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Abstract: This paper focuses on the adaptive neural network (NN) control problem for nonlinear
quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the
second order active suspension system is converted to a fourth order system, which solves the problem
of zero dynamics analysis in the second order system. Based on the adaptive backstepping technique,
considering the actuator fault of vehicle, the corresponding fault tolerant controller is designed. At the
same time, the unknown smooth functions are estimated by the NN. It is proved by stability analysis
that all states in active suspension system are bounded. Finally, a simulation example is given to verify
the effectiveness of the proposed method in a quarter active suspension system.
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1. Introduction

In the last twenty years, with the rapid development of industry, automobile has become a
necessary tool for people’s daily travel. The vehicle can run smoothly on the road, which is achieved
by the cooperation of various subsystems of the vehicle. The suspension system, as one of the main
subsystems of the vehicle, plays an indispensable role. Vehicle suspension system is mainly divided
into passive suspension system, semi-active suspension system and active suspension system (ASS).
Today, many vehicles are equipped with only passive or semi-active suspension [1–4]. However, their
spring stiffness and damping are not adjustable, according to the random vibration theory, it can only
guarantee to achieve results in specific road conditions. Compared with them, the active suspension
system has an actuator which can adjust the force, and greatly increases the controllability of the
vehicle in the driving process. Therefore, the control problem of the active suspension systems [5] has
been widely concerned by lots of scholars. Many scholars have proposed excellent control algorithms
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[6–8] for active suspension systems.
According to the established vehicle model, the active suspension control research is divided into

three categories: quarter vehicle model [9], half-car model [10] and full vehicle model [11]. There are
many excellent control algorithms applied to active suspension systems, but in practice, many uncertain
factors are ignored in nonlinear suspension systems. In order to deal with the uncertain factors, NN
control methods [12–19] and fuzzy control methods [20–23] have been proposed in many articles.
In addition, some intelligent decision-making [24] and nonlinear analysis methods [25] are proposed.
Many systems also use NN control such as stochastic systems [26, 27], pure-feedback systems [28],
and nonlinear delayed systems [29]. At the same time, NN control is also used in a lot of practical
systems. At a result, ASS has become a hot issue in recent years, and many different control strategies
have been reported. In [30] sliding mode control is developed for quarter active suspension systems.
The finite-time stability is proposed in [31], and the problem of actuator failure in semi vehicle active
suspension system has been raised in [32]. As the quarter ASS is most in line with the real situation, it
is representative to study some control strategies such as [33, 34]. However, the general quarter ASS
[35, 36] is a second-order system, which needs zero dynamics analysis. This may lead to the loss of
information. Therefore, it is proposed in [37] by using Butterworth low-pass filter (LPF) to convert
the non-strict feedback system to strict feedback system. Based on the Butterworth LPF, it makes the
quarter ASS expressed from a second-order system to a fourth-order system.

Generally speaking, due to the influence of structural, environmental and other problems, many
practical systems have different constraints. In view of this, many scholars have achieved a lot of
works. For example, in [38], the robotic system with full-state constraints is considered. Constraint
methods are proposed for switched systems in [39, 40]. In [41], the delayed systems with time-varying
full-state constraints is considered. An effective finite-frequency fault detection method is proposed for
descriptor system in [42]. An input constrained control method is proposed in [43]. In addition, many
excellent constraint control methods have been applied to many practical systems. Although a large
number of scholars have carried out a series of studies on ASS, there are also many difficult problems in
the research on active suspension control. The problem of actuator failure can be not ignored. Actuator
failure is equally important for vehicle stability.

In the actual production and life, the actuator failure of machines cannot be ignored. of course,
the actuator failure of active suspension system is quite important as well. This kind of fault may
lead to the instability of the control systems and even lead to catastrophic accidents. Therefore, it is
necessary to study fault-tolerant control (FTC) strategy [44, 45]. In order to deal with the problem of
actuator failure, some control strategies have been proposed [46–48]. FTC is also very important for
ASS. In [49–51], some fault tolerant control strategies are proposed for quarter ASSs or half-car ASSs.
Meanwhile, the corresponding control strategy is proposed for the vehicle ASS in [52]. Through
the intelligent FTC of the active suspension, the control reliability of the suspension system can be
effectively improved. Therefore, it is very meaningful to propose an FTC strategy for a quarter ASS.

An adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems
with actuator failure is proposed in this paper. The main contributions of the proposed control are as
follows.

1) Different from the previous works [35, 36], by using Butterworth LPF, the second-order quarter
active suspension system is changed into a fourth-order system. Considering all states in the quarter
suspension system is more general.
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2) The actuator failure of quarter ASS is considered. An adaptive NN control is put forward in this
paper, and the FTC solves the problem of actuator failure in the process of vehicle driving, so that the
vehicle can quickly return to normal driving.

The rest of this paper is organized as follows: Section II introduces the quarter active suspension
system based on LPF and the fault model used in this paper. An adaptive controller with actuator
failure and stability analysis are considered in Section III. In Section IV, a simulation example is given
to demonstrate the effectiveness of the proposed method, and the conclusion is given in Section V.

2. Problem analysis

The quarter active suspension system is a representative model in vehicle system, which is displayed
in Figure 1. It is often used in the design and analysis of automotive auxiliary system. According to
the dynamic characteristics of the active suspension system, the force analysis is carried out as



ẋ1 = x2

ẋ2 =
1

ms
(−Fs − Fd + u)

ẋ3 = x4

ẋ4 =
1

mu
(−Fs − Fd + Ft + Fb − u)

(2.1)

where the control input of the quarter active suspension system is u, the sprung mass and the unsprung
mass are represented by ms, mu. zs and zw represent the displacement of the sprung and unsprung
mass, zr is the disturbance of the road surface, ka, kt, la and lt stand for the stiffness coefficients and the
damping coefficients.

Figure 1. Quarter-car model.
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According to the stress analysis, these forces are expressed as

Fs = ka (zs − zw) , Fd = la (żs − żw)

Ft = kt (zw − zr) , Fb = lt (żw − żr)
(2.2)

Define the following state variables x1 = zs, x2 = żs, x3 = zw, x4 = żw. It easy to know that the state
space form of quarter car active suspension systems is

ẋ1 = x2

ẋ2 =
1

ms
(−Fs − Fd + u)

ẋ3 = x4

ẋ4 =
1

mu
(−Fs − Fd + Ft + Fb − u)

(2.3)

Remark 1: Previous works [37, 38] considered the equation of states with respect to x1 and x2, which
may result in the information loss of the state variables x3 and x4. In this work, by using Butterworth
low-pass filter, all states are considered when designing the controller.
Assumption 1: The desired tracking trajectory yd and its time derivative ẏd are assumed to be bounded
with |yd| ≤ A .
Assumption 2: There is only one failure of the quarter active suspension system at the same time.
Assumption 3: Because the load of the vehicle is limited, the car-body mass is limited by ms min ≤

ms ≤ ms max, where ms min and ms max are constants.
Assumption 4: [37] The control signal can be expressed as u = u f + ∆u, where ∆u is an error and u f

is a filtered signal defined as:
u f = HL (s) u ≈ u (2.4)

where HL (s) is a Butterworth low-pass filter.
The corresponding filter parameters of Butterworth filters with the cutoff frequency are shown in

Table 1, in which it holds that ωc=1rad/s. for different values of n.

Table 1. Parameters of the Butterworth LPF.[
HL (s) = a0/

(
sn + an−1sn−1 + · · · + a1s + a0

) ]
Filter order a4 a3 a2 a1 a0

2 1.141 1.000
3 2.000 2.000 1.000
4 2.613 3.141 2.613 1.000
5 3.236 5.236 5.236 3.236 1.000

In this way, it will not only lead to algebraic cycles, but also is unable to implement directly. In order
to avoid the above problems, the filtered signal is used to avoid the algebraic loop problem effectively.
According to the approach proposed in [37], it is worth noting that, due to the low pass characteristics
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of most actuators, the following replacement is reasonable.

ẋ1 = x2

ẋ2 =
1

ms

(
− f2 + u f + ∆u + x3

)
ẋ3 = x4

ẋ4 =
1

mu
( f4 − u)

(2.5)

where f2 = Fs + Fd and f4 = −Fs − Fd + Ft + Fb are unknown functions.
In this paper, the actuator faults include deviation faults and ineffective faults, which are given as

[53]
u = ρuc + ζ, t ∈ [tv, te] (2.6)

where 0 ≤ ρ ≤ 1 is the effectiveness factor of the fault model, ζ is an unknown constant and ζmax = vm.
Let tv and te be the time instants when the actuator takes place and ends. The actuator fault model
includes the following situations:

1) when ρ=1 and ζ=0, it means that there is not any actuator fault.
2) when 0 < ρ

−

≤ ρ < ρ̄ and ζ=0, it shows partial actuator failure, where 0 < ρ
−

≤ 1, and 0 < ρ̄ ≤ 1

are constant.
3) when ρ=0 and ζ=1, it implies that the signal uc can no longer be influenced by the control inputs

u.
Then, (2.5) becomes 

ẋ1 = x2

ẋ2 =
1

ms
(− f2 + ρuc + ∆u + x3 + ζ)

ẋ3 = x4

ẋ4 =
1

mu
( f4 − ρuc + ζ)

(2.7)

In the next section, the actuator failure problem will be solved for the ASS.

3. Adaptive FTC controller design

3.1. Adaptive FTC controller design

The controller design is implemented by backstepping technologies. Define the errors variable as
follows:

z1 = x1 − yd

zi = xi − αi−1 (i = 2, 3, 4)

where yd is the expected trajectory of x1 and αi−1 are the virtual controls which will be given in the
later.

Step 1: From above definition, ż1 is given as

ż1 = ẋ1 − ẏd (3.1)
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The Lyapunov function V1 is selected as
V1 = 1

2z2
1 (3.2)

The time derivative of V1 is became

V̇1 = z1 (z2 + α1 − ẏd) (3.3)

The virtual control input α1is selected as

α1 = −c1z1 + ẏd (3.4)

where c1 > 0 is a positive constant. The time derivative of V1 is written as

V̇1= − c1z2
1 + z1z2 (3.5)

Step 2: The time derivative of z2 as defined in above is

ż2 =ẋ2 − α̇1

=
1

ms
(− f2 + ∆u + ρuc + ζ + x3) − α̇1 (3.6)

It is easy to get

msz2ż2 = − z2 f2 + z2∆u + z2 (ρuc + ζ)

+ z2z3 + z2α2 − msz2α̇1 (3.7)

In order to deal with the influence of unknown functions, the neural network is introduced to
approximate it as

H (X) =wTφ (X) + κ (3.8)

where w = [w1,w2, · · ·wn]T ∈ R is the weight vector of NN, φ (X) is the basis functions,
X = [x1, x2, x3, x4]T is the input of the basis functions, κ represents the approximation error and κ̄ is a
constant with κ ≤ κ̄.

In addition, define H2 (X2) =wT
2φ2 (X2) + κ2, where H2 (X2) denotes an unknown function, given as

H2 (X2) = (ρuc + ζ) − msz2α̇1

=wT
2φ2 (X2) + κ2 (3.9)

The error weight vector is defined as w̃2 = w2 − ŵ2, ŵ2 represents the estimate of w2.
The Lyapunov function V2 is selected as

V2=V1 + ms
2 z2

2 + 1
2w̃T

2 Λ−1
2 w̃2 (3.10)

where Λi (i = 2, 3, 4) is a positive definite symmetric matrix. The time derivative of V2 is regarded as

V̇2 = V̇1 + msz2ż2 − w̃T
2 Λ−1

2
˙̂w (3.11)

Substituting (3.7) and (3.9) into (3.11), one obtains

V̇2=msz2ż2 − w̃T
2 Λ−1

2
˙̂w2 − c1z2

1 + z1z2
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=z2

(
wT

2φ2 (X2) + κ2 + ∆u + z3 + α2 − f2

)
− w̃T

2 Λ−1
2

˙̂w2 − c1z2
1 + z1z2 (3.12)

Lemma 1: [54, 55] For any x, y ∈ Rn, there are following inequalities where a > 0, p > 1, q > 1 and
(p − 1) (q − 1) = 1.

xT y ≤ ap

p ‖x‖
p + 1

qaq ‖y‖q (3.13)

Then, the time derivative of V2 is

V̇2 ≤z2

(
wT

2φ2 (X2) + z3 + α2 − f2

)
− w̃T

2 Λ−1
2

˙̂w2

− c1z2
1 + z1z2 +

1
2
κ̄2

2 +
1
2

(∆u)2 + z2
2 (3.14)

It is easy to know

V̇2 ≤z2

(
ŵT

2φ2 (X2) + z3 + α2 − f2

)
− w̃T

2 Λ−1
2

˙̂w2

− c1z2
1 + z1z2 + z2

2 +
1
2
κ̄2

2 +
1
2

(∆u)2 + z2w̃T
2φ2 (X2) (3.15)

The virtual control input and parameter adaptive law are designed as

α2 = − (c2 + 1) z2 + f2 − z1 − ŵT
2φ2 (X2)

˙̂w2 =Λ2 (z2φ2 (X2) − γ1ŵ2) (3.16)

Now, substituting (3.16) into (3.15) gives

V̇2 ≤z2z3 − c1z2
1 − c2z2

2 −
1
2
γ1‖w̃2‖

2

+
1
2
γ1‖w2‖

2 +
1
2
κ̄2

2 +
1
2

(∆u)2 (3.17)

where c2 > 0 and γ1 > 0 are designed constants.
Step 3: The Lyapunov function V3 is defined as

V3 = V2 + 1
2z2

3 + 1
2w̃T

3 Λ−1
3 w̃3 (3.18)

The error weight vector is defined as w̃3 = w3 − ŵ3, ŵ3 represents the estimate of w3.
The time derivative of V3 is regarded as

V̇3 =z3ż3 − w̃T
3 Λ−1

3
˙̂w3 + V̇2

=z3 (z4 + α3 − α̇2) − w̃T
3 Λ−1

3
˙̂w3 + V̇2 (3.19)

Define
H3 (X3) = −α̇2=wT

3φ3 (X3) + κ3 (3.20)

Then, the time derivative of V3 becomes

V̇3=z3

(
z4 + α3 + wT

3φ3 (X3) + κ3

)
AIMS Mathematics Volume 6, Issue 1, 754–771.
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− w̃T
3 Λ−1

3
˙̂w3 + V̇2 (3.21)

The virtual control input of active suspension system and parameter adaptive law are given as

α3 = − (c3 + 0.5) z3 − z2 − ŵT
3φ3 (X3)

˙̂w3 =Λ3 (z3φ3 (X3) − γ2ŵ3) (3.22)

From (3.22) V̇3 becomes

V̇3 ≤z3z4 − c1z2
1 − c2z2

2 − c3z2
3

−
1
2
γ1‖w̃2‖

2 +
1
2
γ1‖w2‖

2 +
1
2
κ̄2

2

+
1
2

(∆u)2
−

1
2
γ2‖w̃3‖

2 +
1
2
γ2‖w3‖

2 +
1
2
κ̄2

3 (3.23)

where c3 > 0 and γ2 > 0 are designed constants.
Step 4: The time derivative of z4 is as follows

ż4 = 1
mu

( f4 − ρuc − ζ) − α̇3 (3.24)

Then, it gets
muρz4ż4 = z4

(
f4
ρ
− uc −

ζ

ρ

)
−

mu
ρ

z4α̇3 (3.25)

Let
H4 (X4) =

(
f4
ρ
−

ζ

ρ

)
−

mu
ρ
α̇3 = wT

4φ4 (X4) + κ4 (3.26)

The Lyapunov function V4 is defined as

V4 = V3 + mu
2ρ z2

4 + 1
2w̃T

4 Λ−1
4 w̃4 (3.27)

The error weight vector is defined as w̃4 = w4 − ŵ4, ŵ4 represents the estimate of w4.
The time derivative of V4 is regarded as

V̇4=
muz4

ρ
ż4 − w̃T

4 Λ−1
4

˙̂w4 + V̇3

=z4

(
wT

4φ4 (X4) + κ4 − uc

)
− w̃T

4 Λ−1
4

˙̂w4 + V̇3 (3.28)

The controller of active suspension system is designed as

uc = (c4 + 0.5) z4 + z3 + ŵT
4φ4 (X4) (3.29)

The parameter adaptive law is given as

˙̂w4 = Λ4 (z4φ4 (X4) − γ3ŵ4) (3.30)

Then, from (3.29) and (3.30), it leads to

V̇4 ≤ −

n=4∑
i=1

ciz2
i +

4∑
i=2

1
2
κ̄2

i +
1
2

(∆u)2

+

3∑
i=1

(
−

1
2
γi‖w̃i+1‖

2 +
1
2
γi‖wi+1‖

2
)

(3.31)

where c4 > 0 and γ3 > 0 are designed constants.
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3.2. Stability analysis

Theorem 1: The quarter active suspension systems with actuator faults based on Butterworth low-pass
filter is considered (2.7). Through the design of virtual controllers α1, α2 and α3, actual controller uc

and adaptive laws ŵ2, ŵ3 and ŵ4, all the signals in the closed-loop systems are bounded.
Proof: Based on (3.28), (3.29), and (3.30), (3.31) is rewritten as

V̇4 ≤ −MV + N (3.32)

where N =
4∑

i=2

1
2 κ̄

2
i + 1

2 (∆u)2 +
3∑

i=1

1
2γi‖wi+1‖

2, M = min {2c1, 2a2/ms max, 2a3, 2a4/mb max, γiΛi+1 i =

2, 3, 4}, a2 = c2 + 1, a3 = c3 + 0.5, and a4 = c4 − 0.5.
Then, (3.32) can be further written as

V4 (t) ≤
(
V4 (0) − N

M

)
e−Mt + N

M (3.33)

From (3.33), it is clear that zi, xi, u are bounded.
Meanwhile, the errors satisfy

|zi| ≤

√
2
((

V4 (0) − N
M

)
e−Mt + N

M

)
= B, i = 1, 2, 3, 4 (3.34)

From (3.34), it clear that the errors of quarter active suspension system are within bounds. z1 is bounded
as |z1| ≤ B and the desired trajectory |yd| ≤ A is also bounded. At the same time, |x1| = |z1|+ |yd| ≤ A+B.
We can get x2, x3, x4are bound similar. It implies that all the signals of the quarter active suspension
closed-loop system with actuator failure are bounded.

4. Simulation example

In this section, an example of quarter active suspension system is provided to prove the effectiveness
of proposed method. The quarter-car parameters are given.

The initial state values are selected as: x1 (0) = 0.03, x2 (0) = 0.03, x3 (0) =0.03, x4 (0) = 0.03,
x5 (0) = 0.03, x6 (0) = 0.03 and x7 (0) = 0.03. The desired tracking trajectories yd is given as yd = 0,
then ẏd = 0. The road excitation is represented as: zr=0.002 sin(0.001πt). In addition, the designed
parameters are as follows c13, c2 = 3.2, c3 = 1, c4 = 64.5 γ1=100, γ2=100, and γ3=100. The
problem of actuator failure is considered in this paper. So, the actuator faults deviation coefficient ρ
and unknown constant ζ are designed as ρ=0.8, ζ=0.5. The parameters of the vehicle is described by
Table 2.

Table 2. The quarter-car model parameters.

Parameter Value Parameter Value
ka 18000N/m mu 59kg
la 2400Ns/m ms 590kg
kt 15000N/m ms max 700kg
lt 1200Ns/m ms min 520kg
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Figures 2 and 4 show that the vertical displacement of the car-body converges to a small
neighborhood of zero. Figures 3 and 5 show that the vertical speed converges to the neighborhood of
zero. At the same time, z1, z2, z3 and z4 are given in Figures 6 and 7. Figure 8 shows that the
suspension space is small enough around zero. The adaptive laws are plotted in Figure 9. It is clear
that all the adaptive laws converge to a small neighborhood of zero. In Figure 10, we can see that the
control input u is stable.

Figure 2. The vertical displacement of vehicle x1.

Figure 3. The vertical speed of the car x2.
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Figure 4. The vertical displacement of vehicle x3.

Figure 5. The speed of the vehicle x4.
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Figure 6. The errors z1 and z2.

Figure 7. The errors z3 and z4.
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Figure 8. Suspension space x1 − x3.

Figure 9. The adaptive laws ŵ2, ŵ3 and ŵ4.
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Figure 10. Control input u.

5. Conclusion

An adaptive fault tolerant controller is put forward for a quarter ASS in this paper. By using
Butterworth low-pass filter, the second order ASS is converted to a fourth order system, which
includes all the vehicle variables in the quarter suspension system. At the same time, the fault of
vehicle actuator is also considered. NN control is used to approximate unknown functions in quarter
suspension system. On account of backstepping method, the corresponding adaptive controller is
designed. Through stability analysis, it can be concluded that all signals in the quarter active
suspension system are bounded. Finally, the simulation results show that the method is effective. In
the future, more complex situations can be considered in the controller design of the fault-tolerant
control, such as the performance constraints, saturated or dead-zone, etc. The control studies will be
further enriched in active suspension systems.
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