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Abstract: This article is devoted to the study of a two-dimensional (2D) quasi-periodically forced
beam equation
Uy + Nu+epu+u’)=0, xeT? teR

under periodic boundary conditions, where ¢ is a small positive parameter, ¢(¢) is a real analytic
quasi-periodic function in ¢ with frequency vector w = (wy,w; ..., w,). We prove that the equation
possesses a Whitney smooth family of small-amplitude quasi-periodic solutions corresponding to finite
dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is
based on an infinite dimensional KAM theorem and Birkhoff normal form. By solving the measure
estimation of infinitely many small divisors, we construct a symplectic coordinate transformation
which can reduce the linear part of Hamiltonian system to constant coefficients. And we construct some
conversion of coordinates which can change the Hamiltonian of the equation into some Birkhoff normal
form depending sparse angle-dependent terms, which can be achieved by choosing the appropriate
tangential sites. Lastly, we prove that there are many quasi-periodic solutions for the above equation
via an abstract KAM theorem.
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1. Introduction and main result

In this paper, we will are concerned with existence of quasi-periodic solutions for a two-dimensional
(2D) quasi-periodically forced beam equation

Uy + Nu+epu+u’)=0, xeT? teR (L.1)
with periodic boundary conditions
u(t, x1, x2) = u(t, x; + 2m, x) = u(t, x1, X, + 27m) (1.2)

where ¢ is a small positive parameter, ¢(7) is a real analytic quasi-periodic function in ¢ with frequency
vector w = (W1, W, ...,w,) C [0,20]" for some constant o > 0. Such quasi-periodic functions can be
written in the form

(1) = p(wit, ..., wWpl),

where w;,...,w, are rationally independent real numbers, the “basic frequencies” of ¢, and ¢ is a
continuous function of period 27 in all arguments, called the hull of ¢. Thus ¢ admits a Fourier series

expansion
60 = ) e,
kezm

where k - w = Z;*n:] k; - w;. We think of this equation as an infinite dimensional Hamiltonian system
and we study it through an infinite-dimensional KAM theory. The KAM method is a composite of
Birkhoff normal form and KAM iterative techniques, and the pioneering works were given by
Wayne [25], Kuksin [15] and Pdschel [19]. Over the last years the method has been well developed in
one dimensional Hamiltonian PDEs. However, it is difficult to apply to higher dimensional
Hamiltonian PDEs. Actually, it is difficult to draw a nice result because of complicated small divisor
conditions and measure estimates between the corresponding eigenvalues when the space dimension
is greater than one. In [11, 12] the authors obtained quasi-periodic solutions for higher dimensional
Hamiltonian PDEs by means of an infinite dimensional KAM theory, where Geng and You proved
that the higher dimensional nonlinear beam equations and nonlocal Schrodinger equations possess
small-amplitude linearly-stable quasi-periodic solutions. In this aspect, Eliasson-Kuksin [9],
C.Procesi and M.Procesi [20], Eliasson-Grebert-Kuksin [5] made the breakthrough of obtaining
quasi-periodic solutions for more interesting higher dimensional Schrodinger equations and beam
equations. However, all of the work mentioned above require artificial parameters, and therefore it
cannot be used for classical equations with physical background such as the higher dimensional cubic
Schrédinger equation and the higher dimensional cubic beam equation. These equations with physical
background have many special properties, readers can refer to [4, 16,22-24] and references therein.
Fortunately, Geng-Xu-You [10], in 2011, used an infinite dimensional KAM theory to study the
two dimensional nonlinear cubic Schrédinger equation on T2. The main approach they use is to pick
the appropriate tangential frequencies, to make the non-integrable terms in normal form as sparse as
possible such that the homological equations in KAM iteration is easy to solve. More recently, by the
same approach, Geng and Zhou [13] looked at the two dimensional completely resonant beam equation
with cubic nonlinearity
ug+ Nu+uw =0, xeT?, teR (1.3)
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All works mentioned above do not conclude the case with forced terms. The present paper study the
problem of existence of quasi-periodic solutions of the equation (1.1)+(1.2). Let’s look at this problem
through the infinite-dimensional KAM theory as developed by Geng-Zhou [13]. So the main step is to
convert the equation into a form that the KAM theory for PDE can be applied. This requires reducing
the linear part of Hamiltonian system to constant coefficients. A large part of the present paper will be
devoted to proving the reducibility of infinite-dimensional linear quasi-periodic systems. In fact, the
question of reducibility of infinite-dimensional linear quasi-periodic systems is also interesting itself.

In 1960s, Bogoliubov-Mitropolsky-Samoilenko [3] found that KAM technique can be applied to
study reducibility of non-autonomous finite-dimensional linear systems to constant coeflicient
equations. Subsequently, the technique is well developed for the reducibility of finite-dimensional
systems, and we don’t want to repeat describing these developments here. Comparing with the
finite-dimensional systems, the reducibility results in infinite dimensional Hamiltonian systems are
relatively few. Such kind of reducibility result for PDE using KAM technique was first obtained by
Bambusi and Graffi [1] for Schrodinger equation on R. About the reducibility results in one
dimensional PDEs and its applications, readers refer to [2,7,17,18,21] and references therein.

Recently there have been some interesting results in the case of systems in higher space dimensions.
Eliasson and Kuksin [6] obtained the reducibility for the linear d-dimensional Schrodinger equation

i =—1(Au— €V(¢y + tw, x; w)u), x€ T,

Grébert and Paturel [14] proved that a linear d-dimensional Schrédinger equation on R with harmonic
potential |x|> and small z-quasiperiodic potential

i0u — Au+ |xPu+eVitw, x)u=0, xeR?

reduced to an autonomous system for most values of the frequency vector w € R". For recent
development for high dimensional wave equations, Eliasson-Grébert-Kuksin [8] , in 2014, studied
reducibility of linear quasi-periodic wave equation.

However, the reducibility results in higher dimension are still very few. The author Min Zhang of
the present paper has studied the two dimensional Schrédinger equations with Quasi-periodic forcing
in [27]. However, it would seem that the result cannot be directly applied to our problems because of
the difference in the linear part of Hamiltonian systems and the Birkhoff normal forms. As far as we
know, the reducibility for the linear part of the beam equation (1.1) is still open. In this paper, by
utilizing the measure estimation of infinitely many small divisors, we construct a symplectic change
of coordinates which can reduce the linear part of Hamiltonian system to constant coefficients.
Subsequently, we construct a symplectic change of coordinates which can transform the Hamiltonian
into some Birkhoff normal form depending sparse angle-dependent terms, which can be achieved by
choosing the appropriate tangential sites. Lastly, we show that there are many quasi-periodic solutions
for the equation (1.1) via KAM theory.

Remark 1.1. Similar to [13], we introduced a special subset of Z?
Z2.,={n=(n,m), n €2Z-1,n, €27}, (1.4)
for the small divisor problem could be simplified. Then we define subspace U in L*(T?) as follows

U={u= Z uip;, @;(x) ="

—
J€Z5yy
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We only prove the existence of quasi-periodic solutions of the equation (1.1) in U.

The following definition quantifies the conditions the tangential sites satisfy. It acquired from
Geng-Xu-You [10].

Definition 1.1. A finite set S = {i] = (X1, $1), - , i, = (X, )} C Zidd(n > 2) is called admissible if
(i). Any three different points of them are not vertices of a rectangle (if n > 2) or n = 2.

(i1). For any d € ngd \ §, there exists at most one triplet {i, j, [} with i, j € S,[ € szd \ S such that
d-1l+i—-j=0and li|> - |j|2 +1dP = |I]* = 0. If such triplet exists, we say that d, [ are resonant in the
first type and denote all such d by L.

(iii). For any d € Zidd \ §, there exists at most one triplet {7, j, [} with i, j € S,[ € Zidd \ S such that
d+!l—-i—j=0and ldP + 11> = i - |j|2 = 0. If such triplet exists, we say that d, [ are resonant in the
second type and denote all such d by £,.

(iv). Any d € Z(Z) 1 \ S should not be in £, and £, at the same time. It means that £; N £, = 0.

Remark 1.2. We can give an example to show the admissible set S above is non-empty. For example,
for any given positive integer n > 2, the ﬁrstnpoint (%1, 51) € Z2,, is chosen as %, > n?,§; = 2%, and
the second one is chosen as %, = X7, 3, = 2%, , the others are defined inductively by

Fu=% [] G- +Ga-5P+1, 2<j<n-1,

J
2<im<] 1<l<im

Vi =28, 2<j<n-1

The choice of the admissible set is same to that in [13], where the proof of such admissible set is
given.

In this paper, we assume that
(H) ¢(?) is a real analytic quasi-periodic function in ¢ with frequency vector w, and [¢] # O where [¢]
denotes the time average of ¢, coinciding with the space average.

The main result of this paper in the following. The proof is based on an infinite dimensional KAM
theorem inspired by Geng-Zhou [13].

Theorem 1.1. (Main Theorem) Given p, ¢(¢) as above. Then for arbitrary admissible set S C Zﬁ g and
forany 0 <y < 1,0 < p < 1 and ' > 0 be small enough, there exists €*(o,y,y’) > 0 so that for all
0 < & < &, there exists R C [0,20]™ with meas R > (1 — y)o™ and there exists X, C X := Rx [0, 1]"
with meas (X \ Z,/) = O({/y’), so that for (w, E,-»l«, cees éi;) € Z'y, the beam equation (1.1)+(1.2) admits a
quasi-periodic solution in the following

39{5} iot i<jx> —i@t —i<jx> =3/2
u(t,X)=;(1+gj(wt,w,8)) W(e 1T+ e e + O(E ),
where gi(?,w,e) = spg;‘.(ﬂ, w,e) 1s of period 2m in each component of ¢ and for
je S, % e B(y/2),w € Q, we have Ig;‘.(ﬂ, w, &)l < C. And the solution u(t, x) is quasi-periodic in

terms of ¢ with the frequency vector & = (w, (@) jes), and @; = £~*|jI> + O(&]) + O(e).
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2. The Hamiltonian setting

Let’s rewrite the beam equation (1.1) as follows
Uy + Nu+ep)u+u’)=0, xeT?, teR. 2.1)

Introduce a variable v = u,, the equation (2.1) is transformed into

u =,
{ v, = —Au - ep(t)(u + u). (2.2)

Introducing g = %((—A)%u - i(—A)‘%v) and (2.2) is transformed into

1 I I
—ig; = —Aq + 78¢(l)(—A)_2( -A) 2 \/_ \/— )) ) (2.3)

The equation can be written as the Hamiltonian equation ¢ = 1 and the corresponding Hamiltonian
functions is

_\2 .
H = ‘[];2 ((_A)Q)édx + %Sfﬁ(l‘) fT; ((_A)_; q:/_zq ) dx + %(‘XP(Z) ‘[I;z ((—A)_;(%)) dx. (24)

The eigenvalues and eigenfunctions of the linear operator —A with the periodic boundary conditions
are respectively A; = |j|* and ¢;(x) = Le‘<f *>. Now let’s expand ¢ into a Fourier series

q= Z a9, (2.5)

jez2

odd
the coordinates belong to some Hilbert space [** of sequences g = (- ,g;,-*+) ez, that has the finite
norm

lglles = 3 lallite™ (@ > 0.5>0).

JEL 4y

The corresponding symplectic structure is i), €z, dq; A dg;. In the coordinates, the Hamiltonian
equation (2.3) can be written as

. .0OH
qj = 1076., V] (S Z(Jdd (26)
j
with
H=A+G
where

E — _
A= Z (Alg,I* + 4—/1j¢(f)(61j4—j +2lg;1* + @;3-;))

JEL 4

G =

1

(1) ———— (49,9491 + 99,9491

64 ? t+j-;l—0 V/li/lj/ld/ll ! ’
i,jd,l e Zidd

1

500 R

32 2 ’j;l—o ﬂi/lj,ld/lqu.ﬂd%
Lhd €2y,

1

(1) ————(9i9;9491 + G:4;9a91)-

16 ? z+j+dZ—l_0 V/li/lj/ld/ll ! /
ij.d, €22,
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Denote ¢(1}) be the shell of ¢(¢), we introduce the action-angle variable (J,¢}) € R™ x T™, then (2.6)
can be written as follows

, , OH . .0H )
19:(1), J:—%, qj:la_qj’ Jezgdd
and the corresponding Hamiltonian function is
H = H + ¢G*, 2.7)
where e
H=<w,J>+ Z (AlgI* + 4—/1_90(19)(6110—]' +2lg,I* + 3;3-)), (2.8)
JEZ} /
G* = ! Z ;(G‘}fo (Nqiqiqaq + G (@i Gads)
6472 i+j+d+1=0 V/li/lj/ld/ll wl ’ it ’
ij.d, 1€z,
3 1 22 _ _
+ — G5, (Nqiqg;
32n? i—j;lzo VAidjdad i e (2.9)
ij,d,1€72,
1 1 3,1 ~ 13 /av= = =
+ ——————(G}5(Nqiqqad1 + G;;3/(D)qiq 1Gaqr)
167> i+j;/—o /li/lj/ld/ll jdl ’ s ’
ijdleZ?,
and
40 pan _ 04 on | @), i+ j+d+1=0,
Gijdl(ﬂ) - Gijd[(ﬁ) - { O, i+ ] +d+1 + 0, (210)
2,2 e, i-j+d-1=0,
fo'f”(ﬁ)‘{ 0, i—j+d-1%0, @1h)
3,1 3, @), i+ j+d-1=0,
i) = Gija?) = { 0. i+j+d—1%0. (2.12)

3. Reducibility via KAM theory

Now We are going to study the reducibility of the Hamiltonian (2.8). To make this reducibility, we
introduce the notations and spaces as follows.
For given op > 0,' > 0,0 < p < 1, define

52 5
O'V:O'()l—T, V:1,2,...
2Zj=1.]_2

+00
rvzr(uczefg], v=0,1,...
.
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where C is a constant. Let
e=¢ &= y=1,2,...

O() = {8 = @1, 0 € C"/20Z" : M| < 0y, f = 1,20 ccom) v = 0,1,2,..

and denote

DY = {9, J,q,q) € C"[27Z" x C" X [** x [** : [Im?I| < o, |J| < F%,
”Cllla,s < Fw ”qna,s < Fv} V= O’ 1’ 2, ey

D = {(®,],q,3) € C"/27Z" x C" X I** x I** : |Im9| < o70/2, |J] < T2,
llglla,s < T, 11gll,s < T},

where | - | stands for the sup-norm of complex vectors and /“* stands for complex Hilbert space. For
arbitrary four order Whitney smooth function F(w) on closed bounded set R*, let

IFlly = sup >~ |6LFl.

WER* %

Let F(w) is a vector function from R* to [“*(orR™>™2) which is four order whitney smooth on R*, we
denote

WFIlG re = IAF @)l )illas — [orllFllg =  max Z (IFi i ()lIp) |-
Sh=m 1<ir<my

Given o pes > 0, pes > 0, we define

D* ={(9,J,q,q) € C"/2aZ" x C" X [** x I** : |[ImI}| < 0 pass, |J| < FZD,,,S,
”q”a,s < FD“’-" ”qua,s < IﬂD‘“}-

Itw=(@,J q,q) € D**, we define the weighted norm for W by

- 1 1 1
Wlas = 10 + = + =—llgllas + =—

Das FDa.x rDa,y | |q| |a,s .

Let F(n; w) is a function from D** X R* to [**(orR™*) which is four order whitney smooth on w, we
denote

WF N pesxre = Sup IFllgspe | 0rllFlIpaskgs = sup [IF IIZ*)-
Y]GDH“Y neDn,x

For given function F, associate a hamiltonian vector field denoted as Xp = {F;, —Fy,1F3, —1F,}, we
define the weighted norm for X by

|XF|Z,S,DH.S><R* = ”FJ“ZU.sxR* + ”Fﬁ”;)a,sxk*

r2

Das

o WFl, s pessre + T [ —
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Assume w = (g, q) € [* x I*® is a doubly infinite complex sequence, and A(77; w) be an operator from
1% X 1% to [*° x [** for (n; w) € D** X R*, then we denote

Wlla,s = llglla,s + 11glla.s,

IAGT @)Wllas
A ;s pessrs = SUp —,
(7;0)EDHSXR* w0 ||W||a,s
HAGE OIS s =, ILAIL passe-
0<j<4

Assume B(1; w) be an operator from D** to D** for (n; w) € D** X R*, then we denote

b

|B(17; w)Wla s
|B(; )lg g pasxge = SUp  sSUp ——————=—
(m;,w)eD*SXR* w0 |W|a,s

|B(n; w)I;s’Da,sxR* = Z |5Z,B|Z,S,Da»xx1e*-

0<j<4

Reducibility of the autonomous Hamiltonian equation corresponding to the Hamiltonian (2.8) will
be proved by an KAM iteration which involves an infinite sequence of change of variables. By utilizing
the measure estimation of infinitely many small divisors, we will prove that the composition of these
infinite many change of variables converges to a symplectic change of coordinates, which can reduce
the Hamiltonian equation corresponding to the Hamiltonian (2.8) to constant coefficients.

At the v—step of the iteration, we consider Hamiltonian function of the form

H,=H: +P, 3.1)

where
H)=<w.J>+ Y 1uq;d,

-
J€Z5y,

P, =g, Z (77200, w)qiq-j +Njyi11(F, WG+ Njy02(0, w)G;G-]

2

jezoa’d
— — _ i<k, 9>
where 1,20 = 7-jy.2.05 Mj2:02 = M=jw025 Mjwmns (P @) = Xopezm vk ny (W) when ny,n, € N,n; +
ny =2,
D T B * * _
Njvanin = /1]' vy ||nj,v,n1,n2”®(0'v)><R‘, <C, m,meN, n+nm=2, (3.2)
and
v—1
Qo= iy = A+ ) M (3.3)
§=0
with
00 = [0l s = A el Il <C 8= 1,2 (3.4)
Mjvo = ) ¢ s Mjvs = A Esl;y 6 Hivsllr, =0 S =1,2,...,7. .

J
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We’re going to construct a symplectic transformation

T,: D" XR,, —> D)* XR,

v+1

and

H, =H,oT, = H*+1 + Pyy (3.5)

v

satisfies all the above iterative assumptions (3.1)—(3.4) marked v + 1 on ij | XR,.
We assume that there is a constant C, and a closed set R, satisfies
y ¥ X6+ D)7

measR, > 0" |1 - < — — = (3.6)
R RO e

and for arbitrary k € Z", j € Z2,,,w € R,,

Q

k (A, + A, > ’
ko> + 42 E G A+ sk

(3.7

where 6(x) = 1 as x = 0 and 6(x) = 0 as x # 0. We put its proof in the Lemma 4.1 below.

Next we will construct a parameter set R,,; C R, and a symplectic coordinate transformation 7,
so that the transformed Hamiltonian H,,, = H; , + P, satisfies the above iteration assumptions with
new parameters &,.1, 01,1 ,+1 and with w € R,,;.

3.1. Solving the homological equations

Let Xy, be the Hamiltonian vector field for a Hamiltonian ¥, :

¥, =¢T, =¢, Z [wj,v,2,0(ﬁ; w)QjCI—j + zD-j,l/,l,l(ﬂ; w)Cch_lj + wj,v,O,Z(ﬁ; w)c_]jQ—j]

P
J€Z5y,

where
@iy 0(hw) = @_j00(hw), @j02thw) =w@_j, 02 w),

. i<k, —
wj,v,m,nz(ﬂ’ w) = Z wj,v,k,nl,m(w)eK >7 n,np e N’ n+n = 2 (38)
kezZ"

and [@},,] = 0. Let Xfl,v be its time-t map.

Let T, = Xé,v where Xé,y denote the time-one map of the Hamiltonian vector field Xy, , then the
system (3.1)(v) is transformed into the form (3.1)(v + 1) and satisfies (3.2)(v + 1), (3.3)(v + 1) and
(3.4)(v + 1). More precisely, the new Hamiltonian H,,; can be written as follows by second order
Taylor formula

H,, : = Ho X&JV
= H,+P,+{H,,Y¥,}
1 1
+ svf (1-19 {{Hj, V.1, TV} o Xfyydl‘ + svf {P,,T,}o Xfpvdt. 3.9
0 0
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The Hamiltonian P, is satisfies the homological equation

P+ (H, W) =2 ) inailgsds

2

J€Zyy

which is equivalent to

- < W, 0@y 1 1(;w) > 1,11 (F; W) = [My11],
(A, + A_;,)T 020 W)= < W, 09w, 02(; W) > +1jy,02(0; w) =0, (3.10)
—i(A;, + A_j)T jy20(; W)= < W, 09w 120 W) > +1j,20(F; W) = 0.

Let’s inserting (3.8) into (3.10)

1<kw>@j k1w =njykii1(w), k#0,
(<k,w>+A;,+A_,)Tjyr20(W) = Njyi20(w),
i(<kw>-2A;,—A_;,)Tjyr02(W) = Njyro2(w).

Thus
@ 1.1 W) = Xoskezn %’1&()‘2 k>
@ jy20(0; W) = Ypezn <k Zj;kj-(/)l(,cj)-p ya i<kt Gl
@020 W) = Ypezm o Zlikiz(;:))_ T Si<k?>

3.2. Estimation on the coordinate transformation

Now we’re going to estimate ‘¥, and X&,v. By Cauchy’s estimate and (3.2)(v)
* —|klo, -1 _—lkloy _
|77j,v,k,n1,n2| < ”nj,v,nl,nz”@(gv)x[eve el < C/lJ € Wl ) ni,np € N’ ny+n; = 2 (312)
and
i * —|klory -1 ko, % _
|az)nj,v,k,n|,n2| < ”nj,v,m,nz”@(o-v)vae ler < C/l] e Kler P 1= 1, 2, 3,4 (313)

can be obtained. By w € R, and (3.7)(v),

Sup |wj,y,1,1| < CC*/l;lQ_l Z |k|m+le—0'v|k|e(7'v+l|k|
(ﬁ;w)€®(()—v+l )XRV 0#kezm

and
Sup |wj,y,n1,n2| < CC*/lJ—IQ—l(6(V) + Vz)(l + Z |k|m+le—0'y|k|ea'y+l|k|)

(Fw)EB(Ty+1)XRy 0£keZm

forn; =0,n, =2 orn; =2,n, =0. According to Lemma 3.3 in [26], for (¢} w) € O(0,41) X R, ,
Ty 1l [T jvo0l [T jy02] < CC*/lj_-IQ_](V + ) < C/lj_-](V + 1)t2meas) (3.14)

where C := CC,o~'. Moreover, in view of (3.3)(v) and (3.4)(v),

A

‘aﬁuaj,v < Csb', 1=1,2,3,4 (3.15)
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Similarly

'aiusz"»nl 2
By (3.14) and (3.16), we have
* -1 12m+28
||szysnlan2||®(0'y+1)><Rv < C/lj (v + 1) "=,
Similar to the above discussion, the following estimates can be obtained
. -1 12m+30
”aﬁwj,v,nl,m”@(O—W_])XRV < C/lj v+ 1),
. -1 12m+32
||8ﬁﬁwj,v,n|,nzll(a(o-v+l)xRV = C/lj (v + 1),
Now let’s estimate the flow Xfyv, denote

M (0 w) = [ Ti20 T T=in20 T_jy1.1 Ty =i 0 1
N4 ’ - 9 — .
Wiyl Wjv02 + W-jv02 -1 0

By (3.17)-(3.19),
”Mj,v“:a(o-vﬂ)xkv < C/lj_‘l(V + 1)12m+28,

* -1 12m+30
||aﬁMjaV||®(O'V+1)XRV S C/l] (V + 1) m+ N

* -1 12m+32
1899 M il ek, < CAZ' (v + 112432,

The vector field Xy, is as follows

=0

d( q qj ;

., =&y M'v ﬂ» : - / 5 € ZZ

J=¢, Z [aﬂw 205 0)q;q-j + 09w 11 WG + 09T jy02(F; W)G jQ—j]~
€L

The integral from O to 7 of the above equation, we have Xf{,v :

9 =9°
w(t) = exp (avj M, (9; w)t) -w(0)
JO=JO)+ | & > 0ym200% w)g (g ()t

0 Py
J€Zsyq

!
+f &y Z [aﬂwj,v,l,l(ﬂc;w)CIj(l)C_Ij(f)+aﬂwj,v,o,z(ﬂc;w)é_]j(l)Q—j(l)] dr.
0

=72
J ezodd

where (9, J(0), w(0)) is the initial value,

< CA'v+ D 1=1,2,3,4, numeN,n+ny=2.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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and M, (9; w) are the corresponding matrices. According to &, = 1", then
_ Z1\S
|8‘1, p(v+ 1)12m+32(C*Q 1) vl <C, v=0.1,...

as € < 1, where C is an absolute constant. In view of (3.17), for ¢ € O(c 1) ,

(3.21)

&My w) = A7'e,(v + DM w) = 7'M (9 w), IM,(9; 0l i, < C

then
lex T M (s ONlas 010,115k, < CE-

In view of (3.18),

et [ 9 )= 2 )

—-J —-J

where

£

< Cdgjl +1g-;D

O(0y+1)XRy

mem&fﬂ
=]

then

199 (&, T M,(F; w) - w) || < Cellyy.

*
a,s >~
Dv+1 xRy

By (3.22) and (3.23),
exp (&, IM, (D, w)t) =1d + g, (¥; w, 1)

and for ¢t € [0, 1],

g5 (% @, DI <Cel. 100 (875,10 Wl g, < CElT .

a,5,0(0y+1)XR, =

Let’s define J(¢) in (3.20) as
J(t) =J+ g],v(ﬂa w; w, t)

By (3.18), (3.25) and (3.21),
187 W @, Dll s g, < CefI2,  telo,1],
and for any w’ € [** X [**,
104 (€@ w5 0, 1) - Wligs o < CET, - W s 1 € 10,11
By (3.19), (3.25) and (3.21),
10 (810 w3 @, 0) s o < CETT, 1 € [0, 1],

Denote
Xntpv =1z + g (w,1) : szl X Ryp1 > D%

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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from (3.20), (3.24) and (3.26),

My o Xy (9, J,w) =9 : D) xRy = O(0,),

v+1

II, o Xfyv(ﬁ, Jw)y=Ud+ gy w,0)-w: DI XR, "XV (3.31)

v+1

I 0 Xi (&, J,w) = J + g5, (S, wiw, 1) 1 Dy X Ryyy > C"
where Iz, I1,, denote the projectors
Mz : Z" X Ry +— Z**, 1, : Z" X Ry — Ry,

and Ily, IT;, IT,, denote the projectors of Z** = C"/2xZ™ x C™ x [** X [** on the first, second and third
factor respectively. According to the first equation of (3.25),(3.27) and (3.31),

Xy, =Tzl | s i, < Co- (3.32)

By (3.31), we have

Idxm 0 0
DXy = | 99(gX@ 0, 0W)  Iduse + 82 0,5 O
09(gry (W, wiw, 1)) 0,,(g1 (0, Wi, 1)) Idysm

where D is the differentiation operator with respect to (¢, w, J). In view of (3.25), (3.28) and (3.29) ,
forw =, w',J), (3, w,J) e D>’

v+1°

| (DX, — 1d) Wl < CEblibl,,s.

Thus
DXy, = 1dl} | s i, < CEL-
Similarly )
10, (DXy, = 1D} s o < Ceh 1=1,2,3,4
and
DXy, = 1dl}, s s, < CE. (3.33)

3.3. Estimation for the new normal form and the new smaller terms

Let
Ajys1 = Ajy + &[05011],
then by (3.2)(v), it is obvious that 4, satisfies the conditions (3.3)(v + 1) and (3.4)(v + 1).

Now let’s estimate the smaller terms of (3.9). Notice that those terms are polynomials of g;q_;, q;q;
and g,g-;. So we can write it

1
f(l—z) P, 0 X, dt+svf{Pv,Tv}0X’ dt
0
Z [Thmzo(ﬁ w)q;q-; +njV+111(ﬁ w)q;q; "'77/v+102(19 w)q;q-;]
J€L2
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where from
(H;,¥,} = ¢, Z (7jv1a1lq,4; — Py,

J€Z3 4y
we know that 7,1, »,(¥; w) is a linear combination of the product of @, ,, », and 17, m,- By (3.17)
and (3.2)(v),

. -1 12m+28 .
sz",’ll,nz(ﬂ’ (L)) = /l] (V + 1) " w;’v’nl,nz(ﬁ7 w)’ ||w

<C

* *
Jovani,nz ||®(0'v+1 IXR, =

and
. —_ —1__x% . * . *
nj,V,nl,l’lz (0’ (l)) - /lj nj,v’nl,nz(ﬂ’ w)’ ||n./’v,nl’n2(ﬂ9 w)||®(o-v+l)><Rv S C

respectively. Thereby , we have
= (19 ) _ /1—1( + 1)12m+28~* (19 ) ||~>k ||4< <C
UJ,V+1JHJ’12 W) = j v nj,v+],n|,nz > W), nj,v+l,n1,n2 O(oy+1)XR, =
According to &, *(v + 1) < 1 as & < 1, then

N Eor-a T * %
Njy+Lniny ~= €y " Mjivilpng = /1]' nj,v+1,n1,n2’ ||nj,v+1,n1,n2”@(UVH)XRV <C

From ;'™ = &,,1, we have (3.1)(v + 1) is defined in D*’, and 4;,., satisfies (3.3)(v + 1), 3.4)(v + 1)
and 17,410, 1, satisfies (3.2)(v + 1).

3.4. Convergence and reducibility theorem

The reducibility of the linear Hamiltonian systems can be summarized as follows.

Theorem 3.1. Given oy > 0,0 <y < 1,0 < p < 1. Then there is a £€*(y) > 0 such that for any
0 < € < &(y), there exists a set R C [0,20]",0 > 0 with measR > (1 — 23—7)Qm and a symplectic
transformation X0, defined on D% x R changes the Hamiltonian (2.8) into

5 0 2
HoX =<w,J>+ Z Hilg;l™,
J€L2
where

£ 1 * EITES .
By = A+ 3 Tl0 + If(“p)“f’ il <C, € Zy,

Moreover, there exists a constant C > 0 such that

20, —id|! <Cé¢,

5, DS XR =

where id is identity mapping.

Proof Let nj020 = MNjoo2 = ﬁgD(ﬂ), njo11 = 2%]()0(19), we have that H() = I'_I and

N0 = /l;lnj,o,n],nz’ ||nj.’0’m’nzllf;)((m)xle0 < C,ny,ny € N,n; + ny, = 2 where C is an absolute constant.
i.e., the assumptions (3.1),(3.2),(3.3),(3.4) of the iteration are satisfied when v = 0.
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We obtain the following sequences:
Ro.C---CR,C---CR; CRyC[o,20]",

Dy’ > DY > ---D> DY - DD
From (3.30), (3.32) and (3.33), denote

T, =Xy =Tz +g/(w, 1) : D& X Rypy +— DY (3.34)

then

T, — TZ|* <C¢, |DT,- Idl;s’ <Cé. (3.35)

a,8,D57 xRy 11

Similar to [27], it can be seen that the limiting transformation Tyo 7T’ o- - - converges to a symplectic
coordinate transformation X¥. And there exists an absolute constant C > 0 independent of j such that

1= —id|* < Cé&, (3.36)

a,s,DS’XR =
with id is identity mapping.
In view of the Hamiltonian (2.8) satisfies the conditions (3.1) — (3.4),(3.6), (3.7) with v = 0, the

above iterative procedure can run repeatedly. Thus the transformation X, changes the Hamiltonian
(2.8) to

Aol =<wJ>+ > gl (3.37)
jezodtl
with
& * EITES .
W= A+ ﬁj[‘” +— <1+P>pj, Iillz < Co j € Zoy, (3.38)
O

We present the following lemma which has been used in the above iterative procedure. The proof
is similar to Lemma 3.1 in [15].

Lemma 3.1. For any given k € Z™, j € ngd, [ € N, denote

[}(:{we[g,2g]m:|<k,w>|£CL}, k #0,

*|k|m+1
I2’Jﬂ:{we[,2]m: <k,w>+A;+A_ ;< = © },
kil 021" :| i+ C.(8() + Rk + 6(klym+!
Z‘z’?z{we[gﬂ]m: <kw>-1.;—-A4_4 < — 9 },
kil o] i = C.(8(D) + Rk + 6(kly!

- U ot &= UEUn)

O0#kezZm /eZZ kezm

where 6(x) = 1 as x = 0 and 6(x) = 0 as x # 0. Then the sets R!, Rl? is measurable and

s+ 1)
Yo", measkl < —YODEDT (3.39)

FT3 TN + i)

measR' < l
3
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if C, > 1 large enough.

Let
Roo = [0,20]"\R', Ro=Rp\Rj, Ry, =R\R; [=0,1,---

I+1°
Then we have (3.6) and (3.7). Denote
=&
=1

then by (3.6),
2
measR > (1 — %)Q’”.

3.5. The Hamiltonian after the iterative procedure

In view of the symplectic coordinate transformation X, is linear, and (3.36), then
g0 %% = q;+ ;' F; (s 0)q; + '€ F ) (B 07

where

~

18", @ Doy < G 1=1,2.

Jileo
Thus from (3.37), the Hamiltonian (2.8) is transformed into by X%

Hyy = F[ozgo =< w,J >+ Z Hiq;q;

JEL

and the Hamiltonian (2.9) is transformed into
~ 3 1 ~
G*=G*oX" = ————— G (9 0)4iG,9471
327‘(2 ,'-j+dz—l_0 \//li/lj/ld/ll st /

ol 2
l,j,d,lEZ”dd

1
+647T2 Z LA, ljdl(l9 w)qiqqaqi + szdl(ﬁ w)qiq j9aq1)

i+j+d+1=0
ij.d, 172,

1
+ ———(G;; > (% w)qiq; +Gl (9 0)GiG iGaq))
ijd1ez2,

where

T B &Gl (0 w)
W +t = ’
min(|i%, | jI, |dI?, [I1)

ijdl ijdl

n1,n2,% Q. *
1G i (@5 oy xr < s

withn;,n, e N,n; +n, =4,n,,n, =0,1,2,3,4.
This means that the transformation X2, changes the Hamiltonian (2.7) into

H = Hy + 864.

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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The following Lemma gives a regularity result, the proof is similar to [13] and is omitted.

Lemma 3.2. For ¢ > 0 and s > 0, the gradients GN;‘,G‘(_; are real analytic as maps from some
neighborhood of origin in [** x [* into [* with |G|l,., = O(llgl},), IGls = OUldIL.,).

4. Partial Birkhoff normal form
As in [13], Let S is an admissible set. We define Z? = Zg 1 \ S For simplicity, we define the

following three sets:

, imj+d=1=0,
G, jd, D) € (Z2)" ¢ i = |jI? + 1dP = |I? # 0, (4.1)
#S N, j,d, 1) =2

Sy

and
, i+j+d+1=0,
i, j,d,l) e (Zﬁdd) C il + 1712+ 1d)P? + 1 # 0, 4.2)
#(S N{i, jd1l}) =2

S

) i+j+d—-1=0,
S3 =90, jd,D) €(Zyy) = NP +1jP+1dP =1IF #0, . (4.3)
#S N{i, jd10}) > 2.

Obviously, the set

. ), 4 I+ j+d+1=0,
{(”’d’l)e(zodd) LR+ 1P+l P =0,

is empty. Similar to [13], the set

o » 4 I+j+d-1=0,
{(l,J,d,l)E(Zodd) S+ 1P+ 1dP = 1IP =0,

is empty.
For Proposition 4.1, we give the following lemma that will be proved in the “Appendix”.

Lemma 4.1. Given ¢ > 0,0 <y < 1, and C, large enough, & small enough, then there is a subset
R C [0,20]" with

measR > (1 — %/)Qm 4.4)

so that the following statements hold:
WIfG jdeSiori—j+d—1= 0,1i> = 1jP* +1d> = I = 0,#(S N {i, j,d,I}) = 2 and k # 0, then
for any w € R,

%

, VkeZ™, 4.5
C.(k + (kD)™ © *3)

|ﬂi—#j + g — it < k,w >| >
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(i) If (i, j,d,1) € S, then for any w € R,

i+ + pa + p+ < koo >| >

@
C..(Ikl + 5(Ik)y+t”

(1) If (4, j,d,l) € S5, then for any w € R,

|/Jl-+/,tj+,ud—,ul+<k,w>|2

Q
C..(kl + 5(Ik)y+!”

where 6(x) =1 as x =0and 6(x) =0 as x # 0.

Let

then

R=RNR,

measR > (1 —y)o™.

VkeZ™

VkeZ™

(4.6)

4.7)

Next we transform the Hamiltonian (3.46) into some partial Birkhoff form of order four.

Proposition 4.1. For each admissible set S there exists a symplectic change of coordinates X;. that
changes the hamiltonian H = Hy, + eG* with nonlinearity (3.44) into

with

N

AIMS Mathematics

A

o]

HoX, = N+A+B+B+P,

3
-4 4 4 2
g <w,J>+e Zﬂjlj+8 Z,u]'lel +@Z

JjES jez? i€S

3 | O 3 | R

ijes i+j

ieS,jez?

%221 |22 -6, =
(Gl E&e 2z,

_ 3 3 v
8% £ A4,

3 T -
= E (G VEEie " 24z
itjtaty

del,

%221 (22 i0+6)= =
(G EEe 7z,

_ 3 3 v
8> £ = A

1
2

(4.8)

Girl&l

4.9)

(4.10)

4.11)

(4.12)

21712 2 2 LSRR 201114 21213
O(e 11" + eIzl ; + elél2 Izl + €71zl + €7I€]

31212 A E20.112 512110113
+e& €12 |2llas + €7IENIlI  + €112 I )

(4.13)
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Proof. Denote

Gl’l] n2(ﬂ C()) — Z Gn1 Nib) (w)ei<k,l9>,

ijdl

We find a Hamiltonian

F =

ieS k¢0

3 1 Giijj,k
+_ .
82 Z Z/li/lj i<k,(1)>

i,j€S,i#j k#0

3 1 Gk
+_ .
&2 Z Z/ll/lj i<k,(,l)>

ieS,jez? k#0

1
+_ .
deZ:Ll ; \//l-/l Agd; 1

+_deZ£: ; V/li/ljfldflz iu

3 1
+_

1 1
+ .
6472 @, jdzl)esz ke;" V/li’lj/ld/ll

jdl.k nl’n2:09192’3949 n1+l’l2:4.
kEZ’"
2 2
uuk i<k 9> 14
2,2
1<k 19>|ql| |q]|
2,2
1<k 19>|ql| |q]|
GZ 2
ijdlk 1<k 9>
—Hjt U~ it <k w >) 9494
2,2
Z )y S ¢ qig 94
deLy k#0 \//1/1 iAad; l(ﬂd +up— g —pit <kow >) /
GZ 2
idjlk 1<k 9>
_ﬂd+ﬂj—ﬂz+<k,w>) QzQJQdQZ
2,2
AL s ¢ 4G 1qad
8n? @i,7,d,D)eS | kez™ ﬂi/lj/ld/ll i(ﬂi — Hj + Mg — it < k, w >) J
4,0
Z )y . s ¢ " 4iqiqaq:
(ljdl)652 kezm \//li/lj/ld/ll i(lli Tt g T+ < k,w >) J
0,4
Gljdlk 1<k 19>q q qdql
i(_lui_ — g — M+ <k w >) vy
3,1
A . s ¢ qiq,94d)
(ljdl)ESx kezm \//li/lj/ld/ll 1 + U+ g — g+ < k, w >) J
Gl 3
ijdlk 1<k19
i 4iqq449:-
1(_/~‘i_/1]—,lld+,ul+<k,a)>) J

1 1
+ —_— .
1672 (i, j,d,Zl)eSg kezz; \//li/lj/ld/ll

(4.14)

(4.15)

Let X;. be the time-1 map of the Hamiltonian vector field of ¢F and denote variables as follows

|
qj { Z/7 .]e Z37

then it satisfies

AIMS Mathematics

1
Ho X} = Hy + eG* + e{Hy, F} + e(G*, F} + & f (1 -0{{H,F},F}o X'dt
0

<wJ >+ Y wlgl+ Y el

Jjes jez?
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3¢ ~00 3c < 5
+32ﬂ-2 Z [sz]l l| 871' Z T[Guu]l(bl |qJ|
ieS i,JE€Si#]
3¢ 1 s , 3e 1 oy
+ > — Gl + = Z —(G? 074
2 iijj J 2 ijdI11i4J
8 ie$, jez? /l /l 8 def, \//1/1 ‘/1d/11 J

3e 1 <22
+=— —IG;.19:9,9491 + ; > 194,34
87‘(2 deZLz /—/li/lj/ld/ll dilj J L; ,—/l 1 /ld/l djl J
+0(8|61|||Z||3,s + 8||Z||2,5 +&%ql° + 82|q|5”Z”a,s +¢& |q|4||Z||¢21,s + &gl ||Z||;¢,s)-

Now we introduce the parameter vector & = (£;) jes and the action-angle variable by setting

q; = Ij + &, gj=lj+&e™, jes. (4.16)

From the symplectic transformation (4.16), the Hamiltonian H is changed into

H = <o, J>+Z,ujl +Z,uj|zj| +16 ZZ 12”3]&,

JES jez?

3¢ Rt 1 ooz o
+@ Z /1/1 Gll]]]é:l] Z E[Giijj]fikjl

i,jeS i#j LeS ,j€Z2

3¢ 1
Y 200
+8n2 2 W[ Sl NE& 2
de L,

871-2 dez_[; (/1 —/1 /161/1 dll]
2,2
87r2 ;; JA e il

2 21413 4 2173
+O(ElIf + eIz, + 12N, + ellzlly , + €211

21713 2171211112 212311113
+& Il Izllas + 7112, s + 712121 )

E&ie O z,z

&€ jei(eiJrgj ZdZ)

Through scaling variables
$—>s35, Jo &l [-&l 9-&9, 6050, z—)s%z, Z—>8%Z,
and scaling time t — £°1, the rescaled Hamiltonian can be obtained
H = HEE LT E1,9,0,837, 7).
Then H satisfies the equation (4.8)—(4.13). O

Now let’s give the estimates of the perturbation P. For this purpose, we need to introduce the
notations which are taken from [13]. Let [“® is now the Hilbert space of all complex sequence
w=~_(.. »Wj’-'-)jezg with

IWlles = Y Iwile™ - |l <oo, a>0,5>0.
, J J

jez?
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Letx =93 @0 with = (0))jes,y = J &1, 2= (Zj)jerzand { = 0 ® (Ej)jes, and let’s introduce the
phase space _
Pa,s — Tm+n X Cm+n X la,s X la,s ) (x’ y’ Z, Z)

where T"*" is the complexiation of the usual (m + n)-torus T"*". Let
. = LS. 2 =
Dys(s', 1) :={(x,y,2,2) € P s [Imx| < 5, [yl < 77, lella,s + 1Ellas < 71,

and , | {
Wl = Ixl + = Iyl + =llzllas + =llZlla.s
r r r
for W = (x,y,z,2) € P**. Seta = (...,@),.. )jez2, B = (..., B),...)jez2, @; and B; € N with finitely

many nonzero components of positive integers. The product z°7® denotes [] j zj" ij . Let

P(x,y,2,2) = ) Pap(,1)2"?,
ap

where Pos = Y, Prvapy’ €~ are C}, functions in parameter £ in the sense of Whitney. Let

1P, vns = sup > [PaglilIZ,

”Z”a,x <r7”Z||a,J<r (Z,ﬁ

where, if Pog = Y pemmen perpmen Proap({)y’€ ">, Py is short for

_ 26| Ik’ _ ~
|1Posll = Z |Prpapls™e™, |Pyagls = sup Z |07 Pibo]
k.b {eX (o4

the derivatives with respect to { are in the sense of Whitney. Denote by Xp the vector field
corresponding the Hamiltonian P with respect to the symplectic structure dx A dy + idz A dZ, namely,

Xp = (8,P,—0,P,iV-P, —iV.P).

Its weighted norm is defined by

IXpllp, (5.2 IPyllp, sz + ﬁ”P lDas(sr .2

1 . .
+=(Q WPl oz + 1Py lo, i 2.

jez? Jjez2

The following Lemma can be obtained and the proof is similar to Lemma 3.2 in [27].

Lemma 4.2. For given s’,r > 0, the perturbation P(x,y, z,Z;{) is real analytic for (x,y,z,2) € D,
(s’, r) and Lipschitz in the parameters { € Z, and for any € Z, its gradients with respect to z, 7 satisfy

0P, 9:P € AU, 1Y),

and
IXpllD, i (502 < Cé,

where s’ = 0g/3 and r = .
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5. An infinite-dimensional KAM theorem for partial differential equations

In order to prove our main result (Theorem 1.1), we need to state a KAM theorem which was proved
by Geng-Zhou [13]. Here we recite the theorem from [13].
Let us consider the perturbations of a family of Hamiltonian

H00:N+ﬂ+B+B,

where _
N = Zaj(f))’j + Z Qi(é)z;zZ;
JES jez?

A= Z aq(&)e ™ z,47)

del;

B= ) ai&)e gz,
delp

8= Z aq(&)e 7,7,
delp

in n-dimensional angle-action coordinates (x,y) and infinite-dimensional coordinates (z,Z) with

symplectic structure
Zde A dyj +iZde A de.

Jjes jez?
The tangent frequencies w = (w;) es and normal ones Q = (Q;) 7> depend on n parameters

EellcRY,

with IT a closed bounded set of positive Lebesgue measure.

For each £ there is an invariant n-torus 7, = T" X {0, 0,0} with frequencies w(&). The aim is to
prove the persistence of a large portion of this family of rotational torus under small perturbations
H = Hy, + P of Hy,. To this end the following assumptions are made.

Assumption Al. (Non-degeneracy): The map & — w(¢) is a Cy, diffeomorphism between IT and
its image.

Assumption A2. (Asymptotics of normal frequencies):

Qi =c9jP+Q;, ¢>0

where S~2J- isa Cﬁ, functions of ¢ and §~2j = 0(j|™),t> 0.
Assumption A3. (Melnikov conditions): Let B, = Q, for d € 72 \ (£, U £,), and let

B, = Qd+(,t)i AadA , d€.£1
a; Ql+(,t)j

B, = Qd_ w; AadA Cdel,
a Q,—wj
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there exist y’, 7 > O (here I, is 2 X 2 identity matrix) such that

/

kI~

| <k,w>|> k+#0,

’

det(< k@ > I + By)| > %

/

Y

ldet(< k,w>1+B;® 5L +1,® By)| > T

k#0,

where / means the identity matrix.
Assumption A4. (Regularity): A + B + B + P is real analytic in x, y, z, 7 and Whitney smooth in &;
and we have

IXallp,,s.n + 1Xsllp,nm + 1Xgllp,, o <1, IXpllp,,v.hn < &.

Assumption AS. (Zero-momentum condition): The normal form part A + B + B + P satisfies the
following condition

A+B+ B + P = Z (ﬂ + B+ ‘@ + P)kb<1ﬁ(§)ybei<k’x>ZaZ’8

keZ",beN" B

and we have i
(A+B+ B+ Pyos # 0= > kiis + ) (g = Ba)d = 0.
§=1 de7?
Now we state the basic KAM theorem which is attributed to Geng-Zhou [13], and as a corollary,
we get Theorem 1.1.

Theorem 5.1.( [13] Theorem 2) Assume that the Hamiltonian H = N + A + B + B + P satisfies
(A1) — (AS). Let ¥’ > 0 be sufficiently small, then there exists € > 0 and a,s > 0 such that if
IXpllp, ,v,h1 < & the following holds: there exists a Cantor subset I, < II with
meas(IT\ I1,,) = O(y"*) (s is a positive constant) and two maps which are analytic in x and C?'V in &,

Y:T"xIl, = D,(s",r), @:1I, > R",

where W is #—close to the trivial embedding ¥y : T" X IT — T" x {0, 0,0} and @ is e-close to the
unperturbed frequency w, such that for any ¢ € II,, and x € T", the curve t — ¥(x + @(é)1,€) is a

quasi-periodic solution of the Hamiltonian equations governed by H = N + A+ B+ B + P.

In order to apply the above theorem to our problem, we need to introduce a new parameter @ below.
Given w_ € R, forw € R := {w € R | |w — w_| < &}, we introduce new parameter @ by

w=w_+¢ew, cel0,1]". (5.1
Then the Hamiltonian (4.8) is changed into

H:<ZD(§),§;>+<§(€),2>+ﬂ+B+B+P (5.2)
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where W(&) = (6 W)@ 0, =0 @ E,2 = (15 ez, § =9 ®6,9 = J& 1 with

1 sz 3 | RO
0= &7+ T G+ o ) TG, i€, 53
U R T /lf[ i 1 8712;/1,-/11[ e 1 (5.3)
Qu=elpst o 0 O E, deZ: 54)

d d 872 o /lj/ld jjadlsi» e .

Denote &(&) = e~4@ + AE, Q(&) = 748 + BE, where

@=(...Hi-Jies, B=0(..sHds)gez2s

A= (Gij)i,jES’ B = (Gij)iezz,jes’ (5.5)
with
~ 3(2_61]) ~2.2 1 l:]
= ————[G], 6 = oY 5.6
/ 167T2/1i/1j [ ”'H] J 0, 1# J ( )

Lemma 5.1. Let IT = [0, 1]™*", for any & > 0 sufficiently small, r = +/g, then we have
IXplD, i (s7x < Ce.
The proof of the above lemma is the same as one of Lemma 4.2.
6. Proof of main theorem

In this section, we prove that the Hamiltonian (5.2) satisfies the assumptions (A1) — (AS). In view
of (5.5),(5.6),(2.10) and (3.45),

1 2 2
/g LAy /lllen
1
. 31| —— -
il—{% = Tom2 A A5 A, =A = [¢]A,
2 2 1
A A4, 2 ).
Verifying (A1) : From (5.3),
oG &7l 0

The a~ (9 14~ s for € Ha
7 B LG ¢
ow ow
where 1, denotes the unit m X m-matrix. It is obvious that detA # 0. So detA # 0 can be obtained by
assuming 0 < € < 1. Thus assumption (A1) is verified.
Veritying (A2) : Take ¢ = 4, = 4, the proof is obvious.
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Verifying (A3) : For (5.2), B, is defined as follows,

Bi=Q, deZ’\(LiULy),

and
~2, 2
ﬁ + i thdl glg]
d T Wi - —
Bd _ . _ 87'(' \/ﬂi/lj/ld/ll ’ d c Ll
3Gl \éij _
— T O+
&2 /ll/l j/ld/ll ’
~2, 2
ﬁ o Gdllj f’é‘uj
4= W ——
Bd _ 22 87T \/ﬂi/lj/ld/ll ’ d c ‘52
Gldjl é‘:’fj —
— T Q-
87'(' /ll/l j/ld/ll

where (i, j,[) is uniquely determined by d. In the following, we only prove (A3) for det[< k, w(&) >
I+ B,;®1I,+ I, ® By] which is the most complicated case. For k € Z"*",b € N"*" denote

k = (kl,kz), b= (bl,bz), kl € Zm,kz S Zn, bl € Nm,b2 e N".
Let

Z©)

<k,a(§)>Iin®12i12®Bd,
(et <ki,w>+et <k >+ <k, AE>)+B,;,®L, + 1, ® By.

’

Y

We need to prove that | Z(¢)| > e

cases.
Case 1. When k; # 0, notice that

(k # 0). For this purpose, we need to divide into the following two

N <k >+ <k AE>)N 2B, @L+L®By)
0w

=g 0(@"),

and from
0< ki, e %w >

0w
then all the eigenvalues of Z(¢) are not identically zero.
Case 2. When k; = 0, then

+&7-0E") =7k +0(') 20, 0<e<x 1

Z@) = (et <ki,w>+et <ky,a>+ <k, AE>)+B; L +1,® By
= (gt <kpa>+<k,AE>)I+B; L +1, By,
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We assert that all the eigenvalues of Z(¢) are not identically zero. Here we’re just proving it for
d,d’ € L, and everything else is similar. Let

By;=¢&"'B,+ B3, Vde L,
where
B[li = ( Hd + Mi 0 )’
0 u+u;
I(Kll ded] ~22 ~ o~
El T e 3G &
» 167247 82 872 A1 /ld/ll
d= Gzz
2 2 K’(// KK]]
3Gl & 3162218, 3 Z( T
872 A A0 - l6n A 87r2
Then

Z@é) =g <kya>I+B,®@L+L®B,)) +(<k,AE>1+B,®L+1,®B).

In view of |i]*> + |d|* =

IjI* + |I* and (2.10),(3.45),

R N B W~
E%Bd‘( 0 |i|2+|d|2)'_Bd’
o W E G SO

| T

= 3191 EE, g, O EGE
82 \/ﬂi/lj/ld/ll 1671'2/13 82

= B2 := [¢]B3,
Thus,
lim, o Z(6)

=e4<knd>I+B ®@L+L®B,) +[pl(<kAE> [+ B L +1,®B)
= o7 (< koo > £(iP +1dP) £ (72 +|d'P)) T

+[¢] < Aky (5 +

1\2 1
WP EG+
3[g] V&g,

-3¢l
16722 871'2/11‘/1]'
L ~ QL+L®
31 VEE 3161 2=
Sﬂz/l,'/l_,' 1672'2/13

AIMS Mathematics

Lp.E>1

_ 3[¢]§,~, 3[¢] \/5,-/5,-/
l6n243 82y Ay =
S VErEy 3y =Z®)
82y Ay 16n24§,
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with & = (4, Aiy,....4), B = (ﬁ, ﬁ ce ﬁ) and & = (§,,&,,...,& ). The eigenvalues of
Z(¢) are

eH(< koo & > (i +1dP) £ (7P + |d'P) + [¢] < Aky = (+ + £)B = (1 +3)B.&>

~ ~ ~ ~ o~ "‘2 ~ ~ ~2 ~ o~ ~2
el & & (& & & & & |8 &G &
+ -=-=t + 14 + t(—-5-—-=5= + 14 + .

2l RE & R /14) ( Ve A LA |

i ],

Similar to [10], we know that all the eigenvalues are not identically zero. Thus all the eigenvalues
of Z(¢) are not identically zero as 0 < & < 1. Moreover, they are similar to d € £L;,d" € £, or
de L,,d € L,, and omit them here.

Hence all eigenvalues of Z(¢) are not identically zero for k # 0. According to Lemma 3.1 in [10],
det(Z(¢)) is polynomial function in & of order at most four. Thus

i
Gk et Z@| = S # 0.

By excluding some parameter set with measure O(+/y’), we get

’

Y

, k#0.
IkI*

|det(Z(£)] =

(A3) is verified.
Veritying (A4) : Assumption (A4) can be verified easily fulfilled by Lemma 5.1.
Verifying (AS) : The proof is similar to [27].
By applying Theorem 5.1( [13] Theorem 2), we get Theorem 1.1.

7. Appendix

Proof of Lemma 4.1. Case 1. Similar to Lemma 3.1 in [27], there exists a set R*! so that Yw € [0, 20]™\
R>', Lemma 4.1(i) is true, and measR>' < 20™. We omit the proof.

Case 2. Assume i+ j+d+1=0,i> + |j]* + |d|* + |I|> # 0 and #(S N {i, j, d,I}) > 2. First of all, we
have ||i|2 +j* +1dP? + |l|2| > 1. Denote f(€) = p; + uj + pa + pu, then by p; = ; + ﬁj[gb] + Aijs(“p),uj
we have

. . 1 1 1 T T T TH
_ 12 2 2 2 (1+p) i J d i
= [i|* + 71" + |dI” + ||I” + —t—+—+—)+ —+—=+—=+—).
f@) = lil" + 1jI" + 1dI” + [II” + £l 4] (5 PR YTy PR /lz) g v T ﬂz)
Case 1.1. For k = 0, then

Q
C.

fEe+ <kw>|=[f(e)) 21-Ce>

when & small enough and C. large enough.
Case 1.2. For k # 0, denote

Tia = {“’ €l0201" f(@) <k w> < e } ’
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and

szjdlk

0#kezZ™ i,j,d,l

Case 1.2.1. When #(S N {i, j,d,l}) = 4. Denote

I?ﬂzizlk_{we[Q,ZQ f e+ <kw>|< g },

C.lkl™
32,1 _ 32,1
S O R Ut

0#keZm ieS, jeS,deS leS

we have oo
32,1 Y

measfljdlk < *|k|’”+1'

Let
|kloo = max{lki|, k2], ..., |knl},

in view of

Z 1 <2m@2p + 1™,

[kloo=p

koo < |K| < mlkl|oo,

we have

32,1 32,1 4 20"
measR>™" = meas U U 15 < E n—
t/dlk C |k|m+1
*

0#kezZ™ ieS,jeS,deS leS 0#kezZm
C// 1 C/ S C]
< S 3 g Yer iyt Sy
* o;ekezml | * p=1 *

where the constant C; depends on n, m. Thus

Y om

measR>>!' <
27¢

provided C, large enough.
Case 1.2.2. When #(S N {i, j,d,I}) = 3. Assume i, j,d € S,l € Z? without loss of generality. Then
[ = —i— j—dis at most n’ different values. Denote

£ = {a) € [0,201" : If(&)+ < k,w > | < |Qk|m},

322 _ 32,2
2= ) U T

0%keZm ieS, jeS deS J=—i— j—d
then

2
322 ©
meas iy <
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We obtain

2Qm C2
measR>*? = meas U U 22 < E n® < —Qm
ijdl, k |k|m+1
0#kezZ™ i€S, jeS deS I=—i—j—d 0#kezm

where the constant C, depends on n, m. Thus

Y o om

measR>»*? <
27°

provided C., large enough.
Case 1.2.3. When #(S N {i, j,d,l}) = 2. Assume i, j € S,d, [ € Z? without loss of generality. Then

we have [ = —i — j—d and
-2 .2 2 . .
f&) =il + jP +1dP + i + j +df
1 1 1 Ty R B )
+8[¢](ﬁ+_+%+ /ll)+8(+p)(/l_i+_]+_d+_[l)

— IR B (o) (HL 4 H LM
g+8[¢](2,1 +2/ld ) Te G+ +d )

where g = |i|> + |j*> + |d|* + |i + j + d|* € Z*. Denote

ri={octener e <ko1< gt

323 _ 323
=) T

0+keZ™ je§, jeS deZ? l=—i—j—d
For given i, j, g, denote

djy, ={d € Z2: g = i +|ji* + |dP + i + j + d}
Wy M j—d} {ﬂ; M j—d}
M, = sup {— + , w inf { —+——
sl dedgg {/ld Aicja g2 = dedi, \Adg Aija
1 1 1
* = + &£ _t — 4+ —
§ =8+l o T o, 21,)
3231 _ m . * (l+p)/£ ,u_;‘ * Q
Lo {w €lo,20]": | <k,w>+g" +¢ (/li + py + Mo )l < —C*|k|m+1}’
7232 21y ef0,20" : | < kyw > + +g<1+ﬂ>(—*+’£+ << —2
ek 020 g A o Hius2lS e [
thenforl = —i— j—d,d € d;, , from s(“p)(”—; ' ") is sufficiently small,
ijg A4 y
323 3231 3232
It]dlkc’[l]gk UIl]gk :
Thus
323 3231 | p3232
U Iljdlk c (Iljgk U ijg.k )
I=—i—j—d ded’.

g
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We get - -
meas]?}ﬁlfl < %, I?j;iZ < C*llfl’"*z'
When |g| > |klo + 4, the sets I3 2 3 ! Iszz 2 are empty. So let
R = | U U U miie U U Udiz Umed.
0#keZ™ i€S,jeS dez? I=—i—j—d 0#keZ™ ieS,jeS geZ

then

measR>*® < meas U U U(I3231UI3232)
ijg.k ijg.k

0#keZ™ ieS,jeS geZ

7231 232
meas U U U ugk U Iugk

0#kezm ieS,jeS 1<|gl<lklo+4

2Qm C3
< 4n*(lklo + 4 =",
< 0§ n”(lklo )C|k|m+2_CQ
#keZm
where the constant C; depends on n, m. Thus
R323 < Y o om
meas 779

provided C., large enough. Denote
R3,2 — R3,2,1 U R3,2,2 U R3’2’3,

then we have measR>* < Zo™.
Case 3. Similar to Case 2, there exists a set R>* so that Yw € [0, 20]™\R>?, Lemma 4.1(iii) is true,
and measR>? < ng. We omit the proof.
Denote
~ [0, 201" \ (RS,I URM U R3’3),

then it satisfies as required and
measR > (1 — %)Q’".

Symbol description

N is the set of natural Numbers, Z is the set of integers, Z" is an n-dimensional integer space, R is
the set of real Numbers, R" is an n-dimensional Euclidean space, T" is an n-dimensional torus.
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