
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(1): 675–687.
DOI: 10.3934/math.2021040
Received: 27 July 2020
Accepted: 10 October 2020
Published: 27 October 2020

Research article

Bifurcation for a fractional-order Lotka-Volterra predator–prey model with
delay feedback control

Zhouhong Li1, Wei Zhang1, Chengdai Huang2 and Jianwen Zhou3,∗

1 Department of Mathematics, Yuxi Normal University, Yuxi, Yunnan 653100, People’s Republic of
China

2 School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, People’s
Republic of China

3 Depaertment of Mathematics, Yunnan University, Kunming 650091, People’s Republic of China

* Correspondence: Email: jwzhou@ynu.edu.cn.

Abstract: This paper addresses the bifurcation control of a fractional-order Lokta-Volterra predator–
prey model by using delay feedback control. By employing time delay as a bifurcation parameter,
the conditions of bifurcation are gained for controlled systems. Then, it indications that the onset of
bifurcation can be postponed as feedback gain decreases. An example numerical results are ultimately
exploited to validate the correctness of the the proposed scheme.

Keywords: fractional-order; Lotka-Volterra predator–prey system; bifurcation control; delay
feedback control
Mathematics Subject Classification: 34A08, 34A34, 34C23, 34H20

1. Introduction

Dynamical relationships between predator and prey exist widely in real world, which play a key role
in linking complex food chains and food networks [1, 2]. Previously, to unravel these dynamics and
their biological functions, several predator–prey models have been proposed. Lotka-Volterra predator–
prey system, one of the most celebrated predator–prey models, is being paid more and more attention
in recent years [3–8]. Given the importance of the Lotka-Volterra model in the study of ecosystem,
many efforts have been undertaken over the years to investigate its dynamical properties, including,
dynamical behavior, stability, persistent property, anti-periodic solution, periodic solution and almost
periodic solution [9–15]. In 2008, Yan and Zhang [16] considered the following form of predator–prey
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model to investigate the effects of time delay on stability and bifurcation:ẋ(t) = x(t)[r1 − a11x(t − τ) − a12y(t − τ)],
ẏ(t) = y(t)[−r2 + a21x(t − τ) − a22y(t − τ)],

(1.1)

where x(t) and y(t) denote the population densities of prey and predator at time t, respectively; τ is the
feedback time delay of the prey to the growth of the species itself; r1 > 0 denotes intrinsic growth rate
of the prey and r2 > 0 denotes the death rate of the predator; ai j(i, j = 1, 2) are all positive constants.

As a matter of fact, fractional calculus is merged into complicated, dynamical systems which
extremely renovate the theory of the design and control performance for complex systems. The
scholars discovered that some real world problems in nature can be depicted more accurately by
fractional-order systems in comparison with classical integer-order ones [17, 18]. Furthermore, the
biological process is in relation to the entire time information of the model in the light of the traits of
the fractional derivative, whereas the classic integer-order derivative places a high value on the
information at a given time [19, 20]. Recently years, many scholars have done a lot of research on the
basic theory of fractional differential equations and the dynamics analysis of fractional order
predator–prey or eco-epidemiological models (see [21–29]). As in [30–32], the authors considered
the fractional-order delayed predator–prey systems.

Normally, quite a few bifurcation control schemes can be adopted to handle bifurcation dynamics,
such as dislocated feedback control, speed feedback control and enhancing feedback control.
Actually, it is challenging to exhaustively control the dynamical properties of an involute system
relying on a unique feedback variable. In [33], Xiao et al. found that the onset of Hopf bifurcations
can be lagged or advanced by the proposed fractional-order PD controller by selecting proper control
parameters. Paper [34], an extended delayed feedback controller is subtly designed to control Hopf
bifurcation for a delayed fractional predator–prey model, and it is detected that both extended
feedback delay and fractional order can delay the onset of bifurcation for the proposed system. It is
point out that the performance of nonlinear fractional dynamic systems can be elevated by utilising
bifurcation control methods [35, 36]. In addition, several control design analysis methods is a valid
tool for the amelioration of the stabilization/synchronization of nonlinear systems [37–43]. However,
to the best of our knowledge, there are few papers to investigate the existence of Hopf bifurcation to
fractional-order delay Lotka-Volterra predator–prey with feedback control by using time delay as a
bifurcation parameter.

Inspired by the above discussions, in this paper, we consider the following fractional-order delayed
Lokta-Volterra predator–prey with feedback control:Dqx(t) = x(t)[r1 − a11x(t − τ) − a12y(t − τ)] + k(x(t − τ) − x∗),

Dqy(t) = y(t)[−r2 + a21x(t − τ) − a22y(t − τ)],
(1.2)

where q ∈ (0, 1] is fractional order, and k is negative feedback gains, x∗ is equilibrium point of system
(1.1), other paraments are same as system (1.1). Obviously, system (1.2) degenerates into the model
in [16] when k = 0 and q = 1.

The main contributions can be sum up in three key points:
1) One new fractional-order Lotka-Volterra predator–prey control model with feedback control and

feedback gain is considered.
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The joint effects of feedback gain and feedback delay on the controlled system are investigated.
2) Two primary dynamical properties—stability and oscillation—of the delayed fractional-order

Lotka-Volterra predator–prey model with feedback control are investigated.
3) The influences of the order on the Hopf bifurcation are obtained.
4) One numerical simulation is given to illustrate the effectiveness of the proposed controllers.
Throughout of this paper, we address the following assumption:
(H1) r1a21 − r2a11 > 0.
Suppose (H1) holds, the positive equilibrium point E∗ = (x∗, y∗) of system (1.2) is unique, described

by

x∗ =
r1a22 + r2a12

a11a22 + a12a21
, y∗ =

r1a21 − r2a11

a11a22 + a12a21
.

Our main purpose of this work is by applying time delay as a bifurcation parameter, some conditions
of bifurcation are gained for controlled system (1.2).

The rest of this paper is structured as follows. In Section 2, we state some basic necessary definitions
and lemmas. In Section 3, we study the existence of Hopf bifurcation of system (1.2). In Section 4,
simulation is illustrated to verify the theoretical results. To the end, a brief conclusion is given.

2. Preliminaries

In this section, we introduce some definitions and lemmas of fractional derivatives, which serve as
a basis for the proofs of main result of Section 3.

Generally speaking, there are three extensively used fractional operators, that is to say, the
Riemann-Liouville definition, the Grünwald-Letnikov definition, and the Caputo definition. Since the
Caputo derivative only requires the initial conditions which are based on integer-order derivative and
represents well-understood features of physical state, it is more benefiting to real world questions.
With this concept in mind, we shall apply the Caputo fractional-order derivative to model and analyze
the stability of the proposed fractional-order algorithms in this paper.

Definition 2.1. [44] The Caputo fractional-order derivative is defined by

Dα
t z(t) =

1
Γ(l − α)

∫ t

0
(t − s)l−α−1z(l)(s)ds,

where l − 1 ≤ α < l ∈ Z+, Γ(·) is the Gamma function, Γ(s) =
∫ ∞

0
ts−1e−tdt.

Definition 2.2. [44] The Laplace transform of the Caputo fractional-order derivatives is

L{Dα
t z(t); s}

= sαF(s) −
l−1∑
i=0

sα−i−1 f (i)(0), l − 1 ≤ α < l ∈ Z+.

If zi(0) = 0, i = 1, 2, . . . , n, then L{Dα
t z(t); s} = sαF(s).
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Lemma 2.1. [45] For the following autonomous model

Dα f = A f , f (0) = f0,

in which, 0 < α < 1, f ∈ Rn, A ∈ Rn×n is asymptotically stable if and only if | arg(λi)| > απ/2(i =

1, 2, . . . , n), then each component of the states decays towards 0 like t−q. Furthermore, this model is
stable if and only if | arg(λi)| ≥ απ/2 and those critical eigenvalues that satisfy | arg(λi)| = απ/2 have
geometric multiplicity one.

Consider the n-dimensional linear fractional-order system with multiple time delays:

Dαui(t) =

n∑
j=1

di ju j(t − τi j), i = 1, 2, . . . , n, (2.1)

where α ∈ (0, 1] . The initial conditions are ui(t) = ψi(t), t ∈ [−τmax, 0] for some continuous function
ψi(t), where τmax = max1≤i, j,≤n{τi j}. The stability of the zero solution of system (2.1) depends on the
distribution of the roots of the associated characteristic equation as following:

det


sα − d11e−sτ11 −d12e−sτ12 · · · −d1ne−sτ1n

−d21e−sτ21 sα − d22e−sτ22 · · · −d2ne−sτ2n

...
...

. . .
...

−dn1e−sτn1 −dn2e−sτn2 · · · sα − dnne−sτnn

 = 0. (2.2)

Next section, we will establish some sufficient conditions for the existence Hopf bifurcation of
system (1.2).

3. Main results

By making the substitution u1(t) = x(t) − x∗, u2(t) = y(t) − y∗, then the equivalent system of system
(1.2) can be obtained asDqu1(t) = (u1(t) + x∗)[r1 − a11u1(t − τ) − a12u2(t − τ)] + ku1(t − τ),

Dqu2(t) = (u2(t) + y∗)[−r2 + a21u1(t − τ) − a22u1(t − τ)].
(3.1)

Linearizing model (3.1) at the zero, yieldsDqu1(t) = (k − a11x∗)u1(t − τ) − a12u2(t − τ),
Dqu2(t) = a21y∗u1(t − τ) − a22u2(t − τ).

(3.2)

From system (3.2), then we derive that associated characteristic equation is

C1(s) + C2(s)e−sτ + C3(s)e−2sτ = 0, (3.3)

where

C1(s) = s2q,
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C2(s) = (a11x∗ + a22y∗ − k)sq,

C3(s) = (a12a21 + a11a22)x∗y∗ − ka22y∗.

Multiplying esτ both sides of Eq (3.3), then we obtain

C1(s)esτ + C2(s) + C3(s)e−sτ = 0, (3.4)

It concludes that s = iω = ω(cos π
2 + i sin π

2 )(ω > 0) is a purely imaginary root of Eq (3.4) if and only ifα11 cosωτ + α12 sinωτ = β1,

α21 cosωτ + α22 sinωτ = β2,
(3.5)

where

α11 = ω2q cos qπ + C2, α12 = −ω2q sin qπ,

α21 = ω2q sin qπ, α22 = ω2q cos qπ,

β1 = ωq cos
qπ
2

(a11x∗ + a22y∗ − k), β2 = ωq sin
qπ
2

(a11x∗ + a22y∗ − k).

According to Eq (3.5), we get 
cosωτ =

β1α22 − β2α12

α11α22 − α12α21
= D1(ω),

sinωτ =
β2α11 − β1α21

α11α22 − α12α21
= D2(ω).

(3.6)

It is clear from Eq (3.6) that

D2
1(ω) + D2

2(ω) = 1. (3.7)

(H2) Eq (3.7) has leastwise one positive real root ω.
By the aid of Eq (3.6), then we get

τ(l) =
1
ω

[
arccos D1(ω) + 2lπ

]
, l = 0, 1, 2, . . . . (3.8)

Define the bifurcation point

τ0 = min{τ(l)}, l = 0, 1, 2, . . . ,

where τ(l) is defined by Eq (3.8).
To obtain the condition of Hopf bifurcation with respect to τ, further, we also assume that:
(H3) χ1ϕ1+χ2ϕ2

ϕ2
1+ϕ2

2
, 0,

where

χ1 = ω0[Cr
2 sinω0τ0 −Ci

2 cosω0τ0

+ 2(Cr
3 sinω0τ0 −Ci

3 cosω0τ0)],
χ2 = ω0[Cr

2 cosω0τ0 + Ci
2 sinω0τ0
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+ 2(Cr
3 cosω0τ0 + Ci

3 sinω0τ0)],

ϕ1 = C
′r
1 + (C

′r
2 − τ0Cr

2) cosω0τ0 + (C
′i
2 − τ0Ci

2)
× sinω0τ0 − 2τ0(Cr

3 cos 2ω0τ0 + Ci
3 sin 2ω0τ0),

ϕ2 = C
′i
1 − (C

′r
2 − τ0Cr

2) sinω0τ0 + (C
′i
2 − τ0Ci

2)
× cosω0τ0 + 2τ0(Cr

3 sin 2ω0τ0 −Ci
3 cos 2ω0τ0).

Lemma 3.1. Let s(τ) = ξ(τ) + iω(τ) be a root of Eq (3.3) near τ = τ j satisfying ξ(τ j) = 0, ω(τ j) = ω0,
then the following transversality condition holds

Re
[ds
dτ

]
|(ω=ω0,τ=τ0) , 0.

where τ0 and ω0 are the bifurcation point and the critical frequency of system (1.2), respectively.

Proof. By exploit implicit function theorem and differentiating Eq (3.3) with respect to k, we obtain

C′1(s)
ds
dτ

+ C′2(s)e−sτ ds
dτ

+ C2(s)e−sτ(−s − τ
ds
dτ

)

+ C′3(s)e−2sτ ds
dτ

+ C3(s)e−2sτ(−2s − 2τ
ds
dτ

) = 0.

It can be noted that C′3(s) = 0, then we have

ds
dτ

=
χ(s)
ϕ(s)

, (3.9)

where

χ(s) = s[C2(s)e−sτ + 2C3(s)e−2sτ],
ϕ(s) = C′1(s) + [C′2(s) − τC2(s)]e−sτ − 2τC3(s)e−2sτ.

Let Cr
l , Ci

l be the real and imaginary parts of Cl(s), respectively. C
′r
l , C

′i
l are the real and imaginary

parts of C
′

l(s), respectively. Let χ1, χ2 be the real and imaginary parts of χ(s), respectively. Let ϕ1, ϕ2

be the real and imaginary parts of ϕ(s), respectively.
Based on Eq (3.9), then we get

Re
[ds
dτ

]
|(ω=ω0,τ=τ0) =

χ1ϕ1 + χ2ϕ2

ϕ2
1 + ϕ2

2

. (3.10)

Thus, (H3) insinuates that transversality condition holds. This completes the proof of Lemma
3.1. �

According to Lemma 3.1 it is not difficult to arrive at the following Theorem.

Theorem 3.1. Assume that (H1)–(H3) hold, for a fractional Lotka-Volterra predator–prey with
feedback control system (1.2), the following results hold:

(i) E∗ is unstable for τ ∈ (0, τ0).
(ii) system (1.2) exhibits a Hopf bifurcation at E∗ when τ = τ0, E∗ of delay fractional Lotka-Volterra

predator–prey with feedback control model (1.2) will become asymptotically stable near τ = τ0.

AIMS Mathematics Volume 6, Issue 1, 675–687.



681

4. Numerical example

In this section, we will give an example is provided to demonstrate the effectiveness of the
proposed approach. The numerical solution is derived by using the Adams-Bashforth-Moulton
predictor-corrector method [46], and take step-length ∆t = 0.01.

Example 4.1. Consider the following delayed fraction Lotka-Vollterra predatory–prey with feedback
control model:

D0.95x(t) = x(t)[1 − x(t − τ) − y(t − τ)] + k[x(t − τ) − x∗],
D0.95y(t) = y(t)[−1 + 2x(t − τ) − y(t − τ)].

(4.1)

In this case, r1 = 1, a11 = −1, r2 = 1, a22 = 2, it is not difficult to calculate r1a21 − r2a11 =

1 ∗ 2 − 1 ∗ (−1) = 3 > 0, therefore, condition of (H1) is satisfied. Furthermore, according to reference
[16], we obtained E∗ = (2

3 ,
1
3 ). Choosing k = −0.5, then ω0 = 0.9085, τ0 = 1.0229. From Theorem

3.1, E∗ is unstable when τ = 0.93 < τ0, which is simulated in Figures 1 and 2. Hopf bifurcation occurs
from E∗ when τ = 1.16 > τ0, as showed in Figures 3 and 4. Figures 5 and 6 display that system
(4.1) turns unstable upon removing the controller. This advises that the introduced controller is fairly
efficient. We further choose k = −0.2,−0.4,−0.6, then τ0 = 0.9825, 1.185, 1.324, respectively. Figures
7 and 8 implies that the onset of bifurcation of system (4.1) can be delayed as k decreases.
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Figure 1. Equilibrium E∗ = ( 2
3 ,

1
3 ) of system (4.1) with φ = 0.95 is asymptotically stable,

where k = −0.5, τ = 0.93 < τ0 = 1.0229.
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Figure 2. Portrait diagram of system (4.1) with k = −0.5, τ = 0.93 < τ0 = 1.0229.
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Figure 3. Periodic oscillation bifurcates from the equilibrium E∗ = (2
3 ,

1
3 ) of system (4.1)

with φ = 0.95, where k = −0.5, τ = 1.16 > τ0 = 1.0229.
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Figure 4. Portrait diagram of system (4.1) with k = −0.5, τ = 1.16 > τ0 = 0.9809.
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Figure 5. Periodic oscillation bifurcates from the equilibrium E∗ = (2
3 ,

1
3 ) of system (4.1)

with k = 0, where τ = 0.93.

0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

x(t)

y(
t)

Figure 6. Phase plot in space (x, y) for system (4.1) with τ = 0.93, k = 0.
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Figure 7. Dynamic behavior of system (4.1) with τ = 1 by varying k.
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Figure 8. Dynamic behavior of system (4.1) with τ = 1 by varying k.

5. Conclusion

The bifurcation control of a fractional-order Lotka-Volterra predator–prey model has been carefully
studied by delay feedback control. The criteria of bifurcation have been derived for controlled systems
by choosing delay as a bifurcation parameter. It detects that the emergence of bifurcation can be
delayed with the decrement of feedback gain. A simulation example is finally used to verify the
efficiency of the devised strategy. It is worth noting that there will be several future directions to
apply the methods from employing time delay as a bifurcation parameter to more complex ones like
models with different delays, or to study the Hopf bifurcation of fractional-order systems with higher
dimension.
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