(x)|Bu”|P In(Bu~)dx.
Q
Since 4 < p < 27, it follows from (2.2) that

H(a,a) >0, K(a,a)>0, fora >0 small enough,
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H@B,p) <0, K(@B,B) <0, forp>0large enough.

So, there exist 0 < #; < t, such that
H(t,t1)) >0, K(t;,t1) >0, H(th,1) <0, K(t,1) <O0. (2.12)
Combining (2.10), (2.11) with (2.12), we obtain that
H(t,B) >0, H(,pB) <0, VBelt, ] (2.13)

and
K(a,t1)) >0, K(a,t) <0, VYac€l][t, ] (2.14)

Hence, thanks to (2.13), (2.14) and Miranda’s Theorem [23], there exists some pair (a,,3,) with #; <
@y, By < tp such that

H(ay, ) = K(au,Bu) = 0.

These show that a,u™ + B,u~ € M. The proof of unique of («,,f,) is similar to that of (i), we omit
detail here.

From Corollaries 2.4, 2.5, and Lemma 2.6, we can deduce the following lemma.
Lemma 2.7. The following minimax characterization hold

f ; —. bl f ;

inf S (u) =:m= inf max J(au” + Bu ).
ueMj() ueE ,u#0 a,,BZOj( IB )

Lemma 2.8. ¢ > 0 and m > 0 are achieved.

Proof. We only prove that m > 0 and is achieved since the other case is similar. For each u € M, one
has (J'(u), u) = 0 and then by (2.2) and fractional Sobolev embedding theorem, there exists a constant
C; > 0 such that

alul? < allulP: < allull? + blu]* = f 00Ol Iniidx
p Q (2.15)
< E[u]2 +Ci[ul?, ue M.

Since g > p > 4, by (2.15), there exists a constant p > 0 such that [u] > p for each u € M.
Let {u,} € M be such that J(u,) — m. From (2.1) and (2.3), we have

1
m+o(1) = J(u,) - ;(jl(un)’ )

= (% - %) el + (Z - %) [ + l% fg Q(x)lul’dx (2.16)

11
2 (5 - —) [
p
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which implies that {x,} is bounded. Thus, there exists u., in subsequence sense, such that «; — u; in
E and u; — u; in L'(Q) for 2 < r < 2. Since {u,} ¢ M, we have (J"(u,), u;;) = 0, which yields that

2 2 2 114 20 -2
ap” < allifll; < allugll; + blu]* + blu) 17 [u,]

@+ BT+ T 20T f f GO0) + GO
Q

o |.X _ y|N+2s

+ - + - 2
. 2( f f uy (O, ) + i, () dy)
o Jo |X _ y|N+2s

- f Q) 1P In(ut)*dx
Q

Saflujldx+Cgf|u;flqu
Q Q
<G, f .

Q

By the compactness of the embedding WS’Z(Q) — L"(£), we obtain

(2.17)

flufl”’dx > Cyp?,
Q

which implies u; # 0. By the Lebesgue dominated convergence theorem and the weak semicontinuity
of norm, one has

alluf |} + bl T + blul Plu )

—(a+ bl + [u ] + 2[uf]2))f

Q

+ - + - 2
s ( f f (O () + Qs () | dy)
o Ja |x_y|N+2s

< lim inf |allf|2 + bluz]* + blu) P,

—(a+ bl + [u, 1* + 2[u:1%) f f 1 (D14, ) u;@)u;(x)dxdy
aJa

|X _ y|N+2$
+ - + - 2
42 (ff u, (X, (y) + un(y)un(x)dxdy) }
aJa |x — y[N+2s

= lim inf f Q) |P In(ut ) dx
n—0oo Q

f uf (Ou; (y) + uf (y)u; (x) dxdy
Q

|X _ y|N+2s

= f Q|1 Inui)*dx,
Q

which yields that
(J' (W), u7) <0 (J'(w),u;) <0.

In view of Lemma 2.6 (ii), there exist constants @, 8 > 0 such that au! + Bu; € M. Thus, from (2.1),
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(2.3), (2.4), Lemma 2.1 and the weak semicontinuity of norm, we obtain that

1
m = 31_{2’ [j(un) - l_7<j/(un)’ un>]

- lim [(% _ l%) ol + (g _ g) (] + l% fg Q(X)Iunl”a’X]

{3t famre
1
=9Ju.) - ;(jl(u*), Us)
1-a” 1-p
P Tty + P
p P

D P
> m— ST @ uty - (T @y 2 m,
p p

1
> J(au; + pu,) + (I (), u,) - ;(j'(u*), Us)

which shows
(J'(w),ui)y =0, Jwu.,) =m.
Moreover, it follows from u* # 0, (J’(u.), u,) = 0 and (2.6) that

1
m=9w.) =9 u.) - E(T(u*), i)

- (% - %’) 2 + (g - g) .+ [ Qwupdx

1 1 1 1 _
> (E - —) |2 > (— - —)(Iluillﬁ + 1l 1I7) > 0.
p 2. p

3. Main result

In this section, we will give the main result and proof.
Lemma 3.1. The minimizers of inf 5 J and inf »( J are critical points of J .

Proof. Thanks to Lemma 2.8, we prove the minimizer u, of inf (7 is critical point of J. Arguing by
contradiction, we assume that u, = ul + u; € M, J(u.) = m and 9"’ (u.) # 0. Then there exist 6 > 0
and y > 0 such that

IS (Wl =y, forall|lu—ul <36andueE.

%) X (%, %) By Lemma 2.2, one has

. + =
0= (Q{Iﬁl)eéng(au* + Bu,) < m.
Let € := min{(m — 0)/3,0y/8) and Ss := B(u., ). By applying the Lemma 2.3 in Ref. [24], there
exists a deformation n € C([0, 1] X E, E) such that
@) n(l,v) =vifv ¢ T ' (m—-2&,m+2¢&]) N Sos;
(i) n(1, g™ NSs) c I

AIMS Mathematics Volume 6, Issue 1, 868—881.
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(i) J((1,v)) < JW), Vv e E.

From (iii) and Lemma 2.2, for each @, 8 > 0 with |a — 1> + |8 — 1|* > 6*/||u.|?, one has
T, aul +puy)) < J(au; +pu;) < Jw) =m. 3.1
By Corollary 2.4, we have J (au; + Bu;) < J(u.) = m for @, > 0. According to (ii), one has
T, aul +pu))) <m—g, Va,>0, la— 1P+ |8- 1 < &/|lul (3.2)
Thus, from (3.1) and (3.2), we obtain
max J(n(1, aul + Bu)) < m. (3.3)

(@B)eD

Let h(a,B) = au} + Bu;, we will prove that n(1, k(D)) N T # 0.
Define
k(a,B) :=n(1, h(e, B)),

O(a,p) := (T (h(@. ), u:), (T’ (e, p)), u,))) := (Pi(a, B), Pa(a, B))
1 1
Y(a.p) = (5<‘7 "(k(a, B), (k(a, )", ,1_3<j "(k(e, B), (k(@, )7} |-

Obviously, @ is a C! functions. Moreover, we have by a direct calculation that

0P, (e, B)

lany = Nl 12 + 361l 1* + blul 1Plu; 1P
oa

b f f O 0) + O
QJQ

|.X — y|N+25

+ - + - 2
b (ff uy (u, (y) + ul (Yu, (x)dxdy)
aJo |X _ y|N+2s

-(-1 f Q()lul|P In(ul)*dx — 2 f Q)P dx,
Q Q

and
Tty = 200t PP fa 36t ) [ [ DD gy
B aJa lx =yl
+ - + - 2
b (ffu* (Ou (y) + uy (x)dxdy) .
aJo |x — y|V+2s
Similarly, we obtain
0Dy (a, )

liy = ||M;||3 +3b[u 1t + blul P[u;

bl f f wu (Ou, (») + uy (M (x) dxdy
aJa

|)C _ y|N+25

+ - + - 2
iy (ff u; (), (y) + u; Q)u* (x)dxdy)
aJo |x — y|V+2s

—(p-1 f O, |" Inui; ) dx — 2 f Q()lu |"dx,
Q Q

B

AIMS Mathematics Volume 6, Issue 1, 868—881.
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and

0D, (e, B)
O

oy = 2b[ul 1P 17 — [a + 3b([u}

+4b(ff uy (Ou, (y) + uf (y)u, (x) y)
aJdao |x — y|NV+2s

f uy (O, () + uy (Vu; ),

Q |X y|N+25
2

It is easy to check that

W) | M)
l acbl(a,ml a@z(a,ﬂ>| #0
ol =g lan

Thus, by degree theory [25, 26], we can derive that W(ag,By) = 0 for some (ag,Bp) € D, so that
n(1, h(ao, Bo)) = k(ap,By) € M. This contradicts (3.3) and shows that 7" (u,) = 0. Similarly, we can
prove that any minimizer of infy 7 is a critical point of .

Now, we are in a position to prove our main result.
Theorem 3.2. Suppose that condition (H) holds. If 4 < p < 23, then problem (1.1) has a solution
uy € N and a sign-changing solution u, € M such that

i}\ldfj:j(u*) > 29 (up) = Zi%fj> 0.

Proof. By Lemmas 2.8 and 3.1, there exist uy € N and u. € M such that J (up) = ¢ with J"(up) = 0
and J(u.) = m with J"(u,) = 0. That is, problem (1.1) has a solution u#y € N and a sign-changing
solution u, € M. Moreover, by (2.5)—(2.7), Corollary 2.4 and Lemma 2.7, we get

m =9 (u.) = sup J(au; + PBu;)

a,3>0

1 b 2
= sup [EHQM: +ﬁu;||§ + Z[au: +Bu 1t + ? f lau! + Bu, |Pdx

a,5>0 Q

L f Ot + Bu | In(au? +ﬁu*)2dx]
P Jo

~ sup [j(au )+ TG0 — aB f f ! U, () + w2 () by

@820 |x — y|N+2s
+éa2,32[u:]2[u;]2 + ba* 3 (ff U O) + e Oty (X) Y)
2 |X y|N+2s

baB@ Ll + Bl ) f f . 0) s O (), y]

|X y|N+2v
> sup J (au)) + sup I (Bu,) = 2¢ > 0.
a0 B=0

Remark 3.3. In [8, 10], (1.2) and (1.3) has a sign-changing solution with precisely two nodal domains
has been proved respectively. By Theorem 3.2, we know that (1.1) has a sign-changing solution. But
according to the method is used in [8, 10], we cannot prove that the sign-changing solution of (1.1) has
precisely two nodal domains.
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