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1. Introduction

Let D be the open unit disk in the complex plane C and H(D) be the class of all functions analytic
in D. Let 0 < p < ∞ and −1 < α < ∞. The Dirichlet type spaceDp

α is the set of all f ∈ H(D) such that

‖ f ‖Dp
α

= | f (0)|p +

∫
D

| f ′(z)|p(1 − |z|2)αdA(z) < ∞,

where dA is the normalized Lebesgue area measure in D such that A(D) = 1. When p = 2 and α = 0, it
gives the classic Dirichlet spaceD. When p = 2 and α = 1, it gives the Hardy space H2. When α = p,
D

p
α is just the classical Bergman space Ap.
Let 0 < p < ∞. The Qp space is the space of all f ∈ H(D) such that (see, e.g., [23])

‖ f ‖2Qp
= | f (0)|2 + sup

a∈D

∫
D

| f ′(z)|2(1 − |σa(z)|2)pdA(z) < ∞,

where σa(z) = a−z
1−az . When p > 1, Qp is the Bloch space B (see [24, 25]), which denote the space of all

f ∈ H(D) such that
‖ f ‖B = | f (0)| + sup

z∈D
(1 − |z|2)| f ′(z)| < ∞.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021042


699

When p = 1, Q1 = BMOA, the space of analytic functions in the Hardy space H1(D) whose boundary
functions have bounded mean oscillation (see, e.g., [25]).

Let 0 < p, s < ∞, −2 < q < ∞. A function f ∈ H(D) is said to belong to F (p, q, s) if

‖ f ‖p
F (p,q,s) = | f (0)|p + sup

a∈D

∫
D

| f ′(z)|p(1 − |z|2)q(1 − |σa(z)|2)sdA(z) < ∞.

An f ∈ F0(p, q, s) if f ∈ H(D) and

lim
|a|→1

∫
D

| f ′(z)|p(1 − |z|2)q(1 − |σa(z)|2)sdA(z) = 0.

F (p, q, s) is a Banach space under the norm ‖ · ‖F (p,q,s) when p ≥ 1. This space was first introduced
by Zhao in [24] and called general function space because it can get many function spaces if it takes
special parameters of p, q, s. From [24] we see that F (p, p − 2, s) is just the Bloch space when s > 1.

For 0 < q, s < ∞, let LF (q, q − 2, s) denote the space of all f ∈ H(D) such that

‖ f ‖q
LF (q,q−2,s) = | f (0)|q + sup

a∈D

1(
log 2

1−|a|2

)q

∫
D

| f ′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)sdA(z) < ∞.

It is easy to check that LF (q, q − 2, s) is a Banach space under the norm ‖ · ‖LF (q,q−2,s) when q ≥ 1.
Let g ∈ H(D). The Volterra integral operator Tg, which introduced by Pommerenke in [13], was

defined by

Tg f (z) =

∫ z

0
f (w)g′(w)dw, f ∈ H(D).

The importance of the operator Tg comes from the fact that Tg f + Ig f = Mg f − f (0)g(0), where the
operators Mg and Ig are defined by

(Mg f )(z) = g(z) f (z), Ig f (z) =

∫ z

0
f ′(w)g(w)dw f ∈ H(D), z ∈ D,

respectively. Note that the integral form of the classical Cesàro operator C is

C( f )(z) =
1
z

∫ z

0
f (ζ)

1
1 − ζ

dζ =
1
z

∫ z

0
f (ζ)

(
ln

1
1 − ζ

)′
dζ.

Hence the operator Tg can also be seen as the generalization of the Cesàro operator C. In [13],
Pommerenke showed that Tg is bounded on H2 if and only if g ∈ BMOA. In [2], Aleman and Siskakis
showed that Tg is bounded (compact) on Ap if and only if g ∈ B (g ∈ B0). Recently, the operator Tg

has been received many attention. See [1,2,4–8,12,14,15,18,19,22,24] and the references therein for
more study of the operator Tg.

For an arc I ⊆ ∂D, let |I| = 1
2π

∫
I
|dζ | be the normalized length of I. Let 0 < α < ∞ and µ be a

positive Borel measure on D. As usual, we say that µ is a α-Carleson measure if

‖µ‖α := sup
I⊆∂D

µ(S (I))
|I|α

< ∞,
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where S (I) = {z ∈ D : 1 − |I| ≤ |z| < 1, z
|z| ∈ I} is the Carleson box based on I. When α = 1, it gives

the classical Carleson measure. µ is said to be a vanishing α-Carleson measure if lim|I|→0
µ(S (I))
|I|α = 0.

Let 0 < λ, q < ∞, s ≥ 0 and µ be a positive Borel measure on D. The tent space T q
λ,s(µ) consists of

all f ∈ H(D) satisfied

sup
I⊆∂D

1
|I|λ(log 1

|I| )
s

∫
S (I)
| f (z)|qdµ(z) < ∞.

The tent space T q
λ,s(µ) was introduced by Liu, Lou and Zhu in [10]. When q = 2 and s = 0, T 2

λ,0(µ) =

T∞λ was first introduced by Xiao in [22].
In [22], Xiao studied the inclusion mapping i : Qp → T

∞
p (µ). He showed that the inclusion mapping

i : Qp → T
∞
p (µ) is bounded (resp. compact) if and only if

sup
I⊆∂D

(log 2
|I| )

2µ(S (I))

|I|p
< ∞ ( resp. lim

|I|→0

(log 2
|I| )

2µ(S (I))

|I|p
= 0).

As an application, he proved that the operator Tg : Qp → Qp is bounded if and only if

sup
I⊆∂D

(log 2
|I| )

2

|I|p

∫
S (I)
| f ′(z)|2(1 − |z|2)pdA(z) < ∞.

In [10], Liu, Lou and Zhu studied the embedding of some Möbius invariant spaces, such as the Bloch
space and the Qp space, into T 2

λ,s. Among others, they proved the following Theorem A. See [6, 9,
12, 14–17, 21] and the references therein for more study of analytic function spaces embedding into
various tent spaces.

Theorem A. Let 0 < p < 1 and µ be a positive Borel measure on D. If Qp is continuously contained
in T 2

p,2, then µ is a p-Carleson measure. If D2
p is continuously contained in L2(D, dµ), then Qp is

continuously contained in T 2
p,2.

By [22, Lemma 2.1 (ii)], we see that µ is a p-Carleson measure if D2
p is continuously contained in

L2(D, dµ). But the converse is not clear. The nature question then arise, what can one say if we change
T 2

p,2 into T q
λ,s when q > 2?

In this paper, we give an answer by using a new method, which was different to [10, 22]. We
study the boundedness and compactness of the inclusion mapping from Qp spaces into tent spaces
T

q
qp
2 ,s

. As an application, we study the boundedness of Volterra integral operator Tg acting from Qp to

LF (q, q − 2, qp
2 ). Meanwhile, the compactness and essential norm of the operator Tg acting from Qp

to LF (q, q − 2, qp
2 ) are also investigated.

Throughout this paper, we say that A . B if there exists a constant C such that A ≤ CB. The symbol
A ≈ B means that A . B . A.

2. Embedding of Qp spaces into tent spaces

In this section, we study the embedding from Qp to tent spaces. We give a complete characterization
for the boundedness and compactness of the inclusion mapping i : Qp → T q

λ,s(µ). We say that the

AIMS Mathematics Volume 6, Issue 1, 698–711.
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inclusion mapping i : Qp → T
q
λ,s(µ) is compact if

lim
n→∞

1
|I|λ(log 1

|I| )
s

∫
S (I)
| fn(z)|qdµ(z) = 0

whenever I ⊆ ∂D and { fn} is a bounded sequence in Qp that converges to 0 uniformly on compact
subsets of D.

The following result is one of the main results in this paper.

Theorem 1. Let 0 < p < 1 and µ be a positive Borel measure. If 2 < q < ∞ and 0 < s ≤ q < ∞, then
the following statements hold.

(i) The inclusion mapping i : Qp → T
q
qp
2 ,s

(µ) is bounded if and only if

‖µ‖LCMq−s, qp
2

= sup
I⊆∂D

(
log 2

|I|

)q−s
µ(S (I))

|I|
qp
2

< ∞. (2.1)

(ii) The inclusion mapping i : Qp → T
q
qp
2 ,s

(µ) is compact if and only if

lim
|I|→0

(
log 2

|I|

)q−s
µ(S (I))

|I|
qp
2

= 0. (2.2)

Proof. (i) Assume that the inclusion mapping i : Qp → T
q
qp
2 ,s

(µ) is bounded. For any fixed arc I ⊆ ∂D,

let eiθ be the center of I and a = (1 − |I|)eiθ. Set fa(z) = log 2
(1−az) . Then fa ∈ Qp and

|1 − az| ≈ 1 − |a| = |I|, | fa(z)| ≈ log
2
|I|
,

whenever z ∈ S (I). By the boundedness of i, we have

1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| fa(z)|qdµ(z) . ‖ fa‖

q
Qp
< ∞,

which implies (1), as desired.
Conversely, assume that (1) holds. Let f ∈ Qp. For any fixed arc I ⊆ ∂D, let eiθ be the center of I

and a = (1 − |I|)eiθ. We have

1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| f (z)|qdµ(z) . A + B,

where
A =

1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| f (z) − f (a)|qdµ(z), B =

| f (a)|qµ(S (I))

|I|
qp
2 (log 2

|I| )
s
.

Since f ∈ Qp ⊆ B, we obtain

| f (a)|q . ‖ f ‖q
B

(log
2

1 − |a|2
)q . ‖ f ‖qQp

(
log

2
1 − |a|2

)q
,
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which implies that for any I ⊆ ∂D,

B . sup
I⊆∂D

(log 2
|I| )

q−sµ(S (I))

|I|
qp
2

‖ f ‖qQp
. ‖ f ‖qQp

.

Since 0 < s ≤ q < ∞, we get

sup
I⊆∂D

µ(S (I))

|I|
qp
2
. sup

I⊆∂D

(
log 2

|I|

)q−s
µ(S (I))

|I|
qp
2

< ∞,

which implies thatD2
p ⊆ Lq(dµ) by [4, Theorem 1]. Therefore,

A .
1

|I|
qp
2

∫
S (I)
| f (z) − f (a)|qdµ(z)

.(1 − |a|2)qp
∫

S (I)

∣∣∣∣∣∣ f (z) − f (a)

(1 − az)
3p
2

∣∣∣∣∣∣q dµ(z)

.(1 − |a|2)qp
∫
D

∣∣∣∣∣∣ f (z) − f (a)

(1 − az)
3p
2

∣∣∣∣∣∣q dµ(z)

.(1 − |a|2)qp

| f (0) − f (a)|2 +

∫
D

∣∣∣∣∣∣ d
dz

f (z) − f (a)

(1 − az)
3p
2

∣∣∣∣∣∣2 (1 − |z|2)pdA(z)


q
2

.

By the growth of functions in Qp and

xα
(
log

2
x

)β
. 1, 0 < x < 1, 0 < α, β < ∞,

we deduce that
(1 − |a|2)pq| f (0) − f (a)|q . ‖ f ‖qQp

.

Thus, we only need to prove that

E = (1 − |a|2)2p
∫
D

∣∣∣∣∣∣ d
dz

f (z) − f (a)

(1 − az)
3p
2

∣∣∣∣∣∣2 (1 − |z|2)pdA(z) . ‖ f ‖2Qp
.

Since
d
dz

f (z) − f (a)

(1 − az)
3p
2

=
f ′(z)(1 − az)

3p
2 + a( 3p

2 )( f (z) − f (a))(1 − az)
3p
2 −1

(1 − az)3p ,

we obtain E . E1 + E2, where

E1 = (1 − |a|2)2p
∫
D

| f ′(z)|2

|1 − az|3p (1 − |z|2)pdA(z)

and

E2 = (1 − |a|2)2p
∫
D

| f (z) − f (a)|2

|1 − az|3p+2 (1 − |z|2)pdA(z).
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Noting that

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)
|1 − az|2

, a, z ∈ D,

we have

E1 =

∫
D

| f ′(z)|2
(1 − |a|2)p+p(1 − |z|2)p

|1 − az|3p dA(z) . ‖ f ‖2Qp
.

By [11], we deduce that

E2 =(1 − |a|2)2p
∫
D

| f (z) − f (a)|2

|1 − az|3p+2 (1 − |z|2)pdA(z)

=

∫
D

| f (z) − f (a)|2

|1 − az|2
(1 − |a|2)p+p(1 − |z|2)p

|1 − az|3p dA(z)

.

∫
D

∣∣∣∣∣ f (z) − f (a)
1 − az

∣∣∣∣∣2 (1 − |ϕa(z)|2)pdA(z) . ‖ f ‖2Qp
.

Therefore, E . ‖ f ‖2Qp
, as desired.

(ii) Suppose that the inclusion mapping i : Qp → T
q
qp
2 ,s

(µ) is compact. Let {In} ⊆ ∂D and |In| → 0

as n → ∞. Suppose eiθn is the center of In and an = (1 − |In|)eiθn . Set fan(z) = log 2
(1−anz) . Then fan ∈ Qp

and log 2
(1−anz) ≈ log 2

|In |
. Therefore(

log 2
|In |

)q−s
µ(S (In))

|In|
qp
2

.
1

|In|
qp
2

(
log 2

|In |

)s

∫
S (In)
| fan(z)|qdµ(z)→ 0, n→ ∞,

which implies that (2) holds.
Conversely, assume that (2) holds. Then it is clear that

‖µ‖LCMq−s, qp
2

= sup
I⊆∂D

(
log 2

|I|

)q−s
µ(S (I))

|I|
qp
2

< ∞ and sup
I⊆∂D

µ(S (I))

|I|
qp
2

< ∞.

Let { fn} be a bounded sequence in Qp such that { fn} converges to zero uniformly on each compact
subset of D. From [12] we have

1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| fn(z)|qdµ(z)

.
1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| fn(z)|qdµr(z) +

1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| fn(z)|qd(µ − µr)(z)

.
1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| fn(z)|qdµr(z) + ‖µ − µr‖LCMq−s, qp

2
‖ fn‖

q
Qp

.
1

|I|
qp
2 (log 2

|I| )
s

∫
S (I)
| fn(z)|qdµr(z) + ‖µ − µr‖LCMq−s, qp

2

.
1

|I|
qp
2

∫
S (I)
| fn(z)|qdµr(z) + ‖µ − µr‖LCMq−s, qp

2
→ 0
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as r → 1− and n → ∞. Therefore, limn→∞ ‖ fn‖T q
qp
2 ,s

(µ) = 0. This shows that the inclusion mapping

i : Qp → T
q
qp
2 ,s

(µ) is compact. �

In particular, let s = q, we get the following result.

Corollary 1. Let 0 < p < 1, 2 < q < ∞ and µ be a positive Borel measure. Then the inclusion
mapping i : Qp → T

q
qp
2 ,q

(µ) is bounded (resp., compact) if and only if

sup
I⊆∂D

µ(S (I))

|I|
qp
2

< ∞

(
resp., lim

|I|→0

µ(S (I))

|I|
qp
2

= 0
)
.

3. Volterra integral operator Tg : Qp → LF (q, q − 2, qp
2 )

In this section, we study the boundednss, compactness and the essential norm of Volterra integral
operator Tg : Qp → LF (q, q − 2, qp

2 ). We need the following equivalent characterization of functions
in LF (q, q − 2, s).

Proposition 1. Let 1 < q < ∞ and 0 < s < ∞. Then f ∈ LF (q, q − 2, s) if and only if

sup
I⊆∂D

1
|I|s(log 2

|I| )
q

∫
S (I)
| f ′(z)|q(1 − |z|2)q−2+sdA(z) < ∞. (3.1)

Proof. Let f ∈ LF (q, q − 2, s). For any I ∈ ∂D, let a = (1 − |I|)ζ ∈ D, where ζ is the center of I. Then

1 − |a| ≈ |1 − az| ≈ |I|, z ∈ S (I).

Combining with 1 − |σa(z)|2 =
(1−|a|2)(1−|z|2)
|1−az|2 , we have

1
|I|s(log 2

|I| )
q

∫
S (I)
| f ′(z)|q(1 − |z|2)q−2+sdA(z)

≈
1(

log 2
1−|a|2

)q

∫
S (I)
| f ′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)sdA(z)

. sup
b∈D

1(
log 2

1−|b|2

)q

∫
D

| f ′(z)|q(1 − |z|2)q−2(1 − |σb(z)|2)sdA(z) < ∞,

as desired.
Conversely, assume that (3) holds. For any given nonzero a ∈ D, let Ia be the subarc of ∂D with

midpoint a/|a| and length 1 − |a|; and for a = 0, let Ia = ∂D. Moreover, let Jn = 2nIa for n =

0, 1, · · · ,N − 1, where N is the smallest positive integer such that 2N |Ia| ≥ 1. Then we have the
following estimate:

1 − |a|
|1 − az|2

≈
1
|Ia|
, z ∈ Ia (3.2)
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and
1 − |a|
|1 − az|2

≈
1

22n|Ia|
, z ∈ Jn+1\Jn. (3.3)

Without loss of generality, we may assume |a| > 3/4. By (4) and (5) we have

1(
log 2

1−|a|2

)q

∫
D

| f ′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)sdA(z)

.
N−1∑
n=0

1

|22nIa|
s
(
log 2

|Ia |

)q

∫
S (Jn+1)\S (Jn)

| f ′(z)|q(1 − |z|2)q−2+sdA(z)

+
1

|Ia|
s
(
log 2

|Ia |

)q

∫
S (J0)
| f ′(z)|q(1 − |z|2)q−2+sdA(z)

.
N−1∑
n=0

1

|22nIa|
s
(
log 2

|Ia |

)q

∫
S (Jn+1)

| f ′(z)|q(1 − |z|2)q−2+sdA(z) + C

.
N−1∑
n=0

1

|22nIa|
s
(
log 2

|Ia |

)q × |2
n+1Ia|

s

(
log

2
|2n+1Ia|

)q

+ C

.
∞∑

n=0

1
2ns

(
log 2

|2n+1Ia |

)q(
log 2

|Ia |

)q + C

.
∞∑

n=0

1
2ns + C < ∞.

The proof is complete. �

Theorem 2. Let 0 < p < 1, 2 < q < ∞ and g ∈ H(D). Then Tg : Qp → LF (q, q − 2, qp
2 ) is bounded

if and only if g ∈ F (q, q − 2, qp
2 ).

Proof. Suppose that g ∈ F (q, q − 2, qp
2 ). By [24] we have

‖g‖F (q,q−2, qp
2 ) ≈ sup

I⊆∂D

1

|I|
qp
2

∫
S (I)
|g′(z)|q(1 − |z|2)q−2+

qp
2 dA(z),

which means that dµg(z) = |g′(z)|q(1 − |z|2)q−2+
qp
2 dA(z) is a qp

2 -Carleson measure. Let f ∈ Qp. By
Corollary 1, we see that i : Qp → T

q
qp
2 ,q

(µg) is bounded, i.e.,

sup
I⊆∂D

1

|I|
qp
2 (log 2

|I| )
q

∫
S (I)
|(Tg f )′(z)|q(1 − |z|2)q−2+

qp
2 dA(z)

= sup
I⊆∂D

1

|I|
qp
2 (log 2

|I| )
q

∫
S (I)
| f (z)|qdµg(z) < ∞,

which together with Proposition 1 imply that

sup
a∈D

1(
log 2

1−|a|2

)q

∫
D

|(Tg f )′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)
qp
2 dA(z) < ∞.
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Therefore Tg : Qp → LF (q, q − 2, qp
2 ) is bounded.

Conversely, assume that Tg : Qp → LF (q, q − 2, qp
2 ) is bounded. For any fixed arc I ⊆ ∂D and let

eiθ be the center of I and a = (1 − |I|)eiθ. Set fa(z) = log 2
(1−az) . Then fa ∈ Qp for 0 < p < ∞. Since

|1 − az| ≈ 1 − |a| = |I|, | fa(z)| ≈ log
2
|I|
,

when z ∈ S (I), we get

∞ >‖Tg fa‖
q
LF (q,q−2, qp

2 )

≥
1

|I|
qp
2 (log 2

|I| )
q

∫
S (I)
| fa(z)|q|g′(z)|q(1 − |z|2)q−2+

qp
2 dA(z)

≈
1

|I|
qp
2

∫
S (I)
|g′(z)|q(1 − |z|2)q−2+

qp
2 dA(z),

which implies that g ∈ F (q, q − 2, qp
2 ) by [24]. The proof is complete. �

Next, we give an estimation for the essential norm of Tg. First, we recall some definitions. Let
(X, ‖ · ‖X) and (Y, ‖ · ‖Y) be Banach spaces and T : X → Y be a bounded linear operator. The essential
norm of T : X → Y, denoted by ‖T‖e,X→Y , is defined by

‖T‖e,X→Y = inf
K
{‖T − K‖X→Y : K is compact from X to Y}.

It is easy to see that T : X → Y is compact if and only if ‖T‖e,X→Y = 0. Let A be a closed subspace of X.
Given f ∈ X, the distance from f to A, denoted by distX( f , A), is defined by distX( f , A) = infg∈A ‖ f−g‖X.

Lemma 1. Let 2 < q < ∞ and 0 < λ < ∞. If g ∈ F (q, q − 2, λ), then

distF (q,q−2,λ)(g,F0(q, q − 2, λ)) ≈ lim sup
r→1−

‖g − gr‖F (q,q−2,λ)

≈ lim sup
|a|→1

(∫
D

|g′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)
)1/q

.

Here gr(z) = g(rz), 0 < r < 1, z ∈ D.

Proof. For any given g ∈ F (q, q − 2, λ), then gr ∈ F0(q, q − 2, λ) and ‖gr‖F (q,q−2,λ) . ‖g‖F (q,q−2,λ). Let
δ ∈ (0, 1). We choose a ∈ (0, δ). Then σa(z) lies in a compact subset of D. So

lim
r→1

sup
z∈D
|g′(σa(z)) − rg′(rσa(z))| = 0.

Making a change of variables, we have

lim
r→1

sup
|a|≤δ

∫
D

|g′(z) − g′r(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)

= lim
r→1

sup
|a|≤δ

∫
D

|g′(σa(z)) − g′r(σa(z))|q(1 − |z|2)q+λ−2|σ′a(z)|qdA(z)

= lim
r→1

sup
|a|≤δ

sup
z∈D
|g′(σa(z)) − g′r(σa(z))|q

∫
D

(1 − |z|2)q+λ−2|σ′a(z)|qdA(z)

=0.
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By the definition of distance, we obtain

distF (q,q−2,λ)(g,F0(q, q − 2, λ)) = inf
f∈F0(q,q−2,λ)

‖g − f ‖F (q,q−2,λ)

≤ lim
r→1
‖g − gr‖F (q,q−2,λ)

≤ lim
r→1

(
sup
|a|>δ

∫
D

|g′(z) − g′r(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)
)1/q

+ lim
r→1

(
sup
|a|≤δ

∫
D

|g′(z) − g′r(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)
)1/q

.

(
sup
|a|>δ

∫
D

|g′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)
)1/q

+ lim
r→1

(
sup
|a|>δ

∫
D

|g′r(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)
)1/q

.

Denote by ψr,a(z) = σra ◦ rσa(z). Then ψr,a is an analytic self-map of D and ψr,a(0) = 0. Making a
change variable of z = σa(z) and applying the Littlewood’s subordination theorem (see Theorem 1.7
of [3]), we have ∫

D

|g′r(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)

=

∫
D

|g′r(σa(z))|q(1 − |σa(z)|2)q(1 − |z|2)λ−2dA(z)

≤

∫
D

|g′ ◦ σra ◦ ψr,a(z)|q(1 − |σra ◦ ψr,a(z)|2)q(1 − |z|2)λ−2dA(z)

≤

∫
D

|g′ ◦ σra ◦ ψr,a(z)|q(1 − |σra ◦ ψr,a(z)|2)q(1 − |z|2)λ−2dA(z)

≤

∫
D

|g′ ◦ σra(z)|q(1 − |σra(z)|2)q(1 − |z|2)λ−2dA(z)

≤

∫
D

|g′(z)|q(1 − |z|2)q−2(1 − |σra(z)|2)λdA(z).

Since δ is arbitrary, we get

distF (q,q−2,λ)(g,F0(q, q − 2, λ))

. lim sup
|a|→1

(∫
D

|g′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)
)1/q

. (3.4)

On the other hand, for any g ∈ F (q, q − 2, λ),

distF (q,q−2,λ)(g,F0(q, q − 2, λ)) = inf
f∈F0(q,q−2,λ)

‖g − f ‖F (q,q−2,λ)

& lim sup
|a|→1

(∫
D

|g′(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)λdA(z)
)1/q

,

which, together with (3.4), implies the desired result. The proof is complete. �
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Lemma 2. Let 0 < p < 1 and 2 < q < ∞. If 0 < r < 1 and g ∈ F (q, q − 2, qp
2 ), then Tgr : Qp →

LF (q, q − 2, qp
2 ) is compact.

Proof. Given { fn} ⊂ Qp such that { fn} converges to zero uniformly on any compact subset of D and
supn ‖ fn‖Qp ≤ 1. Then by the following well-known inequality

|h(z)| . ‖h‖B log
2

1 − |z|2
, h ∈ B,

we get

‖Tgr fn‖
q
LF (q,q−2, qp

2 )

= sup
a∈D

1(
log 2

1−|a|2

)q

∫
D

| fn(z)|q|g′r(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)
qp
2 dA(z)

.
‖g‖q

B

(1 − r2)q sup
a∈D

∫
D

| fn(z)|q(1 − |z|2)q−2(1 − |σa(z)|2)
qp
2 dA(z)

.
‖g‖q

F (q,q−2, qp
2 )
‖ fn‖

q−2
B

(1 − r2)q sup
a∈D

∫
D

| fn(z)|2
(
log

2
1 − |z|2

)q−2

(1 − |z|2)q−2(1 − |σa(z)|2)
qp
2 dA(z)

.
‖g‖q

F (q,q−2, qp
2 )
‖ fn‖

q−2
Qp

(1 − r2)q sup
a∈D

∫
D

| fn(z)|2(1 − |σa(z)|2)pdA(z)

.
‖g‖q

F (q,q−2, qp
2 )
‖ fn‖

q−2
Qp

(1 − r2)q sup
a∈D

∫
D

| f ′n(z)|2(1 − |σa(z)|2)pdA(z)

.
‖g‖q

F (q,q−2, qp
2 )
‖ fn‖

q
Qp

(1 − r2)q .

By the dominated convergence theorem, we get the desire result. The proof is complete. �

The following result is an important tool to study the essential norm and compactness of operators
on some analytic function spaces, see [20].

Lemma 3. Let X,Y be two Banach spaces of analytic functions on D. Suppose that

(1) The point evaluation functionals on Y are continuous.
(2) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on

compact sets.
(3) T : X → Y is continuous when X and Y are given the topology of uniform convergence on

compact sets.

Then, T is a compact operator if and only if for any bounded sequence { fn} in X such that { fn} converges
to zero uniformly on every compact set of D, then the sequence {T fn} converges to zero in the norm of
Y.

Theorem 3. Let 0 < p < 1, 2 < q < ∞ and g ∈ H(D). If Tg : Qp → LF (q, q − 2, qp
2 ) is bounded, then

‖Tg‖e,Qp→LF (q,q−2, qp
2 ) ≈ distF (q,q−2, qp

2 )(g,F0(q, q − 2,
qp
2

)).
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Proof. Let {In} ⊆ ∂D and |In| → 0 as n→ ∞. Suppose eiθn is the center of In and wn = (1 − |In|)eiθn . For
each n, let

fwn(z) =
1

log 2
1−|wn |2

(
log

2
1 − wnz

)2

.

Then | fwn(z)| ≈ log 2
|In |

when z ∈ S (In) and { fwn} is bounded in Qp. Furthermore, { fwn} converges to zero
uniformly on every compact subset of D. Given a compact operator K : Qp → LF (q, q − 2, qp

2 ), by
Lemma 3 we have limn→∞ ‖K fwn‖LF (q,q−2, qp

2 ) = 0. So

‖Tg − K‖ & lim sup
n→∞

‖(Tg − K) fwn‖LF (q,q−2, qp
2 )

& lim sup
n→∞

(
‖Tg fwn‖LF (q,q−2, qp

2 ) − ‖K fwn‖LF (q,q−2, qp
2 )

)
= lim sup

n→∞
‖Tg fwn‖LF (q,q−2, qp

2 )

& lim sup
n→∞

 1(
log 2

1−|wn |2

)q

∫
D

| fwn(z)|q|g′(z)|q(1 − |z|2)q−2(1 − |σwn(z)|2)
qp
2 dA(z)


1
q

& lim sup
n→∞

 1(
log 2

1−|wn |2

)q

∫
S (In)
| fwn(z)|q|g′(z)|q(1 − |z|2)q−2(1 − |σwn(z)|2)

qp
2 dA(z)


1
q

& lim sup
n→∞

(
1

|In|
qp
2

∫
S (In)
|g′(z)|q(1 − |z|2)q−2+

qp
2 dA(z)

) 1
q

,

which implies that

‖Tg‖e,Qp→LF (q,q−2, qp
2 ) & lim sup

n→∞

(∫
D

|g′(z)|q(1 − |z|2)q−2(1 − |σwn(z)|2)
qp
2 dA(z)

) 1
q

.

It follows from Lemma 1 that

‖Tg‖e,Qp→LF (q,q−2, qp
2 ) & distF (q,q−2, qp

2 )(g,F0(q, q − 2,
qp
2

)).

On the other hand, by Lemma 2, Tgr : Qp → LF (q, q − 2, qp
2 ) is compact. Then

‖Tg‖e,Qp→LF (q,q−2, qp
2 ) ≤ ‖Tg − Tgr‖ = ‖Tg−gr‖ ≈ ‖g − gr‖F (q,q−2, qp

2 ).

Using Lemma 1 again, we have

‖Tg‖e,Qp→LF (q,q−2, qp
2 ) . lim sup

r→1−
‖g − gr‖F (q,q−2, qp

2 ) ≈ distF (q,q−2, qp
2 )(g,F0(q, q − 2,

qp
2

)).

The proof is complete. �

The following result can be deduced by Theorem 3 directly.

Corollary 2. Let 0 < p < 1, 2 < q < ∞ and g ∈ H(D). Then Tg : Qp → LF (q, q − 2, qp
2 ) is compact

if and only if
g ∈ F0(q, q − 2,

qp
2

).
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4. Conclusions

In this paper, we mainly prove that inclusion mapping i : Qp → T
q
qp
2 ,s

(µ) is bounded if and only if

supI⊆∂D

(
log 2

|I|

)q−s
µ(S (I))

|I|
qp
2

< ∞, when 0 < p < 1, 2 < q < ∞ and 0 < s ≤ q < ∞. As an application, we

prove that Volterra integral operator Tg from Qp to the space LF (q, q− 2, qp
2 ) is bounded if and only if

g ∈ F (q, q − 2, qp
2 ).
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