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Abstract: In this paper, the boundedness and compactness of the inclusion mapping from Q, spaces

into tent spaces 7, , are completely characterized when g > 2. As an application, the boundedness

2

of the Volterra integral operator T, from Q, to the space LF (q,q — 2, %) is obtained. Moreover, the
essential norm and compactness of T, are also investigated.
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1. Introduction

Let D be the open unit disk in the complex plane C and H(ID) be the class of all functions analytic
inD. Let0 < p < coand —1 < & < oo. The Dirichlet type space DY is the set of all f € H(D) such that

1lloy = LFO + f PP = 2P dAQ) < oo,
D

where dA is the normalized Lebesgue area measure in D such that A(D) = 1. When p =2 and @ = 0, it
gives the classic Dirichlet space 9. When p = 2 and « = 1, it gives the Hardy space H>. When a = p,
DPF is just the classical Bergman space A”.

Let 0 < p < co. The Q, space is the space of all f € H(D) such that (see, e.g., [23])

I£1lg, = 1FO)F + Supf I @P = o))’ dA(z) < o,
D

aeD

where 0,(z) = ¥=-. When p > 1, Q, is the Bloch space 8 (see [24,25]), which denote the space of all

1-az

f € H(D) such that
Iflls =1/ 0)] + Sl%)(l —ZPIf @) < 0.
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When p = 1, Q; = BMOA, the space of analytic functions in the Hardy space H'(D) whose boundary
functions have bounded mean oscillation (see, e.g., [25]).
Let0 < p,s < oo, =2 < g < o0. A function f € H(D) is said to belong to ¥ (p, g, s) if

115 gy = 1FOI” + sup fD @I (1 = 12P)(1 = lo(2)I*) dA(2) < co.

aeD

An f € Fo(p,q, s) if f € H(D) and
|l}mlflf'(Z)l”(l — (1 = o)) dA(z) = 0.
a—=1 JD

¥ (p.,q, s) is a Banach space under the norm || - ||#(, 45 When p > 1. This space was first introduced

by Zhao in [24] and called general function space because it can get many function spaces if it takes

special parameters of p, g, s. From [24] we see that # (p, p — 2, 5) is just the Bloch space when s > 1.
For 0 < g, s < oo, let LF (g, g — 2, s) denote the space of all f € H(D) such that

1
q _ O q / q 1 1.12\¢2 1 _ . 2 Sd .
Iz (g g2 = A ONF + i‘el]g —(log 1ja|2 )q Llf @I = [2I)"(1 = |oa(2)I) dA(z) < o0

It is easy to check that L7 (q, g — 2, s) is a Banach space under the norm || - || s (4,4-2.5) When g > 1.
Let g € H(D). The Volterra integral operator T,, which introduced by Pommerenke in [13], was
defined by

Tyf(2) = j; Jw)g'wydw,  f € HD).

The importance of the operator T, comes from the fact that T, f + I,f = M,f — f(0)g(0), where the
operators M, and /, are defined by

(M f)(2) = 8(2)f(2), 1f(2) =fo f'wgwydw f e HD), z€D,

respectively. Note that the integral form of the classical Cesaro operator C is

) e

Hence the operator T, can also be seen as the generalization of the Cesaro operator C. In [13],
Pommerenke showed that T, is bounded on H? if and only if g € BMOA. In [2], Aleman and Siskakis
showed that T, is bounded (compact) on A” if and only if g € B(g € B,). Recently, the operator T,
has been received many attention. See [1,2,4-8,12,14,15,18,19,22,24] and the references therein for
more study of the operator 7.

For an arc I C dD, let |I| = % fl |dZ| be the normalized length of 1. Let 0 < @ < co and u be a
positive Borel measure on D. As usual, we say that u is a @-Carleson measure if

L e
CH() = - f FO——ar=1 f O (m
Z Jo 1-¢ Z Jo

llulle := sup ———
wcop N°
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where S(/) ={zeD:1-|l| <z <1, & €I}isthe Carleson box based on I. When a = 1, it gives

4
the classical Carleson measure. y is said to be a vanishing @-Carleson measure if limy; o (Slf,l D=0
Let 0 < A, ¢ < co, s > 0 and u be a positive Borel measure on D. The tent space 7 (1) consists of

all f € H(D) satisfied

1
sup [ @) < oo
reap 1 (log )* Jsa)

The tent space TZS(/J) was introduced by Liu, Lou and Zhu in [10]. When ¢ = 2 and s = 0, ‘Tio(y) =
7" was first introduced by Xiao in [22].

In [22], Xiao studied the inclusion mapping i : @, — 7 °(u). He showed that the inclusion mapping
i:Qp— 7,°(w) is bounded (resp. compact) if and only if

(log 7)*u(S (1)) . (log 3)°u(S (D)
sup <oo (resp. lim =
oD \1|P -0 \7|P

As an application, he proved that the operator T, : Q, — Q, is bounded if and only if

sup

cop P

f If @F(1 = |z*)?dA(z) < oo.
S()

In [10], Liu, Lou and Zhu studied the embedding of some Mobius invariant spaces, such as the Bloch
space and the Q, space, into 7 is. Among others, they proved the following Theorem A. See [6, 9,
12,14-17,21] and the references therein for more study of analytic function spaces embedding into
various tent spaces.

Theorem A. Let 0 < p < 1 and u be a positive Borel measure on D. If Q,, is continuously contained
in ‘7‘;2, then u is a p-Carleson measure. If Z)f, is continuously contained in L*(D,du), then Q,, is
continuously contained in ‘7;22.

By [22, Lemma 2.1 (ii)], we see that u is a p-Carleson measure if Z)f, is continuously contained in
L*(D, du). But the converse is not clear. The nature question then arise, what can one say if we change
T, into T when g > 2?

In this paper, we give an answer by using a new method, which was different to [10, 22]. We
study the boundedness and compactness of the inclusion mapping from Q, spaces into tent spaces
T & .- As an application, we study the boundedness of Volterra integral operator 7, acting from Q) to
L;’(q, g — 2,%). Meanwhile, the compactness and essential norm of the operator T, acting from Q,
to LF (q,q — 2, %2) are also investigated.

Throughout this paper, we say that A < B if there exists a constant C such that A < CB. The symbol
A ~ Bmeans that A < B < A.

2. Embedding of O, spaces into tent spaces

In this section, we study the embedding from Q, to tent spaces. We give a complete characterization
for the boundedness and compactness of the inclusion mapping i : Q, — T (u). We say that the
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inclusion mapping i : Q, — 7 /ﬁs(,u) 1s compact if

. 1 f
lim ————— [ |f,(2)l"du(z) =0
n=e [ (log p)* Jsa)

whenever I € 0D and {f,} is a bounded sequence in Q, that converges to 0 uniformly on compact
subsets of D.

The following result is one of the main results in this paper.

Theorem 1. Let 0 < p < 1 and u be a positive Borel measure. If2 < g < 0 and (0 < s < g < oo, then
the following statements hold.
(i) The inclusion mapping i : Q, — T4, (W) is bounded if and only if
7S

q-s
(log 2)"" (S ()
lullzem, |4 = sup <

o0, 2.1)
IcoD 1%

(ii) The inclusion mapping i : Q, — T4, (w) is compact if and only if
7S

(log )" (s (1)
m - =0
171-0 1|z

(2.2)

Proof. (i) Assume that the inclusion mapping i : Q, — 7, () is bounded. For any fixed arc I € dD,
7S

let ¢ be the center of I and a = (1 — |I|)e”. Set f,(z) = log (1_252). Then f, € 0, and

— 2
[l —azl~1—la|l = |Il, |fu(2)| = log ik

whenever z € S (). By the boundedness of i, we have

: f
7 @l < Nl < o,
1 (og 2 Jsgp PN 4D = Wellg,

which implies (1), as desired.
Conversely, assume that (1) holds. Let f € Q,. For any fixed arc I C dD, let ¢” be the center of /
and a = (1 — |I))e"’. We have
1
qp

— = | f@ldu) <A+ B,
1% (log 7)° fsmfz He

where
1
qp

1% (log 2)°
Since f € Q, € B, we obtain

@IS 1)
- f@l'du(z), B=-—F——F—.
J,, v - rarauce %oz 2

If @I < lIfllz(log

2\
9 < (1 -
) < g, (g =)
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which implies that for any / C dD,

(log )" (S (1)

B < sup IAIE < LA, .
oD 1% & Cr

Since 0 < s < g < oo, we get

usay _ (log 2" (s ()

ap ~ ap < 09,
ICBD Ve IcoD Vex
which implies that D? C L(du) by [4, Theorem 1]. Therefore,
1
ST f 1f(2) = f(@)|du(z)
12 Jsa
squwj‘f@_mf du(z)
sl (1 —az)
<(1 - [Py f 1O J@OF )
p|(1- az)
J ]
ﬂl—thDﬂm—me+lf(iﬂ@ f@f mﬁﬁmgﬂ.
z(1-az)?

By the growth of functions in Q, and

2,3
x“(log—) <1, 0<x<1, 0<a,B< o,
X

we deduce that

(1 = 1aP)"£(0) = f(@I” < lIfIIE, -

Thus, we only need to prove that

E=(1-laP f 410 FOF ey < i,
dz (1 —az) !

Since . .

d f) - fla) _ @0 -a)7 + 5(37”)(f(z) - fla)(1 —az)=~!

A (1-a¥ (1 -az)r ’
we obtain £ < E; + E,, where

If @)
= (1 —la)* N m(l — 21’ dA(z)
and 5
=(- |a|2)2” M 1= |Z|2)pdA(Z).

11 = azPr+2 (
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Noting that
(1 = laP)A =1zl

— a
|1 —aZ|2 H ’

1= lpa@)I” = z€D,

we have

1-— 2p+p1_ 2\p
B = [Pt a0 < i,
D

11 — az]’r
By [11], we deduce that

_ 2
EFGAWWfMQJ@thWm@
D

|1 — azl3p+2
_ [ 1@ = F@F (1= laP)7(1 = )
“ ) Tmar T—agr @
@ - f@f

sf
D

Therefore, E < ||f ||2p, as desired.

| (- p@PYdAQ) < U1l
~

(i1) Suppose that the inclusion mapping i : Q, — 7, 5 S(,u) is compact. Let {/,} € dD and |[,| — O

as n — oo. Suppose ¢ is the center of I, and a, = (1 — |I,])e". Set f, (z) = log (1_272) Then f,, € 0,
and log 7= =~ log ;#;. Therefore

q-s
(log )" S _ 1
1L, % " ILl% (log 2

il

5 f |f0, @ldu(z) = 0, n — oo,
) S(In)

which implies that (2) holds.
Conversely, assume that (2) holds. Then it is clear that

log )" u(S (1) s
lulleem g = sup ( lll) n <o and sup H( ;)) < oo,
q-s, 1CoD |I| 2 1c8D |I| 2

Let {f,} be a bounded sequence in Q, such that {f,} converges to zero uniformly on each compact
subset of D. From [12] we have
1
1% (log 2 )
1
Sﬁ
1% (log 2)*
< 1
1% (log )
1
S oo
1% (log 2)*

1
<o | IR + = pallow, .y 0
S{) ’

f /(@) du(z)
S
1
n qd r —ar . 5 n qd - Mr
fm) /@ dp,(2) + ¥ oz 2y fsm /@1 d( — p)(2)
j; " @1 dur (@) + Nl = prllem, o IIntIZp
1 2

f |/ dp,(2) + llu — Helleem,
S

apr
S, %y
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asr — 17 and n — oo. Therefore, lim,_ || fnllrrzp @ = 0. This shows that the inclusion mapping
oS
i:Q,— Ty, (1)iscompact, i
2 bl
In particular, let s = g, we get the following result.

Corollary 1. Let 0 < p < 1,2 < g < oo and u be a positive Borel measure. Then the inclusion
mapping i : Q, = T4 q(,u) is bounded (resp., compact) if and only if
L,

(S )
sup —— < 00 .
1cop |17

im #6 f,,,])) -0
-0 |1%

3. Volterra integral operator 7, : Q, > LF(q,q —2,%)

In this section, we study the boundednss, compactness and the essential norm of Volterra integral
operator T, : Q, = LF(q,q — 2, ). We need the following equivalent characterization of functions

in Lq:(q’ q-— 2’ S)-
Proposition 1. Let 1 < g <ocoand 0 < s < oco. Then f € LF (q,q — 2, s) if and only if

1
ww——T_flﬂMm—WVmM@<%- G.D
1cop PP(log 7)7 Jsay

Proof. Let f € LF(q,q — 2, s). Forany I € dD, leta = (1 — |I|){ € D, where ¢ is the center of /. Then

1—lal= |1 —azl = |ll, zeSU).

(=lal>)(1-Iz*)

i we have

Combining with 1 — |o,(z)]* =

1
- "] = 1222 dA

F @11 = 12721 = o)) dA(2)

~
~

1
(log 1_T—a|2)q Lm

1
ﬁw——yqfwwm—WVM—m@WM@<w
<o (log ) o

as desired.

Conversely, assume that (3) holds. For any given nonzero a € D, let I, be the subarc of dD with
midpoint a/|a| and length 1 — |a|; and for @ = 0, let I, = dD. Moreover, let J, = 2", for n =
0,1,--- ,N — 1, where N is the smallest positive integer such that 2V|I,| > 1. Then we have the
following estimate:

1 —|al 1

r—, el, 3.2
l—azf L ° (3-2)
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and
1 —|al 1
—aP ~ 20,0
Without loss of generality, we may assume |a| > 3/4. By (4) and (5) we have

2 € Jpi1\Jn. (3.3)

flf @1 = 1271 = |oa(2)°) dA(2)

(log a|2
N-1
7 f If/ @I(1 = |z dA(z)
e |22n1| log |,|) S Une\S ()
1
v f I @11 = |2*)1 > dA(2)
1} (log )" Jsuw
N-1 1
$Z f @I - 2P dAR) + C
=0 |22n1 |S log L I) (Jns1)
N-1 1

A

2 q
x 2", IS(log ) +C
g |s (log : I) [2n+1] |

5 1 (loe )
S ) —————+C
Sio ZL + C < oo,
The proof is complete. O

Theorem 2. LetO<p<1,2<g<ooandge HD). ThenT,: Q, — LF(q,q —2,%) is bounded
ifand only if g € F(q,q — 2, 42).

Proof. Suppose that g € F(q,q — 2, “2). By [24] we have

”g”?—-(qq 2, qp) ~ Sup
1com |I|%

f 8'@I7(1 = |z T dA(2),
)

which means that du,(z) = |g'(@)|7(1 - Iz )q‘2+%dA(z) is a %—Carleson measure. Let f € Q,. By
Corollary 1, we see thati: Q, — 7, q(,ug) is bounded, i.e.,
L,

1 a»
Sup ———— f (TofY @I = 272 dA(2)
1cop |17 (log l—%l)q S #

i
=sup —p——— |f (@I du,(2) < oo,
1cop |17 (log %)q S ¢

which together with Proposition 1 imply that

1 qp
sup ——— fD (T f) @11 = 2221 = oD 2 dAG) < .

a€D ]og e
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Therefore T, : Q, — LF (q,q — 2, %) is bounded.
Conversely, assume that T, : Q, = LF(q,q — 2, %) is bounded. For any fixed arc I € dD and let
¢ be the center of 7 and a = (1 — |I))e. Set f,(z) = log ﬁ Then f, € Q, for 0 < p < co. Since

_ 2
[l —azl = 1 —lal = Il, [fa(2)] = log — Tk

when z € S (I), we get

q
0 ST fulllr ynt)

1 ar
> - ’ q| ./ a1 — 2 q—2+7dA
1% (g 2y fs " |fa@I*1g" @I (1 = 12I7) (2)

1 qp
~—0r f lg’ @11 = |z 2 dA(2),
11z Jsm

which implies that g € F(q, g — 2, ) by [24]. The proof is complete. O

Next, we give an estimation for the essential norm of 7,. First, we recall some definitions. Let
(X, |l - llx) and (Y, | - ||y) be Banach spaces and T : X — Y be a bounded linear operator. The essential
norm of 7' : X — Y, denoted by ||T|. x-yv, is defined by

T, x—y = i%f{”T — K||x—y : K is compact from X to Y}.
Itis easy tosee that T : X — Y is compact if and only if ||T||. x—.y = 0. Let A be a closed subspace of X.
Given f € X, the distance from f to A, denoted by distx(f, A), is defined by distx(f, A) = infyeq || f—glIx-
Lemmal. Let2 <g<ooand )< A<oco. IfgeF(q,q—2,AQ), then

distyr(g.q-2.1(8> Folg, g — 2, ) = limsup|lg — &/ llrqe-—2.

r—1-

1/q
~ lim sup (f lg’ (@11 = [z1)972(1 - |O-a(Z)|2)AdA(Z)) )
lal—1 D

Here g,(z) = g(rz),0 <r<1,z€D.

Proof. For any given g € ¥(q,q — 2, 1), then g, € Fo(q,q — 2, ) and ||g,|lFgq-2.0 < lIgllFgg-2.0- Let
0 € (0,1). We choose a € (0,0). Then o,(z) lies in a compact subset of D. So

limsup |¢'(074(2)) = rg’(roa(2)] =

=1 zep
Making a change of variables, we have

lim sup f 8'(2) = g, (1 = ) 2(1 = loru(2))'dA(2)

r—1 lal<6

=lim sup f 18" (0u(2)) = g Ta@N(1 = 12P) 2| (2)dA(z)

r—1 lal<s
= lim sup sup |g'(074(2)) — g (T ()| f (1 = 1z 2lo,()"dA(2)
=1a|<6 zeD D

=0.
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By the definition of distance, we obtain

dist _ ,Folg,g —2,Q)) = inf - _
Faa-2.0(& Folq, q ) feﬂ(q,q—z,/l)”g SFga-2.0

IA

lim llg — grllT(q,tI—Z,/l)

IA

1/q
hm(supflg (2) — g1 = |21 = |ou(2)] )AdA(Z))

la|>6

1/q
+11m(sup f 8'(2) = gL@IU(1 = 12721 = |oa(2) )”dA(z))

lal<é

N

1/q
(Sup f 18’ @I(1 = |2)*>(1 - Iaa(z)lz)”dA(z))

la|>6

1/q
+11m (supf lg" @)1 = 27721 = |oo(2)| )AdA(Z)) -

la|>6

Denote by ,.,(z) = 0, 0 ro,(z). Then ¥, is an analytic self-map of D and y,,(0) = 0. Making a
change variable of z = 0,(z) and applying the Littlewood’s subordination theorem (see Theorem 1.7

of [3]), we have

f g, @I(1 = 1z)72(1 = oa(2)P) ' dA(z)
D

f 81T (@)1 = oa(@)(1 = 7Y 2 dA(z)
D

< fD 18" © a0 Yra@I'(1 = 1070 © Yra(DP)(1 = [2P)' 2 dA(2)
< fD 18" 0 07 © Yra(@DI(1 = 1074 © Y o(D)P)T(1 = [27)' 2 dA(2)
< fD 18" 0 0 (DI(1 = o)1 = |2 ?dA(2)

< fD 8’ @171 = 122 (1 = lo ()Y dA().

Since ¢ is arbitrary, we get

diSt‘F(q,q—Z,/l)(ga %(Q’ q-— 2’ /l))
1/q
< limsup (f lg’ @11 = 12421 - |O'a(Z)|2)AdA(Z)) )
-1 \Jp

On the other hand, for any g € ¥(q,q — 2, ),

dist _ ,Folg,g —2,Q)) = inf - _
Fq.q-2.0(8 Folq, q ) fe%(q,q—z,/l)”g SF@gg-2.0

1/q
> limsup( fD |g'(z)|q(1—|z|2)q-2(1—|cra(z)|2)”dA(z)) :

lal—1

which, together with (3.4), implies the desired result. The proof is complete.

(3.4)

O
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Lemma 2. Let0 < p < land2 < qg < o. If0<r<landg e F(qq-2,2) then T, : Q, —
LF(q,q —2,%2) is compact.

Proof. Given {f,} C O, such that {f,} converges to zero uniformly on any compact subset of D and
sup, [[fullg, < 1. Then by the following well-known inequality

2
|h(2)| < lihllglog —— T he 8B,
we get
fn”LY:((](i 25117)
—SUP— f 4@ = 12721 = loa () T dAR)
aeD (log o |2
gl )
ST Ifn(z)l”(l 2721 = |oru(2)P) * dA()
( 2)q aeID)
[ IIntI? ? g2
(9.9-2,%) B 2 2 N N4
< ; 1 =1z = |og 7dA
Sy i‘égfm'f @I (og - |le) (1= )20 = o @P) ¥ dAG)
Il o IlIG°
(9.9-2,%) 9
S oW f @A ~ oY dAG)
(1=r2)a aeD Jp
Il IS
(0.9-2.4)" "0, ,
S— s sup f £ @PA = o)) dAR)
(1 -r2)a aeD Jp
q q
Ty
By the dominated convergence theorem, we get the desire result. The proof is complete. O

The following result is an important tool to study the essential norm and compactness of operators
on some analytic function spaces, see [20].

Lemma 3. Let X, Y be two Banach spaces of analytic functions on D. Suppose that

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on
compact sets.

(3) T : X — Y is continuous when X and Y are given the topology of uniform convergence on
compact sets.

Then, T is a compact operator if and only if for any bounded sequence { f,,} in X such that { f,,} converges

to zero uniformly on every compact set of D, then the sequence {T f,,} converges to zero in the norm of
Y.

Theorem 3. Let 0 < p< 1,2 <g<ooand g€ HD). If T, : Q, = LF(q,q — 2, L) is bounded, then

. qp
1 Telle.0,—£7(qq-2.2) = distyg 42,928, Folg, g — 2, 7))-

AIMS Mathematics Volume 6, Issue 1, 698-711.
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Proof. Let {I,} C dD and |I,| — 0 as n — co. Suppose ¢ is the center of I, and w,, = (1 — |I,,|)e’. For
each n, let

1 2\

S (@) = 5 (log _— ) )

lOg m 1- Wyl

Then |f,, (2)| = log |12_| when z € §(I,,) and {f,,} is bounded in Q,. Furthermore, {f,,} converges to zero
uniformly on every compact subset of D. Given a compact operator K : Q, — LF (q.q — 2, %), by

Lemma 3 we have lim,_, ||K f,,, || [Fqq-2.2) = 0. So

IT, — Kl 2 limsup (T = K) fuu, |l £7(g.q-2.22)

2 limsup (ITefoull o7 2 = VK Full a2 )
=limsup T, fu, | o7(g.g-2.2)
n—oo 7
1 qp !
> lim sup — f o, @1’ @1 = 2721 - IO'wn(Z)IZ)ZdA(Z)]
n—oco (log _1_|wn|2) b

| i
> lim sup

0 f @I @11 = 122721 = oy, ()P F dAR)
(g ) s

q
’

1 qp
> limsup | — f g’ @I(1 = Izlz)q‘2+2dA(Z))
S(In)

oo |2
which implies that

1
1 Telle.0, r7(q.g-2,2) 2 limsup (fD 18" @11 = 12)72(1 - |O-W,,(Z)|2)qudA(Z)) :

n—oo

It follows from Lemma 1 that
. qp
”Tg”e,Qp—)L‘T(q,q—Z,%) Z dlStT(q,q—Z,%)(g9 7:0(51, q— 2’ 7))
On the other hand, by Lemma 2, T, : O, — LF(q,q - 2, 42y is compact. Then

||T8||€,Qp—>.£‘7‘—(q,q—2,q7p) < ”Tg - Tgr” = ”Tg—g,” ~ ||8 - gr||7'-(q,q—2,%).

Using Lemma 1 again, we have

. . qp
||Tg||e,Qp—>£5¢(q,q_2,%) < limsup||g - gr||¢(q,q_2,%) ~ dlstﬂq,q_z,%)(g’ Folg,q — 2, 7))

r—1-

The proof is complete. O

The following result can be deduced by Theorem 3 directly.

Corollary 2. Let 0 < p< 1,2 <g<ocoand g € HD). Then T, : Q, = LF(q.q — 2, %) is compact
if and only if
qp
8 €Folg:q-2.57).
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4. Conclusions

In this paper, we mainly prove that inclusion mapping i : Q, — T, (u) is bounded if and only if
7S

(log 2)" (s ()
SUP;cop iz

prove that Volterra integral operator T, from Q, to the space LF (g, g — 2, “£) is bounded if and only if
g€F(q.9-2,%).

<oo,when0) < p<1,2<g<oand0 < s < g < co. As an application, we
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