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1. Introduction

Suppose b is a locally integrable function on R" and T is an integral operator. The principle model
of commutator generated by b and T is Calderén commutator [T, M,](f) = T(bf)—bT (f)(see [5]). The
boundedness of commutator characterizes some function spaces (see [2, 10, 21]). In the mid seventies,
Coifman, Rochberg and Weiss showed that the commutator is bounded on Lebesgue space. In fact
they even proved that this property characterizes BMO functions. As the development of singular
integrals (see [7, 21]), the commutator has been well studied. In [5, 19, 20], the authors proved that
the commutators of BMO functions and the singular integral are bounded on Lebesgue space. In [3],
the author proved a similar result where singular integral is replaced by fractional integral. In [10, 18],
the boundedness of the commutator of the Lipschitz function and singular integral on Triebel-Lizorkin
and Lebesgue spaces are gained. In [1, 9], the boundedness for the commutator by the weighted BMO
and Lipschitz functions and singular integral on Lebesgue spaces are gained (also see [8]). In [2], the
authors introduced certain singular integral operator with variable kernel and obtained its boundedness.
In [13-15], the boundedness for the commutator by the BM O function and operator is obtained. In [17],
the authors proved the boundedness of the multilinear oscillatory singular integral by BMO function
and the operator. In [11, 12, 16], certain Toeplitz operator related to the strongly singular integral
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is studied.
Motivated by these, in the paper, certain Toeplitz operator of the weighted BMO and Lipschitz
functions with the singular integral transform with variable Calderén-Zygmund kernel are studied.

2. Preliminaries and notations

In the paper, we will study following singular integral transforms (see [2])

Definition. Let K(x, -) be a variable Calderén-Zygmund kernel for a.e. x € R" as [2] and for a locally
integrable function » on R" and the singular integral transform 7" with variable Calder6n-Zygmund
kernel as

T = f Q(x. x = ) f)dy.
i

The Toeplitz operator relater to 7 is defined as

Ty =) T%'M,T*?,
k=1

where T%! are the +I(the identity operator) or singular integral transform with variable Calderén-
Zygmund kernel, and T*? are the linear operators for k = 1, ...,m, My(f) = bf.
Now, we introduce some notations. In the paper, Q will denote a cube of R". For a weight function
w (i.e. w is a nonnegative locally integrable function), let w(Q) = fQ w(x)dx and wg = 10| fQ w(x)dx.
For a locally integrable function b, the maximal sharp function of b is defined by

1
M (b)) = sup — f 1Y) = boldy.
O>x |Q|

We know that (see [7])

M*(b)(x) ~ sup 1nf 1 f |b(y) — c|dy.
O>x € |Q|

Let
M)(x) = SUP P f 1b(y)ldy.
For n > 0, let M,f(b)(x) = M*(|b|)'/"(x) and M, (b)(x) = M(bI")'/"(x).
For0 <n <n,1 < p < oo and weight function v, set
1/p
f Ib(y)l”V(y)dy)

M, (b)(x) = SQ‘;E( (Q)1-rin

and

M(b)(x)—s(;gé f OIVdy.

The A, weight is defined by (see [7])

p-1
A, {o <vel, (R": sup(lél f v(x)dx)(lé| f v(x)_”(p_l)dx) < oo}, 1<p< oo,
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and
A ={0<vell

loc

(R") : M(v)(x) < Cv(x),a.e.}.

Given a weight function v, the weighted Lebesgue space L”(R", v) is the space of functions b such
that, for 1 < p < oo,

1/p
bl oy = (f |b(x)|pv(x)dx) < 00,
R}l
The weighted BMO space BMO(v) is the space of functions f such that

1
fllwon = sup oo fQ ) = foldy < oo.

For 0 < B < 1, the weighted Lipschitz space Lipg(v) is the space of functions f such that
1 1 M
1/ i) = Slép QP (@ L lf() - fQ|pV(X)l_pd)’) < oo,
Remark.(1). We know that (see [6]), for f € Lipg(v),v € A; and x € Q,

fo = Frrol < ChlAlLipyw ()2 QP

(2). Given f € Lipg(v) and v € A;. By [5], It is known that spaces Lipg(v) coincide and the norms
|/ |Lipsv) are equivalent for different values 1 < p < .

The following preliminary lemma needs.

Lemma 1.([7, p.485]) Suppose 0 < p < g < oo and any positive function f. It is defined that, for

Il/r=1/p-1/q,

I.fllwzs = sup Al{x € R" = f(x) > A}|"/4, Ny o(f) = supllfxoll/llxoller
>0 (0]

where the sup is taken for all measurable sets Q with 0 < |Q| < co. Then

Ifllwzs < Npo(f) < (a/(q = PPl fllw-

Lemma 2.(see [2]) Suppose T is the singular integral transform as Definition 2. Then 7 is bounded
on LP(R",v) forv € A, with 1 < p < oo, and weak (L', L') bounded.
Lemma 3.(see [1]) Suppose b € BMO(v). Then

lbg — baigl < Cjllbllzsowvo;s

where vg, = max,<<; [2'0[™" [, o V(D).

Lemma 4.(see [1]) Suppose v € A, 1 < p < co. Then there exists € > 0 such that v='/7 € A, for
any p <r<p +e

Lemma 5.(see [1]) Suppose v € BMO®), v = (uv )P, u,v € A, and p > 1. Then there exists
€ > O such that for p’ <r < p’ +¢,

fQ 1f (%) = fol () ™""Pdx < Cll fllzpom) fQ y(x) P dx.
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Lemma 6.(see [1]) Suppose v € A,, 1 < p < co. Then there exists 0 < § < 1 such that v'~"'/? €
A, (dp) for any p’ < r < p’(1 + 6), where du = v"/Pdx.

Lemma 7.(see [1]) Suppose u,v € A,, v = (uv)?, 1 < p < co. Then there exists 1 < g < p such
that

1 c o\
wQ(vQ)l/q (— f v(x) 1 v(x)™? /qu) <C.
101 Jo

Lemma 8.(see [5, 6]) Suppose 0 <np<n, 1 <s<p<n/n,1/g=1/p—n/nandv € A;. Then

||M77,s,v(f)”L‘1(v) < C”f”LP(v)-

Lemma 9.(see [7]). Suppose 0 < p,n < 0o and v € Uj<,<A,. Then, for any smooth function f,
f M, (f)(x)"v(x)dx < Cf Mf;(f)(x)”v(x)dx.
R R"

3. Theorems and Proofs

We can prove the following theorems.

Theorem 1. Suppose T is the singular integral transform as Definition 2, 1 < p < oo, u,v € A,
v=w H', 0<n<landb € BMOW). If T\(g) = 0 for any g € L“(R")(1 < u < o), then there
exists aconstant C > 0, >0,0<d < 1,1 <g< pand p’ <r <min(p’ + &, p’(1 + 9)) such that, for
any f € C7(R") and X € R",

MET, (D) < Cllbllawow Y (1M, (VT2 YOI + [M(WT2I@]I)
k=1

Theorem 2. Suppose T is the singular integral transform as Definition 2, v € A, 0 < n < 1,
l <s<oo,0<pB<1landb € Lips(v). If T1(g) = 0 for any g € L"(R")(1 < u < o0), then there exists a
constant C > 0 such that, for any f € C’(R") and X € R",

Miy(To(/))(F) < ClIbllLipy ) V() Z M s (T** ().
k=1

Theorem 3. Suppose T is the singular integral transform as Definition 2, 1 < p < oo, u,v € A,
v=(u )" and b € BMO®W). If T|(g) = 0 for any g € L“(R")(1 < u < oo) and T*? are the bounded
operators on LP(R",v) for 1 < p < coandv € A,(1 < k < m), then T}, is bounded from LP(R", u) to
LP(R",v).

Theorem 4. Suppose T is the singular integral transform as Definition 2, v € A;, 0 < 8 < 1,
b € Lips(v),1 < p<n/Band 1/q=1/p—pB/n. If T\(g) = 0 for any g € L“(R")(1 < u < ) and T*? are
the bounded linear operators on L”(R",v) for 1 < p < coand v € A;(1 < k < m), then T}, is bounded
from LP(R",v) to LY(R",v'79).
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Proof of Theorem 1. It is only to prove the following inequality holds, for f € C;(R") and some

constant Cy:

1/n
(|Q|f|Tb(f)(x) Col”a’x)

< Clibllsmon Z (IM, (VT2 OIEN + ML VT2 (OI)]).
k=1

We assume T%! are T(k = 1, ...,m). Fix a cube Q = Q(xo,d) and ¥ € Q. We write, by T;(g) = 0
To(f)(X) = Tobyo (X)) = To-brgyrao (X) + To-brp)rge (X)) = fi(x) + fo(20).

Then

1 1/n
(— f IT5(f)(x) = folxo)l" dx)
10l Jo

1 /5 1 U
< C(—fm(X)I"dx) +C(_f|f2(x)_f2(xo)|"dx) I+ D
0 Jo 0 Jo

For I;, we know v™"/? € A, by Lemma 4, we get

-1/

1 oo\ 1 y
"IPd C "pd
(IQIf v x) = (IQIf V) x)

then, by Lemmas 1, 2 and 5, we obtain

IA

IA

IA

IA

IA

IA

IA

1/n
(|Q| f IT M(b bQ)XzQTkz(f)(X)I"dx)

10111 1T Mip-bgy0 T (X ol
|Q|1/n I oll zrra-n

||T "Mp-brgyne T Dllw

10|
C

IQI R
f 1b(x) = baglu(x)™PIT ()0 W(x)v(x)!Pdx

|M(b b2Q)X2QT (f)(x)ldx

10l

1/r
C (— f |b(x) — szIru(x)_’/pdx) (— f ITk’z(f)(x)|rlv(x)"v(x)"/”dx)
101 Jao 19

1 1/r 1/
ClIbllzmow) @f V(X)_r/pdx) (|Q|f ITkz(f)(X)V(X)VV(X)’/pdx)
20
1/r

1 ) -1/ 1
Cllbllzmow) @f V(x)r/pdx) (IQIf 1T (F)xw(x)l” v(x)r/l’dx)

1/r
C”b”BMO(v) V(2Q)V OOV P f |Tk Z(f)(x)v(x)lr V()C)r /pdx)

ClIbllsrsoe) LM, (VT (HI(@1V,
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thus

1/n

L= Z(|Q| f T Mo T () ()" x

< cnbuBMO(v)Z[MW<|ka’2(f)|”)(fc)]””.
k=1

A

For I,, by [2], we know that

1w =3 auw [ =2y

k=1 =1
and for [x — y| > 2|xg — x| > 0,

Yu(x=y)  Yilxo —y)

< CK"?|x = xol/1x0 — yI"*!
lx — yI" lxo — yI"

Thus, by the same argument of proof in [4], for x € O, we get
1T Mp-bgyeope T2 ()X = T My by T ()(X0)]

S 1 o N
Clibllzmon Z 2 (W f 1 T2 (H OO V() /pdy)
=1 20

IA

+ Clbllswon [MyWWT2(HINEY Y j27

j=1
1/q
-4 Ky
TGy, OO y)

ClIbllsyow [ My (VT2 (FIME)
+ ClIbllsarow [ M, (VT(f)I)(F)]'1.

1
XszQ(szQ) la (

IA

Thus

1
I Z 1T Mgy T () = T Mipgyage T () 50)ldx

S _
101 Jo £

A

< Cllblissow Y (IMyn(VT2AIENY” + IMTH2(H)IE).
k=1

Theorem 1 is proved.
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Proof of Theorem 2. It only to prove the following inequality holds, for f € C;(R") and some
constant Cy:

1 1/n m
(I_QI fQ |Tb(f)(X)—C0|”dX) sC||b||L,-pﬁ(v)w(;C)kZ:;Mﬁ’s’w(Tk,z( /.

We assume 7%! are T'(k = 1, ..., m) and similar to Theorem 1, for a cube Q = Q(x,,d) and ¥ € Q,
we get

1 1/n
(— f |Tb<f><x>—fz(xo>|"dx)
101 Jo

1 1/n 1 U
< C(— f |f1(X)|'7dx) + C(— f | f>(x) _f2(xo)|"dx) — L+
01 Jo 01 Jo

For I5, we have

hos oo f 16x) — bagl() T2 dx
< o ( f 1b(x) — bagl! v()'" fdx) ( f |T“<f>(x>|3v<x>dx)m
< bl 20) ! PR0) M (TP
< Clbluio 5o 5)Mﬁ,s,v<Tk’2(f»<fc>
< CllblLipyyV(EMp s (T (HNE),

thus

1/n

m 1
L < C;(@L|Tk’1M(b—bQ)mQTk’z(f)(x)de

IA

CllbLipy V(D) D Mp (T (FH().
k=1

For 1,, by using the same argument as in the proof of I,, we have, for x € Q,
1T M- bQ)mQ)c T ()(%) = T Mp-byyye T () (X0

- Z - ZZ [ 1(3) = baol T (P

2Jd<ly—xo|<2/+1d BY)

IA

= c ZZ (2f+_1d)"“ fZQ 1bG) = baig + bamig = baghv(y) ™ IT*(FY)Iv()*dy
J:

1/s

b d . » 1/s )
< C;—(W 2y ( j; +1Q|b(y)—b2«,-+1Q| v(y)' dy) ( fz HQIT"’Z(f)(y)I v(y)dy
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1/s

N —d . -1/(s-1) e k2 s
+]Z:; Ty |baiv1g —b2Q|(LHQv(y) dy 2J.+1Q|T (I v(y)dy

\ —d ' ’ j -B/n ~
C Z (2j+1d)n+1 ||b||Liplg(v)V(2j+l Q)l/s +ﬁ/nv(2]+l Q)l/s B/ Mﬂ’S’V(Tk’Z(f))(X)
j=1

IA

[es) d . .
' Zl W”bﬂmﬁ(wv(i)ﬂ(zﬁl QP "I Q) My (T*())(F)

ol (1 v
V(2j+1Q)l/s(|2j+lQ| 2jHQV()’)d)’) (

CllBILipy o V(OMp o (THAONE) Y j27

J=1

(s=1)/s
—-1/(s-1)
|2j+lQ| 2f+1QV(y) dy)

IA

IA

ClBl| Lipy V(B M (T (),

thus

1 m
I, < 0 f Z |Tk’1M(b—bQ)X(2Q)c T (f)(x) - Tk’lM(b—bQ)mQ)c T2 (f)(xo)ldx
Q k=1

CllBLipyV(F) ) M s (T ().
k=1

IA

Theorem 2 is proved.
Proof of Theorem 3. It is noticed v''/? € A, 11—, C A, and v(x)dx € A, (v(x)"?dx), we have, by
Theorem 1 and Lemma 9,

fITb(f)(x)IPv(x)dxsf IM,,(Tb(f))(x)lpv(x)deCf My (To(f )OI v(x)dx
R" R Rn

IA

Cliblissow Y | f (IM,e (VT2 OIDOTP + IML (VT2 (HIN0TP) v(x)dx
k=1 VR

IA

ClIDllBrow) Z V)T ()P v(x)dx
k=1 YR

= Cllblisyow f IT2(F) 0P u(x)dx
k=1 VR

< Clibllsmowy | 1fPp(x)dx.
Rn

Theorem 3 is proved.
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Proof of Theorem 4. In Theorem 2 we choose 1 < s < p and by v!™7 € A, we get, by Lemmas 8
and 9,

T (M raoi-a) < IMy(Tr(f)lLaqi-ay < C”M:;(Tb(f))”m(vl“l)

CllblLipy0 D WM (T2

<
k=1

= Cllblipyr Y 1M s (T2l
k=1

< Clbllzipye ) I ()l
k=1

<

ClIBl ipyn | o)

Theorem 4 is proved.
4. Conclusions

Some new weighted maximal inequalities for the Toeplitz operator related to the singular integral
transform with variable Calder6n-Zygmund kernel are proved. As an application, the boundedness of
the operator on weighted Lebesgue space are obtained.
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