Mathematics

Research article

Embedding of Q_{p} spaces into tent spaces and Volterra integral operator

Ruishen Qian ${ }^{1}$ and Xiangling Zhu ${ }^{2, *}$
${ }^{1}$ School of Mathematics and Statistics, Lingnan Normal University, 524048, Zhanjiang, Guangdong, P. R. China
${ }^{2}$ University of Electronic Science and Technology of China, Zhongshan Institute, 528402, Zhongshan, Guangdong, P. R. China
* Correspondence: Email: jyuzx1@163.com; Tel: +8613035778815; Fax: +8613822707970.

Abstract

In this paper, the boundedness and compactness of the inclusion mapping from Q_{p} spaces into tent spaces $\mathcal{T}_{\frac{q p}{2}, s}^{q}$ are completely characterized when $q>2$. As an application, the boundedness of the Volterra integral operator T_{g} from Q_{p} to the space $\mathcal{L \mathcal { F }}\left(q, q-2, \frac{q p}{2}\right)$ is obtained. Moreover, the essential norm and compactness of T_{g} are also investigated.

Keywords: Q_{p} space; tent space; Carleson measure; Volterra integral operator
Mathematics Subject Classification: 30H25, 47B38

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the class of all functions analytic in \mathbb{D}. Let $0<p<\infty$ and $-1<\alpha<\infty$. The Dirichlet type space \mathcal{D}_{α}^{p} is the set of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{D}_{a}^{p}}=|f(0)|^{p}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{\alpha} d A(z)<\infty,
$$

where $d A$ is the normalized Lebesgue area measure in \mathbb{D} such that $A(\mathbb{D})=1$. When $p=2$ and $\alpha=0$, it gives the classic Dirichlet space \mathcal{D}. When $p=2$ and $\alpha=1$, it gives the Hardy space H^{2}. When $\alpha=p$, \mathcal{D}_{α}^{p} is just the classical Bergman space A^{p}.

Let $0<p<\infty$. The Q_{p} space is the space of all $f \in H(\mathbb{D})$ such that (see, e.g., [23])

$$
\|f\|_{Q_{p}}^{2}=|f(0)|^{2}+\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{p} d A(z)<\infty,
$$

where $\sigma_{a}(z)=\frac{a-z}{1-\bar{a} z}$. When $p>1, Q_{p}$ is the Bloch space \mathcal{B} (see $[24,25]$), which denote the space of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

When $p=1, Q_{1}=B M O A$, the space of analytic functions in the Hardy space $H^{1}(\mathbb{D})$ whose boundary functions have bounded mean oscillation (see, e.g., [25]).

Let $0<p, s<\infty,-2<q<\infty$. A function $f \in H(\mathbb{D})$ is said to belong to $\mathcal{F}(p, q, s)$ if

$$
\|f\|_{\mathcal{F}(p, q, s)}^{p}=|f(0)|^{p}+\sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{s} d A(z)<\infty .
$$

An $f \in \mathcal{F}_{0}(p, q, s)$ if $f \in H(\mathbb{D})$ and

$$
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{s} d A(z)=0
$$

$\mathcal{F}(p, q, s)$ is a Banach space under the norm $\|\cdot\|_{\mathcal{F}(p, q, s)}$ when $p \geq 1$. This space was first introduced by Zhao in [24] and called general function space because it can get many function spaces if it takes special parameters of p, q, s. From [24] we see that $\mathcal{F}(p, p-2, s)$ is just the Bloch space when $s>1$.

For $0<q, s<\infty$, let $\mathcal{L \mathcal { F }}(q, q-2, s)$ denote the space of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{\mathcal{L F}(q, q-2, s)}^{q}=|f(0)|^{q}+\sup _{a \in \mathbb{D}} \frac{1}{\left(\log \frac{2}{1-|a|^{2}}\right)^{q}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{s} d A(z)<\infty .
$$

It is easy to check that $\mathcal{L \mathcal { F }}(q, q-2, s)$ is a Banach space under the norm $\|\cdot\|_{\mathcal{L F}(q, q-2, s)}$ when $q \geq 1$.
Let $g \in H(\mathbb{D})$. The Volterra integral operator T_{g}, which introduced by Pommerenke in [13], was defined by

$$
T_{g} f(z)=\int_{0}^{z} f(w) g^{\prime}(w) d w, \quad f \in H(\mathbb{D}) .
$$

The importance of the operator T_{g} comes from the fact that $T_{g} f+I_{g} f=M_{g} f-f(0) g(0)$, where the operators M_{g} and I_{g} are defined by

$$
\left(M_{g} f\right)(z)=g(z) f(z), \quad I_{g} f(z)=\int_{0}^{z} f^{\prime}(w) g(w) d w f \in H(\mathbb{D}), \quad z \in \mathbb{D},
$$

respectively. Note that the integral form of the classical Cesàro operator C is

$$
C(f)(z)=\frac{1}{z} \int_{0}^{z} f(\zeta) \frac{1}{1-\zeta} d \zeta=\frac{1}{z} \int_{0}^{z} f(\zeta)\left(\ln \frac{1}{1-\zeta}\right)^{\prime} d \zeta
$$

Hence the operator T_{g} can also be seen as the generalization of the Cesàro operator C. In [13], Pommerenke showed that T_{g} is bounded on H^{2} if and only if $g \in B M O A$. In [2], Aleman and Siskakis showed that T_{g} is bounded (compact) on A^{p} if and only if $g \in \mathcal{B}\left(g \in \mathcal{B}_{0}\right)$. Recently, the operator T_{g} has been received many attention. See $[1,2,4-8,12,14,15,18,19,22,24]$ and the references therein for more study of the operator T_{g}.

For an $\operatorname{arc} I \subseteq \partial \mathbb{D}$, let $|I|=\frac{1}{2 \pi} \int_{I}|d \zeta|$ be the normalized length of I. Let $0<\alpha<\infty$ and μ be a positive Borel measure on \mathbb{D}. As usual, we say that μ is a α-Carleson measure if

$$
\|\mu\|_{\alpha}:=\sup _{I \subseteq \partial D} \frac{\mu(S(I))}{|I|^{\alpha}}<\infty
$$

where $S(I)=\left\{z \in \mathbb{D}: 1-|I| \leq|z|<1, \quad \frac{z}{|z|} \in I\right\}$ is the Carleson box based on I. When $\alpha=1$, it gives the classical Carleson measure. μ is said to be a vanishing α-Carleson measure if $\lim _{\mid I I \rightarrow 0} \frac{\mu(S(I))}{I I I^{\alpha}}=0$.

Let $0<\lambda, q<\infty, s \geq 0$ and μ be a positive Borel measure on \mathbb{D}. The tent space $\mathcal{T}_{\lambda, s}^{q}(\mu)$ consists of all $f \in H(\mathbb{D})$ satisfied

$$
\sup _{I \subseteq \partial D \mathrm{D}} \frac{1}{|I|^{\lambda}\left(\log \frac{1}{|I|}\right)^{s}} \int_{S(I)}|f(z)|^{q} d \mu(z)<\infty .
$$

The tent space $\mathcal{T}_{\lambda, s}^{q}(\mu)$ was introduced by Liu, Lou and Zhu in [10]. When $q=2$ and $s=0, \mathcal{T}_{\lambda, 0}^{2}(\mu)=$ $\mathcal{T}_{\lambda}^{\infty}$ was first introduced by Xiao in [22].

In [22], Xiao studied the inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{p}^{\infty}(\mu)$. He showed that the inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{p}^{\infty}(\mu)$ is bounded (resp. compact) if and only if

$$
\left.\sup _{I \subseteq \partial D} \frac{\left(\log \frac{2}{|I|}\right)^{2} \mu(S(I))}{|I|^{p}}<\infty \quad \text { (resp. } \lim _{|| | \rightarrow 0} \frac{\left(\log \frac{2}{|I|}\right)^{2} \mu(S(I))}{|I|^{p}}=0\right) .
$$

As an application, he proved that the operator $T_{g}: Q_{p} \rightarrow Q_{p}$ is bounded if and only if

$$
\sup _{I \subseteq \partial D} \frac{\left(\log \frac{2}{D}\right)^{2}}{|I|^{p}} \int_{S(I)}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p} d A(z)<\infty .
$$

In [10], Liu, Lou and Zhu studied the embedding of some Möbius invariant spaces, such as the Bloch space and the Q_{p} space, into $\mathcal{T}_{\lambda, s}^{2}$. Among others, they proved the following Theorem A. See [6, 9, $12,14-17,21]$ and the references therein for more study of analytic function spaces embedding into various tent spaces.

Theorem A. Let $0<p<1$ and μ be a positive Borel measure on \mathbb{D}. If Q_{p} is continuously contained in $\mathcal{T}_{p, 2}^{2}$, then μ is a p-Carleson measure. If \mathcal{D}_{p}^{2} is continuously contained in $L^{2}(\mathbb{D}, d \mu)$, then Q_{p} is continuously contained in $\mathcal{T}_{p, 2}^{2}$.

By [22, Lemma 2.1 (ii)], we see that μ is a p-Carleson measure if \mathcal{D}_{p}^{2} is continuously contained in $L^{2}(\mathbb{D}, d \mu)$. But the converse is not clear. The nature question then arise, what can one say if we change $\mathcal{T}_{p, 2}^{2}$ into $\mathcal{T}_{\lambda, s}^{q}$ when $q>2$?

In this paper, we give an answer by using a new method, which was different to [10, 22]. We study the boundedness and compactness of the inclusion mapping from Q_{p} spaces into tent spaces $\mathcal{T}_{\frac{q p}{2}, s}^{q}$. As an application, we study the boundedness of Volterra integral operator T_{g} acting from Q_{p} to $\mathcal{L} \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)$. Meanwhile, the compactness and essential norm of the operator T_{g} acting from Q_{p} to $\mathcal{L} \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)$ are also investigated.

Throughout this paper, we say that $A \lesssim B$ if there exists a constant C such that $A \leq C B$. The symbol $A \approx B$ means that $A \lesssim B \lesssim A$.

2. Embedding of Q_{p} spaces into tent spaces

In this section, we study the embedding from Q_{p} to tent spaces. We give a complete characterization for the boundedness and compactness of the inclusion mapping $i: Q_{p} \rightarrow T_{\lambda, s}^{q}(\mu)$. We say that the
inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{\lambda, s}^{q}(\mu)$ is compact if

$$
\lim _{n \rightarrow \infty} \frac{1}{|I|^{2}\left(\left.\log \frac{1}{|I|}\right|^{s}\right.} \int_{S(I)}\left|f_{n}(z)\right|^{q} d \mu(z)=0
$$

whenever $I \subseteq \partial \mathbb{D}$ and $\left\{f_{n}\right\}$ is a bounded sequence in Q_{p} that converges to 0 uniformly on compact subsets of \mathbb{D}.

The following result is one of the main results in this paper.
Theorem 1. Let $0<p<1$ and μ be a positive Borel measure. If $2<q<\infty$ and $0<s \leq q<\infty$, then the following statements hold.
(i) The inclusion mapping i : $Q_{p} \rightarrow \mathcal{T}_{\frac{q p}{2}, s}^{q}(\mu)$ is bounded if and only if

$$
\begin{equation*}
\|\mu\|_{L C M_{q-s, \frac{q D}{2}}}=\sup _{I \subseteq \partial D} \frac{\left(\log \frac{2}{|I|}\right)^{q-s} \mu(S(I))}{|I|^{q \frac{q p}{2}}}<\infty . \tag{2.1}
\end{equation*}
$$

(ii) The inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{\frac{q}{2}, s}^{q}(\mu)$ is compact if and only if

$$
\begin{equation*}
\lim _{|I| \rightarrow 0} \frac{\left(\log \frac{2}{|I|}\right)^{q-s} \mu(S(I))}{|I|^{\frac{q p}{2}}}=0 . \tag{2.2}
\end{equation*}
$$

Proof. (i) Assume that the inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{\frac{\text { q. }}{2}, s}^{q}(\mu)$ is bounded. For any fixed arc $I \subseteq \partial \mathbb{D}$, let $e^{i \theta}$ be the center of I and $a=(1-|I|) e^{i \theta}$. Set $f_{a}(z)=\log \frac{2}{(1-\bar{a} \bar{z})}$. Then $f_{a} \in Q_{p}$ and

$$
|1-\bar{a} z| \approx 1-|a|=|I|, \quad\left|f_{a}(z)\right| \approx \log \frac{2}{I I \mid},
$$

whenever $z \in S(I)$. By the boundedness of i, we have

$$
\frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{\mid I}\right)^{s}} \int_{S(I)}\left|f_{a}(z)\right|^{q} d \mu(z) \lesssim\left\|f_{a}\right\|_{Q_{p}}^{q}<\infty,
$$

which implies (1), as desired.
Conversely, assume that (1) holds. Let $f \in Q_{p}$. For any fixed arc $I \subseteq \partial \mathbb{D}$, let $e^{i \theta}$ be the center of I and $a=(1-|I|) e^{i \theta}$. We have

$$
\frac{1}{|I|^{q \frac{q p}{2}}\left(\left.\log \frac{2}{I I}\right|^{s}\right.} \int_{S(I)}|f(z)|^{q} d \mu(z) \lesssim A+B,
$$

where

$$
A=\frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{s}} \int_{S(I)}|f(z)-f(a)|^{q} d \mu(z), \quad B=\frac{|f(a)|^{q} \mu(S(I))}{|I|^{\frac{q P}{2}}\left(\left.\log \frac{2}{|I|}\right|^{s}\right.} .
$$

Since $f \in Q_{p} \subseteq \mathcal{B}$, we obtain

$$
|f(a)|^{q} \lesssim\|f\|_{\mathcal{B}}^{q}\left(\log \frac{2}{1-|a|^{2}}\right)^{q} \lesssim\|f\|_{Q_{p}}^{q}\left(\log \frac{2}{1-|a|^{2}}\right)^{q},
$$

which implies that for any $I \subseteq \partial \mathbb{D}$,

$$
B \lesssim \sup _{I \subseteq \partial D} \frac{\left(\log \frac{2}{|I|}\right)^{q-s} \mu(S(I))}{|I|^{\frac{q p}{2}}}\|f\|_{Q_{p}}^{q} \lesssim\|f\|_{Q_{p}}^{q} .
$$

Since $0<s \leq q<\infty$, we get

$$
\sup _{I \subseteq \partial \mathrm{D}} \frac{\mu(S(I))}{\left\lvert\, I I^{\frac{q P}{2}}\right.} \lesssim \sup _{I \subseteq \partial \mathrm{D}} \frac{\left(\log \frac{2}{|I|}\right)^{q-s} \mu(S(I))}{|I|^{\frac{q p}{2}}}<\infty,
$$

which implies that $\mathcal{D}_{p}^{2} \subseteq L^{q}(d \mu)$ by [4, Theorem 1]. Therefore,

$$
\begin{aligned}
A & \lesssim \frac{1}{|I|^{\frac{q p}{2}}} \int_{S(I)}|f(z)-f(a)|^{q} d \mu(z) \\
& \lesssim\left(1-|a|^{2}\right)^{q p} \int_{S(I)}\left|\frac{f(z)-f(a)}{(1-\bar{a} z)^{\frac{3 p}{2}}}\right|^{q} d \mu(z) \\
& \lesssim\left(1-|a|^{2}\right)^{q p} \int_{\mathbb{D}}\left|\frac{f(z)-f(a)}{(1-\bar{a} z)^{\frac{3 p}{2}}}\right|^{q} d \mu(z) \\
& \lesssim\left(1-|a|^{2}\right)^{q p}\left(|f(0)-f(a)|^{2}+\int_{\mathbb{D}}\left|\frac{d}{d z} \frac{f(z)-f(a)}{(1-\bar{a} z)^{\frac{3 p}{2}}}\right|^{2}\left(1-|z|^{2}\right)^{p} d A(z)\right)^{\frac{q}{2}} .
\end{aligned}
$$

By the growth of functions in Q_{p} and

$$
x^{\alpha}\left(\log \frac{2}{x}\right)^{\beta} \lesssim 1, \quad 0<x<1, \quad 0<\alpha, \beta<\infty,
$$

we deduce that

$$
\left(1-|a|^{2}\right)^{p q}|f(0)-f(a)|^{q} \leqslant\|f\|_{Q_{p}}^{q} .
$$

Thus, we only need to prove that

$$
E=\left(1-|a|^{2}\right)^{2 p} \int_{\mathbb{D}}\left|\frac{d}{d z} \frac{f(z)-f(a)}{(1-\bar{a} z)^{\frac{3 p}{2}}}\right|^{2}\left(1-|z|^{2}\right)^{p} d A(z) \lesssim\|f\|_{Q_{p}}^{2} .
$$

Since

$$
\frac{d}{d z} \frac{f(z)-f(a)}{(1-\bar{a} z)^{\frac{3 p}{2}}}=\frac{f^{\prime}(z)(1-\bar{a} z)^{\frac{3 p}{2}}+\bar{a}\left(\frac{3 p}{2}\right)(f(z)-f(a))(1-\bar{a} z)^{\frac{3 p}{2}-1}}{(1-\bar{a} z)^{3 p}},
$$

we obtain $E \lesssim E_{1}+E_{2}$, where

$$
E_{1}=\left(1-|a|^{2}\right)^{2 p} \int_{\mathbb{D}} \frac{\left|f^{\prime}(z)\right|^{2}}{|1-\bar{a} z|^{3 p}}\left(1-|z|^{2}\right)^{p} d A(z)
$$

and

$$
E_{2}=\left(1-|a|^{2}\right)^{2 p} \int_{\mathbb{D}} \frac{|f(z)-f(a)|^{2}}{|1-\bar{a} z|^{3 p+2}}\left(1-|z|^{2}\right)^{p} d A(z) .
$$

Noting that

$$
1-\left|\varphi_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{a} z|^{2}}, \quad a, z \in \mathbb{D} \text {, }
$$

we have

$$
E_{1}=\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} \frac{\left(1-|a|^{2}\right)^{p+p}\left(1-|z|^{2}\right)^{p}}{|1-\bar{a} z|^{3 p}} d A(z) \lesssim\|f\|_{Q_{p}}^{2} .
$$

By [11], we deduce that

$$
\begin{aligned}
E_{2} & =\left(1-|a|^{2}\right)^{2 p} \int_{\mathbb{D}} \frac{|f(z)-f(a)|^{2}}{|1-\bar{a} z|^{3 p+2}}\left(1-|z|^{2}\right)^{p} d A(z) \\
& =\int_{\mathbb{D}} \frac{|f(z)-f(a)|^{2}}{|1-\bar{a} z|^{2}} \frac{\left(1-|a|^{2}\right)^{p+p}\left(1-|z|^{2}\right)^{p}}{|1-\bar{a} z|^{3 p}} d A(z) \\
& \lesssim \int_{\mathbb{D}}\left|\frac{\mid f(z)-f(a)}{1-\bar{a} z}\right|^{2}\left(1-\mid \varphi_{a}\left(\left.z\right|^{2}\right)^{p} d A(z) \lesssim\|f\|_{Q_{p}}^{2} .\right.
\end{aligned}
$$

Therefore, $E \lesssim\|f\|_{Q_{p}}^{2}$, as desired.
(ii) Suppose that the inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{\frac{q p}{2}, s}^{q}(\mu)$ is compact. Let $\left\{I_{n}\right\} \subseteq \partial \mathbb{D}$ and $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Suppose $e^{i \theta_{n}}$ is the center of I_{n} and $a_{n}=\left(1-\left|I_{n}\right|\right) e^{i \theta_{n}}$. Set $f_{a_{n}}(z)=\log \frac{2}{\left(1-\overline{\bar{a}_{n} z}\right)}$. Then $f_{a_{n}} \in Q_{p}$ and $\log \frac{2}{\left(1-\overline{n_{z}}\right)} \approx \log \frac{2}{\left|I_{n}\right|}$. Therefore

$$
\left.\frac{\left(\log \frac{2}{\left|I_{n}\right|}\right)^{q-s} \mu\left(S\left(I_{n}\right)\right)}{\left|I_{n}\right|^{\frac{q p}{2}}} \lesssim \frac{1}{\left|I_{n}\right|^{\frac{q p}{2}}\left(\log \frac{2}{\left|I_{n}\right|}\right)^{s}} \int_{S\left(I_{n}\right)} \right\rvert\, f_{a_{n}}\left(\left.z\right|^{q} d \mu(z) \rightarrow 0, \quad n \rightarrow \infty,\right.
$$

which implies that (2) holds.
Conversely, assume that (2) holds. Then it is clear that

$$
\|\mu\|_{L C M_{q-s, \frac{q p}{2}}}=\sup _{I \subseteq \partial D} \frac{\left(\log \frac{2}{\mid I I}\right)^{q-s} \mu(S(I))}{|I|^{\frac{q p}{2}}}<\infty \quad \text { and } \quad \sup _{I \subseteq \partial \mathrm{D}} \frac{\mu(S(I))}{|I|^{\frac{q D}{2}}}<\infty .
$$

Let $\left\{f_{n}\right\}$ be a bounded sequence in Q_{p} such that $\left\{f_{n}\right\}$ converges to zero uniformly on each compact subset of \mathbb{D}. From [12] we have

$$
\begin{aligned}
& \frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{s}} \int_{S(I)}\left|f_{n}(z)\right|^{q} d \mu(z) \\
& \lesssim \frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{s}} \int_{S(I)}\left|f_{n}(z)\right|^{q} d \mu_{r}(z)+\frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{s}} \int_{S(I)}\left|f_{n}(z)\right|^{q} d\left(\mu-\mu_{r}\right)(z) \\
& \lesssim \frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{s}} \int_{S(I)}\left|f_{n}(z)\right|^{q} d \mu_{r}(z)+\left\|\mu-\mu_{r}\right\|_{L C M_{q-s, s}, \frac{q \overline{2}}{2}}\left\|f_{n}\right\|_{Q_{p}}^{q} \\
& \lesssim \frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{s}} \int_{S(I)}\left|f_{n}(z)\right|^{q} d \mu_{r}(z)+\left\|\mu-\mu_{r}\right\|_{L C M_{q-s, ~}} \\
& \lesssim \frac{1}{|I|^{\frac{q p}{2}}} \int_{S(I)}\left|f_{n}(z)\right|^{q} d \mu_{r}(z)+\left\|\mu-\mu_{r}\right\|_{L C M_{q-s, \frac{q p}{2}}} \rightarrow 0
\end{aligned}
$$

as $r \rightarrow 1^{-}$and $n \rightarrow \infty$. Therefore, $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{\mathcal{T}_{\frac{q}{2}, s}^{q},}(\mu)=0$. This shows that the inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{\frac{\text { qp }}{2}, s}^{q}(\mu)$ is compact.

In particular, let $s=q$, we get the following result.
Corollary 1. Let $0<p<1,2<q<\infty$ and μ be a positive Borel measure. Then the inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{\frac{q p}{2}, q}^{q}(\mu)$ is bounded (resp., compact) if and only if

$$
\sup _{I \subseteq \partial D} \frac{\mu(S(I))}{|I|^{\frac{q P}{2}}}<\infty \quad\left(\text { resp., } \lim _{|I| \rightarrow 0} \frac{\mu(S(I))}{|I|^{\frac{q P}{2}}}=0\right) .
$$

3. Volterra integral operator $T_{g}: Q_{p} \rightarrow \mathcal{L \mathcal { F }}\left(q, q-2, \frac{q p}{2}\right)$

In this section, we study the boundednss, compactness and the essential norm of Volterra integral operator $T_{g}: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$. We need the following equivalent characterization of functions in $\mathcal{L F}(q, q-2, s)$.
Proposition 1. Let $1<q<\infty$ and $0<s<\infty$. Then $f \in \mathcal{L F}(q, q-2$, s) if and only if

$$
\begin{equation*}
\left.\sup _{I \subseteq \partial \mathbb{D}} \frac{1}{|I|^{s}\left(\log \frac{2}{|I|}\right)^{q}} \int_{S(I)} \right\rvert\, f^{\prime}(z)^{q}\left(1-|z|^{2}\right)^{q-2+s} d A(z)<\infty . \tag{3.1}
\end{equation*}
$$

Proof. Let $f \in \mathcal{L \mathcal { F }}(q, q-2, s)$. For any $I \in \partial \mathbb{D}$, let $a=(1-|I|) \zeta \in \mathbb{D}$, where ζ is the center of I. Then

$$
1-|a| \approx|1-\bar{a} z| \approx|I|, \quad z \in S(I) .
$$

Combining with $1-\left|\sigma_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{a} \bar{z}|^{2}}$, we have

$$
\begin{aligned}
& \frac{1}{|I|^{s}\left(\log \frac{2}{|I|}\right)} \int_{S(I)}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+s} d A(z) \\
\approx & \frac{1}{\left(\log \frac{2}{1-|a|^{2}}\right)^{q}} \int_{S(I)}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{s} d A(z) \\
\lesssim & \sup _{b \in \mathbb{D}} \frac{1}{\left(\log \frac{2}{1-|b|^{2}}\right)^{q}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{b}(z)\right|^{2}\right)^{s} d A(z)<\infty,
\end{aligned}
$$

as desired.
Conversely, assume that (3) holds. For any given nonzero $a \in \mathbb{D}$, let I_{a} be the subarc of $\partial \mathbb{D}$ with midpoint $a /|a|$ and length $1-|a|$; and for $a=0$, let $I_{a}=\partial \mathbb{D}$. Moreover, let $J_{n}=2^{n} I_{a}$ for $n=$ $0,1, \cdots, N-1$, where N is the smallest positive integer such that $2^{N}\left|I_{a}\right| \geq 1$. Then we have the following estimate:

$$
\begin{equation*}
\frac{1-|a|}{|1-\bar{a} z|^{2}} \approx \frac{1}{\left|I_{a}\right|}, \quad z \in I_{a} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1-|a|}{|1-\bar{a} z|^{2}} \approx \frac{1}{2^{2 n}\left|I_{a}\right|}, \quad z \in J_{n+1} \backslash J_{n} . \tag{3.3}
\end{equation*}
$$

Without loss of generality, we may assume $|a|>3 / 4$. By (4) and (5) we have

$$
\begin{aligned}
& \frac{1}{\left(\log \frac{2}{1-|a|^{2}}\right)^{q}} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{s} d A(z) \\
& \lesssim \sum_{n=0}^{N-1} \frac{1}{\left|2^{2 n} I_{a}\right|^{s}\left(\log \frac{2}{\left|J_{a}\right|}\right)^{q}} \int_{S\left(J_{n+1}\right) \backslash\left(J_{n}\right)}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+s} d A(z) \\
& +\frac{1}{\left|I_{a}\right|^{s}\left(\log \frac{2}{\left|I_{a}\right|}\right)^{q}} \int_{S\left(J_{0}\right)}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+s} d A(z) \\
& \lesssim \sum_{n=0}^{N-1} \frac{1}{\left|2^{2 n} I_{a}\right|^{s}\left(\log \frac{2}{\left|J_{a}\right|}\right)^{q}} \int_{S\left(J_{n+1}\right)}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+s} d A(z)+C \\
& \lesssim \sum_{n=0}^{N-1} \frac{1}{\left|2^{2 n} I_{a}\right|^{s}\left(\log \frac{2}{\left|I_{a}\right|}\right)^{q}} \times\left|2^{n+1} I_{a}\right|^{s}\left(\log \frac{2}{\left|2^{n+1} I_{a}\right|}\right)^{q}+C \\
& \lesssim \sum_{n=0}^{\infty} \frac{1}{2^{n s}} \frac{\left(\log \frac{2}{\mid 2^{n+1} I_{a}}\right)^{q}}{\left(\log \frac{2}{\left|I_{a}\right|}\right)^{q}}+C \\
& \lesssim \sum_{n=0}^{\infty} \frac{1}{2^{n s}}+C<\infty .
\end{aligned}
$$

The proof is complete.
Theorem 2. Let $0<p<1,2<q<\infty$ and $g \in H(\mathbb{D})$. Then $T_{g}: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is bounded if and only if $g \in \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)$.

Proof. Suppose that $g \in \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)$. By [24] we have

$$
\|g\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)} \approx \sup _{I \subseteq \partial D} \frac{1}{|I|^{\frac{q p}{2}}} \int_{S(I)}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+\frac{q p}{2}} d A(z),
$$

which means that $d \mu_{g}(z)=\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+\frac{q p}{2}} d A(z)$ is a $\frac{q p}{2}$-Carleson measure. Let $f \in Q_{p}$. By Corollary 1, we see that $i: Q_{p} \rightarrow \mathcal{T}_{\frac{q}{2}, q}^{q}\left(\mu_{g}\right)$ is bounded, i.e.,

$$
\begin{aligned}
& \sup _{I \subseteq \partial \mathrm{D}} \frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{q}} \int_{S(I)}\left|\left(T_{g} f\right)^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+\frac{q p}{2}} d A(z) \\
= & \left.\sup _{I \subseteq \partial \mathrm{D}} \frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{q}} \int_{S(I)} \right\rvert\, f(z)^{q} d \mu_{g}(z)<\infty,
\end{aligned}
$$

which together with Proposition 1 imply that

$$
\sup _{a \in \mathbb{D}} \frac{1}{\left(\log \frac{2}{1-|a|^{2}}\right)^{q}} \int_{\mathbb{D}} \left\lvert\,\left(T_{g} f\right)^{\prime}(z)^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\frac{q p}{2}} d A(z)<\infty .\right.
$$

Therefore $T_{g}: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is bounded.
Conversely, assume that $T_{g}: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is bounded. For any fixed arc $I \subseteq \partial \mathbb{D}$ and let $e^{i \theta}$ be the center of I and $a=(1-|I|) e^{i \theta}$. Set $f_{a}(z)=\log \frac{2}{(1-\bar{a} z)}$. Then $f_{a} \in Q_{p}$ for $0<p<\infty$. Since

$$
|1-\bar{a} z| \approx 1-|a|=|I|, \quad\left|f_{a}(z)\right| \approx \log \frac{2}{|I|}
$$

when $z \in S(I)$, we get

$$
\begin{aligned}
\infty & >\left\|T_{g} f_{a}\right\|_{\mathcal{F F}\left(q, q-2, \frac{q p}{2}\right)}^{q} \\
& \geq \frac{1}{|I|^{\frac{q p}{2}}\left(\log \frac{2}{|I|}\right)^{q}} \int_{S(I)}^{\left|f_{a}(z)\right|^{q}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+\frac{q p}{2}} d A(z)} \\
& \approx \frac{1}{|I|^{\frac{q p}{2}}} \int_{S(I)}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+\frac{q p}{2}} d A(z),
\end{aligned}
$$

which implies that $g \in \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)$ by [24]. The proof is complete.
Next, we give an estimation for the essential norm of T_{g}. First, we recall some definitions. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. The essential norm of $T: X \rightarrow Y$, denoted by $\|T\|_{e, X \rightarrow Y}$, is defined by

$$
\|T\|_{e, X \rightarrow Y}=\inf _{K}\left\{\|T-K\|_{X \rightarrow Y}: K \text { is compact from } X \text { to } Y\right\} .
$$

It is easy to see that $T: X \rightarrow Y$ is compact if and only if $\|T\|_{e, X \rightarrow Y}=0$. Let A be a closed subspace of X. Given $f \in X$, the distance from f to A, denoted by $\operatorname{dist}_{X}(f, A)$, is defined by $\operatorname{dist}_{X}(f, A)=\inf _{g \in A}\|f-g\|_{X}$.
Lemma 1. Let $2<q<\infty$ and $0<\lambda<\infty$. If $g \in \mathcal{F}(q, q-2, \lambda)$, then

$$
\begin{aligned}
\operatorname{dist}_{\mathcal{F}(q, q-2, \lambda)}\left(g, \mathcal{F}_{0}(q, q-2, \lambda)\right) & \approx \underset{r \rightarrow 1^{-}}{\lim \sup ^{\prime}}\left\|g-g_{r}\right\|_{\mathcal{F}(q, q-2, \lambda)} \\
& \approx \limsup _{|a| \rightarrow 1}\left(\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z)\right)^{1 / q} .
\end{aligned}
$$

Here $g_{r}(z)=g(r z), 0<r<1, z \in \mathbb{D}$.
Proof. For any given $g \in \mathcal{F}(q, q-2, \lambda)$, then $g_{r} \in \mathcal{F}_{0}(q, q-2, \lambda)$ and $\left\|g_{r}\right\|_{\mathcal{F}(q, q-2, \lambda)} \leqslant\|g\|_{\mathcal{F}(q, q-2, \lambda)}$. Let $\delta \in(0,1)$. We choose $a \in(0, \delta)$. Then $\sigma_{a}(z)$ lies in a compact subset of \mathbb{D}. So

$$
\lim _{r \rightarrow 1} \sup _{z \in \mathbb{D}}\left|g^{\prime}\left(\sigma_{a}(z)\right)-r g^{\prime}\left(r \sigma_{a}(z)\right)\right|=0
$$

Making a change of variables, we have

$$
\begin{aligned}
& \lim _{r \rightarrow 1} \sup _{|a| \leq \delta} \int_{\mathbb{D}}\left|g^{\prime}(z)-g_{r}^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z) \\
= & \lim _{r \rightarrow 1} \sup _{|a| \leq \delta} \int_{\mathbb{D}} \mid g^{\prime}\left(\sigma_{a}(z)\right)-g_{r}^{\prime}\left(\left.\sigma_{a}(z)\right|^{q}\left(1-|z|^{2}\right)^{q+\lambda-2}\left|\sigma_{a}^{\prime}(z)\right|^{q} d A(z)\right. \\
= & \lim _{r \rightarrow 1} \sup _{|a| \leq \delta} \sup _{z \in \mathbb{D}}\left|g^{\prime}\left(\sigma_{a}(z)\right)-g_{r}^{\prime}\left(\sigma_{a}(z)\right)\right|^{q} \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{q+\lambda-2}\left|\sigma_{a}^{\prime}(z)\right|^{q} d A(z) \\
= & 0 .
\end{aligned}
$$

By the definition of distance, we obtain

$$
\begin{aligned}
& \operatorname{dist}_{\mathcal{F}(q, q-2, \lambda)}\left(g, \mathcal{F}_{0}(q, q-2, \lambda)\right)=\inf _{f \in \mathcal{F}_{0}(q, q-2, \lambda)}\|g-f\|_{\mathcal{F}(q, q-2, \lambda)} \\
\leq & \lim _{r \rightarrow 1}\left\|g-g_{r}\right\|_{\mathscr{F}(q, q-2, \lambda)} \\
\leq & \lim _{r \rightarrow 1}\left(\sup _{|a|>\delta} \int_{\mathbb{D}}\left|g^{\prime}(z)-g_{r}^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z)\right)^{1 / q} \\
& +\lim _{r \rightarrow 1}\left(\sup _{|a| \leq \delta} \int_{\mathbb{D}}\left|g^{\prime}(z)-g_{r}^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z)\right)^{1 / q} \\
\lesssim & \left(\sup _{|a|>\delta} \int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z)\right)^{1 / q} \\
& +\lim _{r \rightarrow 1}\left(\sup _{|a|>\delta} \int_{\mathbb{D}}\left|g_{r}^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z)\right)^{1 / q} .
\end{aligned}
$$

Denote by $\psi_{r, a}(z)=\sigma_{r a} \circ r \sigma_{a}(z)$. Then $\psi_{r, a}$ is an analytic self-map of \mathbb{D} and $\psi_{r, a}(0)=0$. Making a change variable of $z=\sigma_{a}(z)$ and applying the Littlewood's subordination theorem (see Theorem 1.7 of [3]), we have

$$
\begin{aligned}
& \int_{\mathbb{D}}\left|g_{r}^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z) \\
= & \int_{\mathbb{D}}\left|g_{r}^{\prime}\left(\sigma_{a}(z)\right)\right|^{q}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{q}\left(1-\left.|z|^{2}\right|^{\lambda-2} d A(z)\right. \\
\leq & \int_{\mathbb{D}}\left|g^{\prime} \circ \sigma_{r a} \circ \psi_{r, a}(z)\right|^{q}\left(1-\left|\sigma_{r a} \circ \psi_{r, a}(z)\right|^{2}\right)^{q}\left(1-|z|^{2}\right)^{\lambda-2} d A(z) \\
\leq & \int_{\mathbb{D}}\left|g^{\prime} \circ \sigma_{r a} \circ \psi_{r, a}(z)\right|^{q}\left(1-\mid \sigma_{r a} \circ \psi_{r, a}(z)^{2}\right)^{q}\left(1-|z|^{2}\right)^{\lambda-2} d A(z) \\
\leq & \int_{\mathbb{D}}\left|g^{\prime} \circ \sigma_{r a}(z)\right|^{q}\left(1-\left|\sigma_{r a}(z)\right|^{2}\right)^{q}\left(1-|z|^{2}\right)^{\lambda-2} d A(z) \\
\leq & \int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{r a}(z)\right|^{2}\right)^{\lambda} d A(z) .
\end{aligned}
$$

Since δ is arbitrary, we get

$$
\begin{align*}
& \operatorname{dist}_{\mathcal{F}(q, q-2, \lambda)}\left(g, \mathcal{F}_{0}(q, q-2, \lambda)\right) \\
\lesssim & \limsup _{|a| \rightarrow 1}\left(\int_{\mathbb{D}} \mid g^{\prime}(z)^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z)\right)^{1 / q} . \tag{3.4}
\end{align*}
$$

On the other hand, for any $g \in \mathcal{F}(q, q-2, \lambda)$,

$$
\begin{aligned}
& \operatorname{dist}_{\mathcal{F}(q, q-2, \lambda)}\left(g, \mathcal{F}_{0}(q, q-2, \lambda)\right)=\inf _{f \in \mathcal{F}_{0}(q, q-2, \lambda)}\|g-f\|_{\mathcal{F}(q, q-2, \lambda)} \\
\gtrsim & \limsup _{|a| \rightarrow 1}\left(\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\lambda} d A(z)\right)^{1 / q},
\end{aligned}
$$

which, together with (3.4), implies the desired result. The proof is complete.

Lemma 2. Let $0<p<1$ and $2<q<\infty$. If $0<r<1$ and $g \in \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)$, then $T_{g_{r}}: Q_{p} \rightarrow$ $\mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is compact.
Proof. Given $\left\{f_{n}\right\} \subset Q_{p}$ such that $\left\{f_{n}\right\}$ converges to zero uniformly on any compact subset of \mathbb{D} and $\sup _{n}\left\|f_{n}\right\|_{Q_{p}} \leq 1$. Then by the following well-known inequality

$$
|h(z)| \lesssim\|h\|_{\mathcal{B}} \log \frac{2}{1-|z|^{2}}, \quad h \in \mathcal{B},
$$

we get

$$
\begin{aligned}
&\left\|T_{g r} f_{n}\right\|_{\mathcal{L F}\left(q, q-2, \frac{q \sqrt{2}}{2}\right)}^{q} \\
&= \sup _{a \in \mathbb{D}} \frac{1}{\left(\log \frac{2}{1-|a|^{2}}\right)^{q}} \int_{\mathbb{D}}\left|f_{n}(z)\right|^{q}\left|g_{r}^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\frac{q p}{2}} d A(z) \\
& \lesssim \frac{\|g\|_{\mathcal{B}}^{q}}{\left(1-r^{2}\right)^{q}} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f_{n}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\frac{q p}{2}} d A(z) \\
& \lesssim \frac{\|g\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}^{q}\left\|f_{n}\right\|_{\mathcal{B}}^{q-2}}{\left(1-r^{2}\right)^{q}} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f_{n}(z)\right|^{2}\left(\log \frac{2}{1-|z|^{2}}\right)^{q-2}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{\frac{q p}{2}} d A(z) \\
& \lesssim \frac{\|g\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}^{q}\left\|f_{n}\right\|_{Q_{p}}^{q-2}}{\left(1-r^{2}\right)^{q}} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f_{n}(z)\right|^{2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{p} d A(z) \\
& \lesssim \frac{\|g\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}^{q}\left\|f_{n}\right\|_{Q_{p}}^{q-2}}{\left(1-r^{2}\right)^{q}} \sup _{a \in \mathbb{D}} \int_{\mathbb{D}}\left|f_{n}^{\prime}(z)\right|^{2}\left(1-\left|\sigma_{a}(z)\right|^{2}\right)^{p} d A(z) \\
& \lesssim \frac{\|g\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}^{q}\left\|f_{n}\right\|_{Q_{p}}^{q}}{\left(1-r^{2}\right)^{q}} .
\end{aligned}
$$

By the dominated convergence theorem, we get the desire result. The proof is complete.
The following result is an important tool to study the essential norm and compactness of operators on some analytic function spaces, see [20].

Lemma 3. Let X, Y be two Banach spaces of analytic functions on \mathbb{D}. Suppose that
(1) The point evaluation functionals on Y are continuous.
(2) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact sets.
(3) $T: X \rightarrow Y$ is continuous when X and Y are given the topology of uniform convergence on compact sets.

Then, T is a compact operator if and only iffor any bounded sequence $\left\{f_{n}\right\}$ in X such that $\left\{f_{n}\right\}$ converges to zero uniformly on every compact set of \mathbb{D}, then the sequence $\left\{T f_{n}\right\}$ converges to zero in the norm of Y.

Theorem 3. Let $0<p<1,2<q<\infty$ and $g \in H(\mathbb{D})$. If $T_{g}: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is bounded, then

$$
\left\|T_{g}\right\|_{e, Q_{p} \rightarrow \mathcal{L}\left(q, q-2, \frac{q p}{2}\right)} \approx \operatorname{dist}_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}\left(g, \mathcal{F}_{0}\left(q, q-2, \frac{q p}{2}\right)\right) .
$$

Proof. Let $\left\{I_{n}\right\} \subseteq \partial \mathbb{D}$ and $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Suppose $e^{i \theta_{n}}$ is the center of I_{n} and $w_{n}=\left(1-\left|I_{n}\right|\right) e^{i \theta_{n}}$. For each n, let

$$
f_{w_{n}}(z)=\frac{1}{\log \frac{2}{1-\left|w_{n}\right|}}\left(\log \frac{2}{1-\overline{w_{n}} z}\right)^{2} .
$$

Then $\left|f_{w_{n}}(z)\right| \approx \log \frac{2}{\left|I_{n}\right|}$ when $z \in S\left(I_{n}\right)$ and $\left\{f_{w_{n}}\right\}$ is bounded in Q_{p}. Furthermore, $\left\{f_{w_{n}}\right\}$ converges to zero uniformly on every compact subset of \mathbb{D}. Given a compact operator $K: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$, by Lemma 3 we have $\lim _{n \rightarrow \infty}\left\|K f_{w_{n}}\right\|_{\mathcal{L}\left(q, q-2, \frac{q p}{2}\right)}=0$. So

$$
\begin{aligned}
\left\|T_{g}-K\right\| & \gtrsim \limsup _{n \rightarrow \infty}\left\|\left(T_{g}-K\right) f_{w_{n}}\right\|_{\mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)} \\
& \gtrsim \limsup _{n \rightarrow \infty}\left(\left\|T_{g} f_{w_{n}}\right\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}-\left\|K f_{w_{n}}\right\|_{\mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)}\right) \\
& =\limsup _{n \rightarrow \infty}\left\|T_{g} f_{w_{n}}\right\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)} \\
& \gtrsim \limsup _{n \rightarrow \infty}\left(\frac{1}{\left(\log \frac{2}{1-\left|w_{n}\right|^{2}}\right)^{q}} \int_{\mathbb{D}}\left|f_{w_{n}}(z)\right|^{q}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left\lvert\, \sigma_{w_{n}}\left(\left.z\right|^{2}\right)^{\frac{q p}{2}} d A(z)\right.\right)^{\frac{1}{q}}\right. \\
& \gtrsim \limsup _{n \rightarrow \infty}\left(\frac{1}{\left(\log _{\frac{2}{}}^{1-\left|w_{n}\right|^{2}}\right)^{q}} \int_{S\left(I_{n}\right)}\left|f_{w_{n}}(z)\right|^{q}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{w_{n}}(z)\right|^{2}\right)^{\frac{q p}{2}} d A(z)\right)^{\frac{1}{q}} \\
& \gtrsim \limsup _{n \rightarrow \infty}\left(\frac{1}{\left|I_{n}\right|^{\frac{q p}{2}}} \int_{S\left(I_{n}\right)}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2+\frac{q p}{2}} d A(z)\right)^{\frac{1}{q}},
\end{aligned}
$$

which implies that

$$
\left\|T_{g}\right\|_{e, Q_{p} \rightarrow \mathcal{L}\left(q, q-2, \frac{q p}{2}\right)} \gtrsim \limsup _{n \rightarrow \infty}\left(\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\sigma_{w_{n}}(z)\right|^{2}\right)^{\frac{q p}{2}} d A(z)\right)^{\frac{1}{q}}
$$

It follows from Lemma 1 that

$$
\left\|T_{g}\right\|_{e, Q_{p} \rightarrow \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)} \gtrsim \operatorname{dist}_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}\left(g, \mathcal{F}_{0}\left(q, q-2, \frac{q p}{2}\right)\right) .
$$

On the other hand, by Lemma $2, T_{g_{r}}: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is compact. Then

$$
\left\|T_{g}\right\|_{e, Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q \sqrt{2})}{} \leq\left\|T_{g}-T_{g_{r}}\right\|=\left\|T_{g-g_{r}}\right\| \approx\left\|g-g_{r}\right\|_{\mathcal{F}\left(q, q-2, \frac{q}{2}\right)} .\right.} .
$$

Using Lemma 1 again, we have

$$
\left\|T_{g}\right\|_{e, Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)} \lesssim \limsup _{r \rightarrow 1^{-}}\left\|g-g_{r}\right\|_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)} \approx \operatorname{dist}_{\mathcal{F}\left(q, q-2, \frac{q p}{2}\right)}\left(g, \mathcal{F}_{0}\left(q, q-2, \frac{q p}{2}\right)\right) .
$$

The proof is complete.
The following result can be deduced by Theorem 3 directly.
Corollary 2. Let $0<p<1,2<q<\infty$ and $g \in H(\mathbb{D})$. Then $T_{g}: Q_{p} \rightarrow \mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is compact if and only if

$$
g \in \mathcal{F}_{0}\left(q, q-2, \frac{q p}{2}\right)
$$

4. Conclusions

In this paper, we mainly prove that inclusion mapping $i: Q_{p} \rightarrow \mathcal{T}_{\frac{\text { q. }}{2}, s}^{q}(\mu)$ is bounded if and only if $\sup _{I \subseteq \partial \mathrm{D}} \frac{\left(\log \frac{2}{T}\right)^{q-s} \mu(S(I))}{|I|^{\frac{q p}{2}}}<\infty$, when $0<p<1,2<q<\infty$ and $0<s \leq q<\infty$. As an application, we prove that Volterra integral operator T_{g} from Q_{p} to the space $\mathcal{L F}\left(q, q-2, \frac{q p}{2}\right)$ is bounded if and only if $g \in \mathcal{F}\left(q, q-2, \frac{q p}{2}\right)$.

Acknowledgments

The authors thank the referee for useful remarks and comments that led to the improvement of this paper. This work was supported by NNSF of China (No.11801250, No.11871257), Overseas Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University, Yanling Youqing Program of Lingnan Normal University, the Key Subject Program of Lingnan Normal University (No.1171518004) and (No.LZ1905), and Department of Education of Guangdong Province (No. 2018KTSCX133).

Conflict of interest

We declare that we have no conflict of interest.

References

1. A. Aleman, J. Cima, An integral operator on H^{p} and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176.
2. A. Aleman, A. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J., 46 (1997), 337-356.
3. P. Duren, Theory of H^{p} Spaces, Academic Press, New York, 1970.
4. D. Girela, J. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 241 (2006), 334-358.
5. P. Li, J. Liu, Z. Lou, Integral operators on analytic Morrey spaces, Sci. China Math., 57 (2014), 1961-1974.
6. S. Li, J. Liu, C. Yuan, Embedding theorems for Dirichlet type spaces, Canad. Math. Bull., Available from: http://dx.doi.org/10.4153/S0008439519000201.
7. S. Li, S. Stević, Riemann-Stieltjes operators between α-Bloch spaces and Besov spaces, Math. Nachr., 282 (2009), 899-911.
8. S. Li, H. Wulan, Volterra type operators on Q_{K} spaces, Taiwanese J. Math., 14 (2010), 195-211.
9. J. Liu, Z. Lou, Carleson measure for analytic Morrey spaces, Nonlinear Anal. Ser. A: Theory Methods Appl., 125 (2015), 423-443.
10. J. Liu, Z. Lou, K. Zhu, Embedding of Möbius invariant function spaces into tent spaces, J. Geom. Anal., 27 (2017), 1013-1028.
11. J. Pau, J. Peláez, Multipliers of Möbius invariant Q_{s} spaces, Math. Z., 545 (2009), 545-555.
12. J. Pau, R. Zhao, Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces, Integral Equations Operator Theory, 78 (2014), 483-514.
13. C. Pommerenke, Schlichte funktionen und analytische funktionen von beschränkten mittlerer Oszillation, Comm. Math. Helv., 52 (1977), 591-602.
14. R. Qian, S. Li, Volterra type operators on Morrey type spaces, Math. Inequal. Appl., 18 (2015), 1589-1599.
15. R. Qian, X. Zhu, Embedding of Dirichlet type spaces \mathcal{D}_{p-1}^{p} into tent spaces and Volterra operators, Canad. Math. Bull., Available from: https://doi.org/10.4153/S0008439520000764.
16. C. Shen, Z. Lou, S. Li, Embedding of $B M O A_{\log }$ into tent spaces and Volterra integral operators, Comput. Methods Funct. Theory, 20 (2020), 217-234.
17. C. Shen, Z. Lou, S. Li, Volterra integral operators from \mathcal{D}_{p-2+s}^{p} into $F(p \lambda, p \lambda+s \lambda-2, q)$, Math. Inequal. Appl., 23 (2020), 1087-1103.
18. Y. Shi, S. Li, Essential norm of integral operators on Morrey type spaces, Math. Inequal. Appl., 19 (2016), 385-393.
19. A. Siskakis, R. Zhao, A Volterra type operator on spaces of analytic functions, Contemp. Math., 232 (1999), 299-311.
20. M. Tjani, Compact Composition Operators on Some Möbius Invariant Banach Spaces, PhD dissertation, Michigan State University, 1996.
21. J. Wang, The Carleson measure problem between analytic Morrey spaces, Canad. Math. Bull., 59 (2016), 878-890.
22. J. Xiao, The Q_{p} Carleson measure problem, Adv. Math., 217 (2008), 2075-2088.
23. J. Xiao, Holomorphic Q Classes, Springer, LNM 1767, Berlin, 2001.
24. R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105 (1996), 56.
25. K. Zhu, Operator Theory in Function Spaces, Second Edition, Math. Surveys and Monographs, 138 (2007).
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
