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Abstract: In this paper, we are interested the following fractional Kirchhoff-type problem with
logarithmic nonlinearity

(
a + b

!
Ω2
|u(x)−u(y)|2

|x−y|N+2s dxdy
)

(−∆)su + V(x)u = Q(x)|u|p−2u ln u2, in Ω,

u = 0, in RN \Ω,

where Ω ⊂ RN is a smooth bounded domain, N > 2s (0 < s < 1), (−∆)s is the fractional Laplacian, V,Q
are continuous, V,Q ≥ 0. a, b > 0 are constants, 4 < p < 2∗s := 2N

N−2s . By using constraint variational
method, a quantitative deformation lemma and some analysis techniques, we obtain the existence of
ground state sign-changing solutions for above problem.
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1. Introduction

In this paper, we consider the following fractional Kirchhoff-Schrödinger-type problem with
logarithmic nonlinearity


(
a + b

!
Ω2
|u(x)−u(y)|2

|x−y|N+2s dxdy
)

(−∆)su + V(x)u = Q(x)|u|p−2u ln u2, in Ω,

u = 0, in RN \Ω,
(1.1)
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where Ω ⊂ RN is a smooth bounded domain, N > 2s (0 < s < 1), (−∆)s is the fractional Laplacian,
defined for any u ∈ C∞c (RN) by

(−∆)su(x) = 2 lim
ε↘0

∫
Bε(x)c

u(x) − u(y)
|x − y|N+2s dy, x ∈ RN ,

a, b > 0 are constants, 4 < p < 2∗s := 2N
N−2s , and V,Q : Ω→ R satisfy

(H) V,Q ∈ C(Ω, [0,∞)), and V,Q , 0.
We know that logarithmic nonlinearities have many applications in quantum optics, quantum

mechanics, transport, nuclear physics and diffusion phenomena etc (see [1] and the reference therein).
Recently, many authors have investigated the following logarithmic Schrödinger equation{

−∆u + V(x)u = Q(x)|u|p−2u ln u2, in Ω,

u = 0, x ∈ ∂Ω.
(1.2)

Many results about logarithmic Schrödinger equation like (1.2) have been obtained, see [2–7] and
reference therein. In [8], Chen and Tang studied the ground state sign-changing solutions to elliptic
equations with logarithmic nonlinearity of (1.2). The fractional Kirchhoff equation was first introduced
in [9]. Recently, Li, Wang and Zhang [10] considered the existence of ground state sign-changing
solutions for following p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity

(
a + b

∫
Ω
|∇u|pdx

)
∆pu = |u|q−2u ln u2, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.3)

We refer to [11, 12] for a study of existence of sign-changing solutions to (1.2), or more general
problems like (1.2) with a logarithmic nonlinearity. Variational methods for non-local operators of
elliptic type was first introduced by Fiscela and Valdinoci in [13]. In these years, nonlinear problems
involving nonlocal operator have been extent studied, see for instance [14–22] and the references
therein. However, to the best of our knowledge, there seem no results on sign-changing solutions for
logarithmic fractional Kirchhoff-type problem.

Motivated and inspired by [8, 10] and the aforementioned works, in this paper, we investigate the
existence of sign-changing solutions to logarithmic fractional Kirchhoff-type problem (1.1). The main
results we get are based on constraint variational method, some analysis techniques and a quantitative
deformation lemma. Our result extends the theorem of Chen and Tang [8] from elliptic equations
with logarithmic nonlinearity to fractional Kirchhoff-type problem with logarithmic nonlinearity. This
article is organized as follows. In Section 2, we give some notations and preliminaries. Section 3 is
devoted to the proof of our main result.

2. Preliminaries

For any s ∈ (0, 1), we define W s,2(Ω) as a linear space of Lebesgue measurable functions from RN

to R such that the restriction to Ω of any function u in W s,2(Ω) belongs to Lp(Ω) and"
R2N

|u(x) − u(y)|2

|x − y|N+2s dxdy < ∞.
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Equip W s,2(Ω) with the norm

‖u‖W s,2(Ω) = ‖u‖p +

("
R2N

|u(x) − u(y)|2

|x − y|N+2s dxdy
)1/p

.

Then W s,2(Ω) is a Banach space. The space W s,2
0 (Ω) = {u ∈ W s,2(Ω) : u = 0 in RN \ Ω} endowed with

the norm

[u] =

("
Ω2

|u(x) − u(y)|2

|x − y|N+2s dxdy
)1/2

.

Let

E :=
{

u ∈ W s,2
0 (Ω) :

∫
Ω

V(x)|u|2dx < +∞

}
endowed with the norm

‖u‖a :=
(
a[u]2 +

∫
Ω

V(x)|u|2dx
)1/2

.

Now, we define the energy functional J : E → R associated with problem (1.1) by

J(u) =
1
2
‖u‖2a +

b
4

[u]4 +
2
p2

∫
Ω

Q(x)|u|pdx −
1
p

∫
Ω

Q(x)|u|p ln u2dx. (2.1)

For each q ∈ (p, 2∗s), one has that

lim
t→0

Q(x)|t|p−1 ln t2

|t|
= 0, lim

t→∞

Q(x)|t|p−1 ln t2

|t|q−1 = 0.

Then for any ε > 0, there exists Cε > 0 such that

Q(x)|t|p−1| ln t2| ≤ ε|t| + Cε|t|q−1, ∀x ∈ Ω, t ∈ R. (2.2)

By (2.2), we know that J is well defined and J ∈ C1(E,R) with

〈J ′(u), v〉 = (a + b[u]2)
"

Ω2

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy

+

∫
Ω

V(x)uvdx −
∫

Ω

Q(x)|u|p−2uv ln u2dx, ∀u, v ∈ E.
(2.3)

Obviously, if u ∈ E is a critical point of J , then u is a weak solution of (1.1).
If u ∈ E is a solution of (1.1) and u± , 0, then u is a sign-changing solution of (1.1), where

u+(x) := max{u(x), 0}, u−(x) := min{u(x), 0}.

The Nehari manifold for J is defined as

N = {u ∈ E \ {0} : 〈J ′(u), u〉 = 0}.

Moreover, we define the nodal set

M := {w ∈ N : w± , 0, 〈J ′(w),w+〉 = 〈J ′(w),w−〉 = 0}.
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Lemma 2.1. The following inequalities hold :
(1). 2(1 − xp) + pxp ln x2 ≥ 0, ∀x ∈ [0, 1) ∪ (1,+∞), p > 2;

(2).
1 − x2

2
−

1 − xp

p
> 0, ∀x ∈ [0, 1) ∪ (1,+∞), p > 2;

(3). 1 − xy −
2 − xp − yp

p
≥ 0, ∀x, y ≥ 0, p > 2;

(4).
1 − x4

4
−

1 − xp

p
≥ 0, ∀x ≥ 0, p > 4;

(5).
1 − x2y2

2
−

2 − xp − yp

p
≥ 0, ∀x, y ≥ 0, p > 4;

(6). 1 − x3y −
4 − 3xp − yp

p
≥ 0, ∀x, y ≥ 0, p > 4.

Proof. Here we only prove (6) holds, the proof of other cases are similar, we can omit it. Let

f (x, y) = 1 − x3y −
4 − 3xp − yp

p
, x, y ≥ 0.

The critical points of f must satisfy the system of equations :

0 = f1(x, y) = −3x2y + 3xp−1,

0 = f2(x, y) = −x3 + yp−1.

Hence, the critical points of f are (0, 0) and (1, 1). Since A = f11(1, 1) = 3(p − 3) > 0, B = f12(1, 1) =

−3, C = f22(1, 1) = p − 1, and B2 − AC = 9 − 3(p − 3)(p − 1) < 0, which implies that f has a local
minimum value at (1, 1), and f (1, 1) = 0. Obviously, f (0, 0) = 1− 4

p > 0. So, for any x, y ≥ 0, we have
that f (x, y) ≥ min f (x, y) = f (1, 1) = 0.
Lemma 2.2. For each u ∈ E and α, β ≥ 0, we have

J(u) ≥ J(αu+ + βu−) +
1 − αp

p
〈J ′(u), u+〉 +

1 − βp

p
〈J ′(u), u−〉

+

(
1 − α2

2
−

1 − αp

p

)
‖u+‖2a +

(
1 − β2

2
−

1 − βp

p

)
‖u−‖2a

+ b
(
1 − α4

4
−

1 − αp

p

)
[u+]4 + b

(
1 − β4

4
−

1 − βp

p

)
[u−]4

+ b
(
1 − α2β2

2
−

1 − αp

p
−

1 − βp

p

)
[u+]2[u−]2.

(2.4)

Proof. From (2.3) in [8], one has∫
Ω

Q(x)|αu+ + βu−|p ln(αu+ + βu−)2dx

=

∫
Ω

Q(x)[|αu+|p ln(αu+)2 + |βu−|p ln(βu−)2]dx.
(2.5)
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By a direct calculation, we easily obtain that

‖αu+ + βu−‖2a = α2
(
a[u+]2 +

∫
Ω

V(x)|u+|2dx
)

+ β2
(
a[u−]2 +

∫
Ω

V(x)|u−|2dx
)

− 2αβ
∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy,

(2.6)

[αu+ + βu−]4 = α4[u+]4 + β4[u−]4 + 2α2β2[u+]2[u−]2

− 4αβ(α2[u+]2 + β2[u−]2)
∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

+ 4α2β2
(∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

)2

,

(2.7)

and

〈J ′(u), u±〉 = (a + b[u]2)
(
[u±]2 −

∫
Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

)
+

∫
Ω

V(x)(u±)2dx −
∫

Ω

Q(x)|u±|p ln(u±)2dx

= a[u±]2 + b[u±]2([u+]2 + [u−]2)

− (a + b([u+]2 + [u−]2 + 2[u±]2))
∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

+ 2b
(∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

)2

+

∫
Ω

V(x)(u±)2dx −
∫

Ω

Q(x)|u±|p ln(u±)2dx.

(2.8)

Thus, it follows from (2.5)–(2.8), Lemma 2.1 and u+(x)u−(y) + u+(y)u−(x) ≤ 0 that

J(u) − J(αu+ + βu−) =
1
2

(‖u+ + u−‖2a − ‖αu+ + βu−‖2a)

+
b
4

([u+ + u−]4 − [αu+ + βu−]4) +
2
p2

∫
Ω

Q(x)[|u+ + u−|p − |αu+ + βu−|p]dx

−
1
p

∫
Ω

Q(x)[|u+ + u−|p ln(u+ + u−)2 − |αu+ + βu−|p ln(αu+ + βu−)2]dx

=
1 − αp

p
〈J ′(u), u+〉 +

1 − βp

p
〈J ′(u), u−〉

+

(
1 − α2

2
−

1 − αp

p

)
‖u+‖2a +

(
1 − β2

2
−

1 − βp

p

)
‖u−‖2a

− a
(
1 − αβ −

1 − αp

p
−

1 − βp

p

) ∫
Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy
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+ b
(
1 − α4

4
−

1 − αp

p

)
[u+]4 + b

(
1 − β4

4
−

1 − βp

p

)
[u−]4

+ b
(
1 − α2β2

2
−

1 − αp

p
−

1 − βp

p

)
[u+]2[u−]2

− b
(
1 − α3β −

3(1 − αp)
p

−
1 − βp

p

)
[u+]2

∫
Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

− b
(
1 − αβ3 −

1 − αp

p
−

3(1 − βp)
p

)
[u−]2

∫
Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

+ b
(
1 − α2β2 −

2(1 − αp)
p

−
2(1 − βp)

p

)
[u−]2

(∫
Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

)2

+

(
2(1 − αp)

p2 +
αp lnα2

p

) ∫
Ω

Q(x)|u+|pdx +

(
2(1 − βp)

p2 +
βp ln β2

p

) ∫
Ω

Q(x)|u−|pdx

≥
1 − αp

p
〈J ′(u), u+〉 +

1 − βp

p
〈J ′(u), u−〉

+

(
1 − α2

2
−

1 − αp

p

)
‖u+‖2a +

(
1 − β2

2
−

1 − βp

p

)
‖u−‖2a

+ b
(
1 − α4

4
−

1 − αp

p

)
[u+]4 + b

(
1 − β4

4
−

1 − βp

p

)
[u−]4

+ b
(
1 − α2β2

2
−

1 − αp

p
−

1 − βp

p

)
[u+]2[u−]2,

which implies that (2.4) holds for all u ∈ E and α, β ≥ 0.
According to Lemma 2.2, we have the following corollaries.

Corollary 2.3. For each u ∈ E and t ≥ 0, we get that

J(u) ≥ J(tu) +
1 − tp

p
〈J ′(u), u〉 +

(
1 − t2

2
−

1 − tp

p

)
‖u‖2a.

Corollary 2.4. For each u ∈ M, there holds

J(u+ + u−) = max
α,β≥0
J(αu+ + βu−).

Corollary 2.5. For each u ∈ N , we have that

J(u) = max
t≥0
J(tu).

Lemma 2.6. Let 4 < p < 2∗s. For each u ∈ E, we have
(i) If u , 0, there exists a unique tu > 0 such that tuu ∈ N ;
(ii) If u± , 0, there exists a unique pair (αu, βu) of positive numbers such that αuu+ + βuu− ∈ M.

Proof. (i) For any u ∈ E \ {0}, set

fu(t) = 〈J ′λ(tu), tu〉

= t2‖u‖2a + bt4[u]4 − tp
∫

Ω

Q(x)|u|p ln(tu)2dx, t > 0.
(2.9)
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From (2.2), p > 4 and (2.9), it is easy to see that limt→0+ fu(t) = 0, fu(t) > 0 for t > 0 small and fu(t) < 0
for t large. Thanks to the continuity of fu(t), there is tu > 0 such that fu(t) = 0. In the following, we
prove that tu is unique. Arguing by contradiction, we assume that there exist two positive constants
t1 , t2 such that fu(t1) = fu(t2) = 0, that is t1u, t2u ∈ N . By Corollary 2.3 and Lemma 2.1 (2), we get

J(t1u) ≥ J(t2u) +
1 −

(
t2
t1

)p

p
〈J ′(t1u), t1u〉

+ t2
1

1 −
(

t2
t1

)2

2
−

1 −
(

t2
t1

)p

p

 ‖u‖2a > J(t2u)

and

J(t2u) ≥ J(t1u) +
1 −

(
t1
t2

)p

p
〈J ′(t2u), t2u〉

+ t2
2

1 −
(

t1
t2

)2

2
−

1 −
(

t1
t2

)p

p

 ‖u‖2a > J(t1u),

which is absurd. Thus, tu > 0 is unique.
(ii) For each u ∈ E with u± , 0, in view of Lemma 2.6 (i), there exists a pair (αu, βu) of positive

numbers such that αuu+, βuu− ∈ N . Let

H(α, β) = 〈J(αu+ + βu−), αu+〉

= α2‖u+‖2a + bα4[u+]4 + bα2β2[u+]2[u−]2

− bαβ(3α2[u+]2 + β2[u−]2)
∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

+ 2bα2β2
(∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

)2

−

∫
Ω

Q(x)|αu+|p ln(αu+)2dx,

(2.10)

and
K(α, β) = 〈J(αu+ + βu−), βu−〉

= β2‖u−‖2a + bβ4[u−]4 + bα2β2[u+]2[u−]2

− bαβ(α2[u+]2 + 3β2[u−]2)
∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

+ 2bα2β2
(∫

Ω

∫
Ω

u+(x)u−(y) + u+(y)u−(x)
|x − y|N+2s dxdy

)2

−

∫
Ω

Q(x)|βu−|p ln(βu−)2dx.

(2.11)

Since 4 < p < 2∗s, it follows from (2.2) that

H(α, α) > 0, K(α, α) > 0, for α > 0 small enough,
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H(β, β) < 0, K(β, β) < 0, for β > 0 large enough.

So, there exist 0 < t1 < t2 such that

H(t1, t1) > 0, K(t1, t1) > 0, H(t2, t2) < 0, K(t2, t2) < 0. (2.12)

Combining (2.10), (2.11) with (2.12), we obtain that

H(t1, β) > 0, H(t2, β) < 0, ∀β ∈ [t1, t2] (2.13)

and
K(α, t1) > 0, K(α, t2) < 0, ∀α ∈ [t1, t2]. (2.14)

Hence, thanks to (2.13), (2.14) and Miranda’s Theorem [23], there exists some pair (αu, βu) with t1 <

αu, βu < t2 such that
H(αu, βu) = K(αu, βu) = 0.

These show that αuu+ + βuu− ∈ M. The proof of unique of (αu, βu) is similar to that of (i), we omit
detail here.

From Corollaries 2.4, 2.5, and Lemma 2.6, we can deduce the following lemma.
Lemma 2.7. The following minimax characterization hold

inf
u∈N
J(u) =: c = inf

u∈E,u,0
max

t≥0
J(tu)

and
inf
u∈M
J(u) =: m = inf

u∈E,u,0
max
α,β≥0
J(αu+ + βu−).

Lemma 2.8. c > 0 and m > 0 are achieved.
Proof. We only prove that m > 0 and is achieved since the other case is similar. For each u ∈ M, one
has 〈J ′(u), u〉 = 0 and then by (2.2) and fractional Sobolev embedding theorem, there exists a constant
C1 > 0 such that

a[u]2 ≤ a‖u‖2a ≤ a‖u‖2a + b[u]4 =

∫
Ω

Q(x)|u|p ln u2dx

≤
a
2

[u]2 + C1[u]q, u ∈ M.

(2.15)

Since q > p > 4, by (2.15), there exists a constant ρ > 0 such that [u] ≥ ρ for each u ∈ M.
Let {un} ⊂ M be such that J(un)→ m. From (2.1) and (2.3), we have

m + o(1) = J(un) −
1
p
〈J ′(un), un〉

=

(
1
2
−

1
p

)
‖un‖

2
a +

(
b
4
−

b
p

)
[un]4 +

2
p2

∫
Ω

Q(x)|u|pdx

≥

(
1
2
−

1
p

)
‖un‖

2
a,

(2.16)
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which implies that {un} is bounded. Thus, there exists u∗, in subsequence sense, such that u±n ⇀ u±∗ in
E and u±n → u±∗ in Lr(Ω) for 2 ≤ r < 2∗s. Since {un} ⊂ M, we have 〈J ′(un), u±n 〉 = 0, which yields that

aρ2 ≤ a‖u±n ‖
2
a ≤ a‖u±n ‖

2
a + b[u±n ]4 + b[u+

n ]2[u−n ]2

− (a + b(u+
n ]2 + [u−n ]2 + 2[u±n ]2))

∫
Ω

∫
Ω

u+
n (x)u−n (y) + u+

n (y)u−n (x)
|x − y|N+2s dxdy

+ 2
(∫

Ω

∫
Ω

u+
n (x)u−n (y) + u+

n (y)u−n (x)
|x − y|N+2s dxdy

)2

=

∫
Ω

Q(x)|u±n |
p ln(u±n )2dx

≤ ε

∫
Ω

|u±n |dx + Cε

∫
Ω

|u±n |
qdx

≤ C2

∫
Ω

|u±n |
qdx.

(2.17)

By the compactness of the embedding W s,2
0 (Ω) ↪→ Lr(Ω), we obtain∫

Ω

|u±∗ |
qdx ≥ C3ρ

2,

which implies u±∗ , 0. By the Lebesgue dominated convergence theorem and the weak semicontinuity
of norm, one has

a‖u±∗ ‖
2
a + b[u±∗ ]

4 + b[u+
∗ ]

2[u−∗ ]
2

− (a + b([u+
∗ ]

2 + [u−∗ ]
2 + 2[u±∗ ]

2))
∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

+ 2
(∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

)2

≤ lim inf
n→∞

[
a‖u±n ‖

2
a + b[u±n ]4 + b[u+

n ]2[u−n ]2

−(a + b(u+
n ]2 + [u−n ]2 + 2[u±n ]2))

∫
Ω

∫
Ω

u+
n (x)u−n (y) + u+

n (y)u−n (x)
|x − y|N+2s dxdy

+2
(∫

Ω

∫
Ω

u+
n (x)u−n (y) + u+

n (y)u−n (x)
|x − y|N+2s dxdy

)2
= lim inf

n→∞

∫
Ω

Q(x)|u±n |
p ln(u±n )2dx

=

∫
Ω

Q(x)|u±∗ |
p ln(u±∗ )

2dx,

which yields that
〈J ′(u∗), u+

∗ 〉 ≤ 0 〈J ′(u∗), u−∗ 〉 ≤ 0.

In view of Lemma 2.6 (ii), there exist constants α, β > 0 such that αu+
∗ + βu−∗ ∈ M. Thus, from (2.1),
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(2.3), (2.4), Lemma 2.1 and the weak semicontinuity of norm, we obtain that

m = lim
n→∞

[
J(un) −

1
p
〈J ′(un), un〉

]
= lim

n→∞

[(
1
2
−

1
p

)
‖un‖

2
a +

(
b
4
−

b
p

)
[un]4 +

2
p2

∫
Ω

Q(x)|un|
pdx

]
≥

(
1
2
−

1
p

)
‖u∗‖2a +

(
b
4
−

b
p

)
[u∗]4 +

2
p2

∫
Ω

Q(x)|u∗|pdx

= J(u∗) −
1
p
〈J ′(u∗), u∗〉

≥ J(αu+
∗ + βu−∗ ) +

1 − αp

p
〈J ′(u∗), u+

∗ 〉 +
1 − βp

p
〈J ′(u∗), u−∗ 〉 −

1
p
〈J ′(u∗), u∗〉

≥ m −
αp

p
〈J ′(u∗), u+

∗ 〉 −
βp

p
〈J ′(u∗), u−∗ 〉 ≥ m,

which shows
〈J ′(u∗), u±∗ 〉 = 0, J(u∗) = m.

Moreover, it follows from u±∗ , 0, 〈J ′(u∗), u∗〉 = 0 and (2.6) that

m = J(u∗) = J(u∗) −
1
p
〈J ′(u∗), u∗〉

=

(
1
2
−

1
p

)
‖u∗‖2a +

(
b
4
−

b
p

)
[u∗]4 +

2
p2

∫
Ω

Q(x)|u∗|pdx

≥

(
1
2
−

1
p

)
‖u∗‖2a ≥

(
1
2
−

1
p

)
(‖u+
∗ ‖

2
a + ‖u−∗ ‖

2
a) > 0.

3. Main result

In this section, we will give the main result and proof.
Lemma 3.1. The minimizers of infN J and infMJ are critical points of J .

Proof. Thanks to Lemma 2.8, we prove the minimizer u∗ of infMJ is critical point of J . Arguing by
contradiction, we assume that u∗ = u+

∗ + u−∗ ∈ M, J(u∗) = m and J ′(u∗) , 0. Then there exist δ > 0
and γ > 0 such that

‖J ′(u)‖ ≥ γ, for all ‖u − u∗‖ ≤ 3δ and u ∈ E.

Set D =
(

1
2 ,

3
2

)
×

(
1
2 ,

3
2

)
. By Lemma 2.2, one has

% := max
(α,β)∈∂D

J(αu+
∗ + βu−∗ ) < m.

Let ε := min{(m − %)/3, δγ/8) and S δ := B(u∗, δ). By applying the Lemma 2.3 in Ref. [24], there
exists a deformation η ∈ C([0, 1] × E, E) such that

(i) η(1, ν) = ν if ν < J−1([m − 2ε,m + 2ε]) ∩ S 2δ;
(ii) η(1,Jm+ε ∩ S δ) ⊂ Jm−ε;
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(iii) J(η(1, ν)) ≤ J(ν), ∀ν ∈ E.
From (iii) and Lemma 2.2, for each α, β > 0 with |α − 1|2 + |β − 1|2 ≥ δ2/‖u∗‖2, one has

J(η(1, αu+
∗ + βu−∗ )) ≤ J(αu+

∗ + βu−∗ ) < J(u∗) = m. (3.1)

By Corollary 2.4, we have J(αu+
∗ + βu−∗ ) ≤ J(u∗) = m for α, β > 0. According to (ii), one has

J(η(1, αu+
∗ + βu−∗ )) ≤ m − ε, ∀α, β > 0, |α − 1|2 + |β − 1|2 < δ2/‖u∗‖2. (3.2)

Thus, from (3.1) and (3.2), we obtain

max
(α,β)∈D̄

J(η(1, αu+
∗ + βu−∗ )) < m. (3.3)

Let h(α, β) = αu+
∗ + βu−∗ , we will prove that η(1, h(D)) ∩ J , ∅.

Define
k(α, β) := η(1, h(α, β)),

Φ(α, β) := (〈J ′(h(α, β)), u+
∗ 〉, 〈J

′(h(α, β)), u−∗ 〉) := (Φ1(α, β),Φ2(α, β))

Ψ(α, β) :=
(

1
α
〈J ′(k(α, β)), (k(α, β))+〉,

1
β
〈J ′(k(α, β)), (k(α, β))−〉

)
.

Obviously, Φ is a C1 functions. Moreover, we have by a direct calculation that

∂Φ1(α, β)
∂α

|(1,1) = ‖u+
∗ ‖

2
a + 3b[u+

∗ ]
4 + b[u+

∗ ]
2[u−∗ ]

2

− 6b[u+
∗ ]

2
∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

+ 2b
(∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

)2

− (p − 1)
∫

Ω

Q(x)|u+
∗ |

p ln(u+
∗ )

2dx − 2
∫

Ω

Q(x)|u+
∗ |

pdx,

and

∂Φ1(α, β)
∂β

|(1,1) = 2b[u+
∗ ]

2[u−∗ ]
2 − [a + 3b([u+

∗ ]
2 + [u−∗ ]

2)]
∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

+ 4b
(∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

)2

.

Similarly, we obtain

∂Φ2(α, β)
∂β

|(1,1) = ‖u−∗ ‖
2
a + 3b[u−∗ ]

4 + b[u+
∗ ]

2[u−∗ ]
2

− 6b[u−∗ ]
2
∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

+ 2b
(∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

)2

− (p − 1)
∫

Ω

Q(x)|u−∗ |
p ln(u−∗ )

2dx − 2
∫

Ω

Q(x)|u−∗ |
pdx,
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and

∂Φ2(α, β)
∂α

|(1,1) = 2b[u+
∗ ]

2[u−∗ ]
2 − [a + 3b([u+

∗ ]
2 + [u−∗ ]

2)]
∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

+ 4b
(∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

)2

.

It is easy to check that ∣∣∣∣∣∣ ∂Φ1(α,β)
∂α
|(1,1)

∂Φ2(α,β)
∂α
|(1,1)

∂Φ1(α,β)
∂β
|(1,1)

∂Φ2(α,β)
∂β
|(1,1)

∣∣∣∣∣∣ , 0.

Thus, by degree theory [25, 26], we can derive that Ψ(α0, β0) = 0 for some (α0, β0) ∈ D, so that
η(1, h(α0, β0)) = k(α0, β0) ∈ M. This contradicts (3.3) and shows that J ′(u∗) = 0. Similarly, we can
prove that any minimizer of infN J is a critical point of J .

Now, we are in a position to prove our main result.
Theorem 3.2. Suppose that condition (H) holds. If 4 < p < 2∗s, then problem (1.1) has a solution
u0 ∈ N and a sign-changing solution u∗ ∈ M such that

inf
M
J = J(u∗) ≥ 2J(u0) = 2 inf

N
J > 0.

Proof. By Lemmas 2.8 and 3.1, there exist u0 ∈ N and u∗ ∈ M such that J(u0) = c with J ′(u0) = 0,
and J(u∗) = m with J ′(u∗) = 0. That is, problem (1.1) has a solution u0 ∈ N and a sign-changing
solution u∗ ∈ M. Moreover, by (2.5)–(2.7), Corollary 2.4 and Lemma 2.7, we get

m = J(u∗) = sup
α,β≥0
J(αu+

∗ + βu−∗ )

= sup
α,β≥0

[
1
2
‖αu+

∗ + βu−∗ ‖
2
a +

b
4

[αu+
∗ + βu−∗ ]

4 +
2
p2

∫
Ω

|αu+
∗ + βu−∗ |

pdx

−
1
p

∫
Ω

Q(x)|αu+
∗ + βu−∗ |

p ln(αu+
∗ + βu−∗ )

2dx
]

= sup
α,β≥0

[
J(αu+

∗ ) +J(βu−∗ ) − αβ
∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

+
b
2
α2β2[u+

∗ ]
2[u−∗ ]

2 + bα2β2
(∫

Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

)2

−bαβ(α2[u+
∗ ]

2 + β2[u−∗ ]
2)

∫
Ω

∫
Ω

u+
∗ (x)u−∗ (y) + u+

∗ (y)u−∗ (x)
|x − y|N+2s dxdy

]
≥ sup

α≥0
J(αu+

∗ ) + sup
β≥0
J(βu−∗ ) ≥ 2c > 0.

Remark 3.3. In [8, 10], (1.2) and (1.3) has a sign-changing solution with precisely two nodal domains
has been proved respectively. By Theorem 3.2, we know that (1.1) has a sign-changing solution. But
according to the method is used in [8, 10], we cannot prove that the sign-changing solution of (1.1) has
precisely two nodal domains.
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