
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(1): 643–674.
DOI: 10.3934/math.2021039
Received: 21 September 2020
Accepted: 20 October 2020
Published: 23 October 2020

Research article

Reducibility and quasi-periodic solutions for a two dimensional beam
equation with quasi-periodic in time potential

Min Zhang1,∗, Yi Wang2 and Yan Li1

1 College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

2 School of Mathematics and Quantitative Economics, Shandong University of Finance and
Economics, Jinan, Shandong 250014, P. R. China

* Correspondence: Email: zhangminmath@163.com.

Abstract: This article is devoted to the study of a two-dimensional (2D) quasi-periodically forced
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utt + ∆2u + εφ(t)(u + u3) = 0, x ∈ T2, t ∈ R

under periodic boundary conditions, where ε is a small positive parameter, φ(t) is a real analytic
quasi-periodic function in t with frequency vector ω = (ω1, ω2 . . . , ωm). We prove that the equation
possesses a Whitney smooth family of small-amplitude quasi-periodic solutions corresponding to finite
dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is
based on an infinite dimensional KAM theorem and Birkhoff normal form. By solving the measure
estimation of infinitely many small divisors, we construct a symplectic coordinate transformation
which can reduce the linear part of Hamiltonian system to constant coefficients. And we construct some
conversion of coordinates which can change the Hamiltonian of the equation into some Birkhoff normal
form depending sparse angle-dependent terms, which can be achieved by choosing the appropriate
tangential sites. Lastly, we prove that there are many quasi-periodic solutions for the above equation
via an abstract KAM theorem.
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1. Introduction and main result

In this paper, we will are concerned with existence of quasi-periodic solutions for a two-dimensional
(2D) quasi-periodically forced beam equation

utt + ∆2u + εφ(t)(u + u3) = 0, x ∈ T2, t ∈ R (1.1)

with periodic boundary conditions

u(t, x1, x2) = u(t, x1 + 2π, x2) = u(t, x1, x2 + 2π) (1.2)

where ε is a small positive parameter, φ(t) is a real analytic quasi-periodic function in t with frequency
vector ω = (ω1, ω2 . . . , ωm) ⊂ [%, 2%]m for some constant % > 0. Such quasi-periodic functions can be
written in the form

φ(t) = ϕ(ω1t, . . . , ωmt),

where ω1, . . . , ωm are rationally independent real numbers, the “basic frequencies” of φ, and ϕ is a
continuous function of period 2π in all arguments, called the hull of φ. Thus φ admits a Fourier series
expansion

φ(t) =
∑
k∈Zm

ϕkeik·ωt,

where k · ω =
∑m

ĵ=1 k ĵ · ω ĵ. We think of this equation as an infinite dimensional Hamiltonian system
and we study it through an infinite-dimensional KAM theory. The KAM method is a composite of
Birkhoff normal form and KAM iterative techniques, and the pioneering works were given by
Wayne [25], Kuksin [15] and Pöschel [19]. Over the last years the method has been well developed in
one dimensional Hamiltonian PDEs. However, it is difficult to apply to higher dimensional
Hamiltonian PDEs. Actually, it is difficult to draw a nice result because of complicated small divisor
conditions and measure estimates between the corresponding eigenvalues when the space dimension
is greater than one. In [11, 12] the authors obtained quasi-periodic solutions for higher dimensional
Hamiltonian PDEs by means of an infinite dimensional KAM theory, where Geng and You proved
that the higher dimensional nonlinear beam equations and nonlocal Schrödinger equations possess
small-amplitude linearly-stable quasi-periodic solutions. In this aspect, Eliasson-Kuksin [9],
C.Procesi and M.Procesi [20], Eliasson-Grebert-Kuksin [5] made the breakthrough of obtaining
quasi-periodic solutions for more interesting higher dimensional Schrödinger equations and beam
equations. However, all of the work mentioned above require artificial parameters, and therefore it
cannot be used for classical equations with physical background such as the higher dimensional cubic
Schrödinger equation and the higher dimensional cubic beam equation. These equations with physical
background have many special properties, readers can refer to [4, 16, 22–24] and references therein.

Fortunately, Geng-Xu-You [10], in 2011, used an infinite dimensional KAM theory to study the
two dimensional nonlinear cubic Schrödinger equation on T2. The main approach they use is to pick
the appropriate tangential frequencies, to make the non-integrable terms in normal form as sparse as
possible such that the homological equations in KAM iteration is easy to solve. More recently, by the
same approach, Geng and Zhou [13] looked at the two dimensional completely resonant beam equation
with cubic nonlinearity

utt + ∆2u + u3 = 0, x ∈ T2, t ∈ R. (1.3)
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All works mentioned above do not conclude the case with forced terms. The present paper study the
problem of existence of quasi-periodic solutions of the equation (1.1)+(1.2). Let’s look at this problem
through the infinite-dimensional KAM theory as developed by Geng-Zhou [13]. So the main step is to
convert the equation into a form that the KAM theory for PDE can be applied. This requires reducing
the linear part of Hamiltonian system to constant coefficients. A large part of the present paper will be
devoted to proving the reducibility of infinite-dimensional linear quasi-periodic systems. In fact, the
question of reducibility of infinite-dimensional linear quasi-periodic systems is also interesting itself.

In 1960s, Bogoliubov-Mitropolsky-Samoilenko [3] found that KAM technique can be applied to
study reducibility of non-autonomous finite-dimensional linear systems to constant coefficient
equations. Subsequently, the technique is well developed for the reducibility of finite-dimensional
systems, and we don’t want to repeat describing these developments here. Comparing with the
finite-dimensional systems, the reducibility results in infinite dimensional Hamiltonian systems are
relatively few. Such kind of reducibility result for PDE using KAM technique was first obtained by
Bambusi and Graffi [1] for Schrödinger equation on R. About the reducibility results in one
dimensional PDEs and its applications, readers refer to [2, 7, 17, 18, 21] and references therein.

Recently there have been some interesting results in the case of systems in higher space dimensions.
Eliasson and Kuksin [6] obtained the reducibility for the linear d-dimensional Schrödinger equation

u̇ = −i(∆u − εV(φ0 + tω, x;ω)u), x ∈ Td.

Grébert and Paturel [14] proved that a linear d-dimensional Schrödinger equation on Rd with harmonic
potential |x|2 and small t-quasiperiodic potential

i∂tu − ∆u + |x|2u + εV(tω, x)u = 0, x ∈ Rd

reduced to an autonomous system for most values of the frequency vector ω ∈ Rn. For recent
development for high dimensional wave equations, Eliasson-Grébert-Kuksin [8] , in 2014, studied
reducibility of linear quasi-periodic wave equation.

However, the reducibility results in higher dimension are still very few. The author Min Zhang of
the present paper has studied the two dimensional Schrödinger equations with Quasi-periodic forcing
in [27]. However, it would seem that the result cannot be directly applied to our problems because of
the difference in the linear part of Hamiltonian systems and the Birkhoff normal forms. As far as we
know, the reducibility for the linear part of the beam equation (1.1) is still open. In this paper, by
utilizing the measure estimation of infinitely many small divisors, we construct a symplectic change
of coordinates which can reduce the linear part of Hamiltonian system to constant coefficients.
Subsequently, we construct a symplectic change of coordinates which can transform the Hamiltonian
into some Birkhoff normal form depending sparse angle-dependent terms, which can be achieved by
choosing the appropriate tangential sites. Lastly, we show that there are many quasi-periodic solutions
for the equation (1.1) via KAM theory.

Remark 1.1. Similar to [13], we introduced a special subset of Z2

Z2
odd = {n = (n1, n2), n1 ∈ 2Z − 1, n2 ∈ 2Z}, (1.4)

for the small divisor problem could be simplified. Then we define subspaceU in L2(T2) as follows

U = {u =
∑

j∈Z2
odd

u jφ j, φ j(x) = ei< j,x>}.
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We only prove the existence of quasi-periodic solutions of the equation (1.1) inU.

The following definition quantifies the conditions the tangential sites satisfy. It acquired from
Geng-Xu-You [10].

Definition 1.1. A finite set S = {i∗1 = (x̃1, ỹ1), · · · , i∗n = (x̃n, ỹn)} ⊂ Z2
odd(n ≥ 2) is called admissible if

(i). Any three different points of them are not vertices of a rectangle (if n > 2) or n = 2.
(ii). For any d ∈ Z2

odd \ S , there exists at most one triplet {i, j, l} with i, j ∈ S , l ∈ Z2
odd \ S such that

d − l + i − j = 0 and |i|2 − | j|2 + |d|2 − |l|2 = 0. If such triplet exists, we say that d, l are resonant in the
first type and denote all such d by L1.
(iii). For any d ∈ Z2

odd \ S , there exists at most one triplet {i, j, l} with i, j ∈ S , l ∈ Z2
odd \ S such that

d + l − i − j = 0 and |d|2 + |l|2 − |i|2 − | j|2 = 0. If such triplet exists, we say that d, l are resonant in the
second type and denote all such d by L2.
(iv). Any d ∈ Z2

odd \ S should not be in L1 and L2 at the same time. It means that L1 ∩ L2 = ∅.

Remark 1.2. We can give an example to show the admissible set S above is non-empty. For example,
for any given positive integer n ≥ 2, the first point (x̃1, ỹ1) ∈ Z2

odd is chosen as x̃1 > n2, ỹ1 = 2x̃5n

1 , and
the second one is chosen as x̃2 = x̃5

1, ỹ2 = 2x̃5n

2 , the others are defined inductively by

x̃ ĵ+1 = x̃5
ĵ

∏
2≤m̂≤ ĵ,1≤l̂<m̂

(
(x̃m̂ − x̃l̂)

2 + (ỹm̂ − ỹl̂)
2 + 1

)
, 2 ≤ ĵ ≤ n − 1,

ỹ ĵ+1 = 2x̃5n

ĵ+1
, 2 ≤ ĵ ≤ n − 1.

The choice of the admissible set is same to that in [13], where the proof of such admissible set is
given.

In this paper, we assume that
(H) φ(t) is a real analytic quasi-periodic function in t with frequency vector ω, and [φ] , 0 where [φ]
denotes the time average of φ, coinciding with the space average.

The main result of this paper in the following. The proof is based on an infinite dimensional KAM
theorem inspired by Geng-Zhou [13].

Theorem 1.1. (Main Theorem) Given %, φ(t) as above. Then for arbitrary admissible set S ⊂ Z2
odd and

for any 0 < γ < 1, 0 < ρ < 1 and γ′ > 0 be small enough, there exists ε∗(ρ, γ, γ′) > 0 so that for all
0 < ε < ε∗, there exists R ⊂ [%, 2%]m with meas R > (1 − γ)%m and there exists Σγ′ ⊂ Σ := R × [0, 1]n

with meas (Σ \ Σγ′) = O( 4
√
γ′), so that for (ω, ξ̃i∗1

, . . . , ξ̃i∗n) ∈ Σ′γ, the beam equation (1.1)+(1.2) admits a
quasi-periodic solution in the following

u(t, x) =
∑
j∈S

(
1 + g j(ωt, ω, ε)

) √
3ξ̃ j

16| j|2π2 (eiω̃ jtei< j,x> + e−iω̃ jte−i< j,x>) + O(|ξ̃|3/2),

where g j(ϑ, ω, ε) = ερg∗j(ϑ, ω, ε) is of period 2π in each component of ϑ and for
j ∈ S , ϑ ∈ Θ(σ0/2), ω ∈ Ω, we have |g∗j(ϑ, ω, ε)| ≤ C. And the solution u(t, x) is quasi-periodic in
terms of t with the frequency vector ω̃ = (ω, (ω̃ j) j∈S ), and ω̃ j = ε−4| j|2 + O(|ξ̃|) + O(ε).
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2. The Hamiltonian setting

Let’s rewrite the beam equation (1.1) as follows

utt + ∆2u + εφ(t)(u + u3) = 0, x ∈ T2, t ∈ R. (2.1)

Introduce a variable v = ut, the equation (2.1) is transformed into{
ut = v,
vt = −∆2u − εφ(t)(u + u3).

(2.2)

Introducing q = 1
√

2
((−∆)

1
2 u − i(−∆)−

1
2 v) and (2.2) is transformed into

−iqt = −∆q +
1
√

2
εφ(t)(−∆)−

1
2

(
(−∆)−

1
2 (

q + q̄
√

2
) +

(
(−∆)−

1
2 (

q + q̄
√

2
)
)3)

. (2.3)

The equation can be written as the Hamiltonian equation q̇ = i∂H
∂q̄ and the corresponding Hamiltonian

functions is

H =

∫
T2

(
(−∆)q

)
q̄dx +

1
2
εφ(t)

∫
T2

(
(−∆)−

1
2 (

q + q̄
√

2
)
)2

dx +
1
4
εφ(t)

∫
T2

(
(−∆)−

1
2 (

q + q̄
√

2
)
)4

dx. (2.4)

The eigenvalues and eigenfunctions of the linear operator −∆ with the periodic boundary conditions
are respectively λ j = | j|2 and φ j(x) = 1

2πei< j,x>. Now let’s expand q into a Fourier series

q =
∑

j∈Z2
odd

q jφ j, (2.5)

the coordinates belong to some Hilbert space la,s of sequences q = (· · · , q j, · · · ) j∈Z2
odd

that has the finite
norm

‖q‖a,s =
∑

j∈Z2
odd

|q j|| j|se| j|a (a > 0, s > 0).

The corresponding symplectic structure is i
∑

j∈Z2
odd

dq j ∧ dq̄ j. In the coordinates, the Hamiltonian
equation (2.3) can be written as

q̇ j = i
∂H
∂q̄ j

, ∀ j ∈ Z2
odd (2.6)

with
H = Λ + G

where
Λ =

∑
j∈Z2

odd

(
λ j|q j|

2 +
ε

4λ j
φ(t)(q jq− j + 2|q j|

2 + q̄ jq̄− j)
)

G =
1

64π2εφ(t)
∑

i + j + d + l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

(qiq jqdql + q̄iq̄ jq̄dq̄l)

+
3

32π2εφ(t)
∑

i − j + d − l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

qiq̄ jqdq̄l

+
1

16π2εφ(t)
∑

i + j + d − l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

(qiq jqdq̄l + q̄iq̄ jq̄dql).
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Denote ϕ(ϑ) be the shell of φ(t), we introduce the action-angle variable (J, ϑ) ∈ Rm × Tm, then (2.6)
can be written as follows

ϑ̇ = ω, J̇ = −
∂H
∂ϑ

, q̇ j = i
∂H
∂q̄ j

, j ∈ Z2
odd

and the corresponding Hamiltonian function is

H = H̄ + εG4, (2.7)

where
H̄ =< ω, J > +

∑
j∈Z2

odd

(
λ j|q j|

2 +
ε

4λ j
ϕ(ϑ)(q jq− j + 2|q j|

2 + q̄ jq̄− j)
)
, (2.8)

G4 =
1

64π2

∑
i + j + d + l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

(G4,0
i jdl(ϑ)qiq jqdql + G0,4

i jdl(ϑ)q̄iq̄ jq̄dq̄l)

+
3

32π2

∑
i − j + d − l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

G2,2
i jdl(ϑ)qiq̄ jqdq̄l

+
1

16π2

∑
i + j + d − l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

(G3,1
i jdl(ϑ)qiq jqdq̄l + G1,3

i jdl(ϑ)q̄iq̄ jq̄dql)

(2.9)

and

G4,0
i jdl(ϑ) = G0,4

i jdl(ϑ) =

{
ϕ(ϑ), i + j + d + l = 0,

0, i + j + d + l , 0,
(2.10)

G2,2
i jdl(ϑ) =

{
ϕ(ϑ), i − j + d − l = 0,

0, i − j + d − l , 0,
(2.11)

G3,1
i jdl(ϑ) = G1,3

i jdl(ϑ) =

{
ϕ(ϑ), i + j + d − l = 0,

0, i + j + d − l , 0.
(2.12)

3. Reducibility via KAM theory

Now We are going to study the reducibility of the Hamiltonian (2.8). To make this reducibility, we
introduce the notations and spaces as follows.

For given σ0 > 0,Γ > 0, 0 < ρ < 1, define

σν = σ0

1 −
∑ν

ĵ=1 ĵ−2

2
∑∞

ĵ=1 ĵ−2

 , ν = 1, 2, . . .

Γν = Γ

1 + C
+∞∑
ĵ=ν

ε
ρ

ĵ

 , ν = 0, 1, . . .
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where C is a constant. Let
ε0 = ε, εν = ε(1+ρ)ν , ν = 1, 2, . . .

Θ(σν) =
{
ϑ = (ϑ1, . . . , ϑm) ∈ Cm/2πZm : |Imϑ ĵ| < σν, ĵ = 1, 2, . . . ,m

}
, ν = 0, 1, 2, . . . .

and denote

Da,s
ν =

{
(ϑ, J, q, q̄) ∈ Cm/2πZm × Cm × la,s × la,s : |Imϑ| < σν, |J| < Γ2

ν,

‖q‖a,s < Γν, ‖q̄‖a,s < Γν
}

ν = 0, 1, 2, . . . ,

Da,s
∞ =

{
(ϑ, J, q, q̄) ∈ Cm/2πZm × Cm × la,s × la,s : |Imϑ| < σ0/2, |J| < Γ2,

‖q‖a,s < Γ, ‖q̄‖a,s < Γ
}
,

where | · | stands for the sup-norm of complex vectors and la,s stands for complex Hilbert space. For
arbitrary four order Whitney smooth function F(ω) on closed bounded set R∗, let

‖F‖∗R∗ = sup
ω∈R∗

∑
0≤ ĵ≤4

|∂ ĵ
ωF|.

Let F(ω) is a vector function from R∗ to la,s(orRm1×m2) which is four order whitney smooth on R∗, we
denote

‖F‖∗a,s,R∗ = ‖(‖Fi(ω)‖∗R∗)i‖a,s

or‖F‖∗R∗ = max
1≤i1≤m1

∑
1≤i2≤m2

(‖Fi1i2(ω)‖∗R∗)

 .
Given σDa,s > 0,ΓDa,s > 0, we define

Da,s =
{
(ϑ, J, q, q̄) ∈ Cm/2πZm × Cm × la,s × la,s : |Imϑ| < σDa,s , |J| < Γ2

Da,s ,

‖q‖a,s < ΓDa,s , ‖q̄‖a,s < ΓDa,s
}
.

If w̃ = (ϑ, J, q, q̄) ∈ Da,s, we define the weighted norm for w̃ by

|w̃|a,s = |ϑ| +
1

Γ2
Da,s

|J| +
1

ΓDa,s
‖q‖a,s +

1
ΓDa,s
‖q̄‖a,s.

Let F(η;ω) is a function from Da,s × R∗ to la,s(orRm1×m2) which is four order whitney smooth on ω, we
denote

‖F‖∗a,s,Da,s×R∗ = sup
η∈Da,s

‖F‖∗a,s,R∗
(
or‖F‖∗Da,s×R∗ = sup

η∈Da,s
‖F‖∗R∗

)
.

For given function F, associate a hamiltonian vector field denoted as XF = {FJ,−Fϑ, iFq̄,−iFq}, we
define the weighted norm for XF by

|XF |
∗
a,s,Da,s×R∗ = ‖FJ‖

∗
Da,s×R∗ +

1
Γ2

Da,s

‖Fϑ‖
∗
Da,s×R∗

+
1

ΓDa,s
‖Fz̄‖

∗
a,s,Da,s×R∗ +

1
ΓDa,s
‖Fz‖

∗
a,s,Da,s×R∗ .
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Assume w = (q, q̄) ∈ la,s × la,s is a doubly infinite complex sequence, and A(η;ω) be an operator from
la,s × la,s to la,s × la,s for (η;ω) ∈ Da,s × R∗, then we denote

‖w‖a,s = ‖q‖a,s + ‖q̄‖a,s,

‖A(η;ω)‖�a,s,Da,s×R∗ = sup
(η;ω)∈Da,s×R∗

sup
w,0

‖A(η;ω)w‖a,s
‖w‖a,s

,

‖A(η;ω)‖?a,s,Da,s×R∗ =
∑

0≤ ĵ≤4

‖∂ ĵ
ωA‖�a,s,Da,s×R∗ .

Assume B(η;ω) be an operator from Da,s to Da,s for (η;ω) ∈ Da,s × R∗, then we denote

|B(η;ω)|�a,s,Da,s×R∗ = sup
(η;ω)∈Da,s×R∗

sup
w̃,0

|B(η;ω)w̃|a,s
|w̃|a,s

,

|B(η;ω)|?a,s,Da,s×R∗ =
∑

0≤ ĵ≤4

|∂ ĵ
ωB|�a,s,Da,s×R∗ .

Reducibility of the autonomous Hamiltonian equation corresponding to the Hamiltonian (2.8) will
be proved by an KAM iteration which involves an infinite sequence of change of variables. By utilizing
the measure estimation of infinitely many small divisors, we will prove that the composition of these
infinite many change of variables converges to a symplectic change of coordinates, which can reduce
the Hamiltonian equation corresponding to the Hamiltonian (2.8) to constant coefficients.

At the ν−step of the iteration, we consider Hamiltonian function of the form

Hν = H∗ν + Pν (3.1)

where
H∗ν :=< ω, J > +

∑
j∈Z2

odd

λ j,νq jq̄ j,

Pν := εν
∑

j∈Z2
odd

[η j,ν,2,0(ϑ, ω)q jq− j + η j,ν,1,1(ϑ, ω)q jq̄ j + η j,ν,0,2(ϑ, ω)q̄ jq̄− j]

where η j,ν,2,0 = η− j,ν,2,0, η j,ν,0,2 = η− j,ν,0,2, η j,ν,n1,n2(ϑ, ω) =
∑

k∈Zm η j,ν,k,n1,n2(ω)ei<k,ϑ> when n1, n2 ∈ N, n1 +

n2 = 2,

η j,ν,n1,n2 = λ−1
j η
∗
j,ν,n1,n2

, ‖η∗j,ν,n1,n2
‖∗Θ(σν)×Rν ≤ C, n1, n2 ∈ N, n1 + n2 = 2, (3.2)

and

λ j,0 = λ j, λ j,ν = λ j +

ν−1∑
ŝ=0

µ j,ν,ŝ, (3.3)

with

µ j,ν,0 =
ε

2λ j
[φ], µ j,ν,ŝ = λ−1

j εŝµ
∗
j,ν,ŝ, ‖µ∗j,ν,ŝ‖

∗
Rν ≤ C, ŝ = 1, 2, . . . , ν. (3.4)
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We’re going to construct a symplectic transformation

Tν : Da,s
ν+1 × Rν+1 7−→ Da,s

ν × Rν

and

Hν+1 = Hν ◦ Tν = H∗ν+1 + Pν+1 (3.5)

satisfies all the above iterative assumptions (3.1)–(3.4) marked ν + 1 on Da,s
ν+1 × Rν.

We assume that there is a constant C∗ and a closed set Rν satisfies

measRν ≥ %
m

1 − γ3 − γ
∑ν

î=0(δ(î) + î)−2

3
∑+∞

î=0(δ(î) + î)−2

 (3.6)

and for arbitrary k ∈ Zm, j ∈ Z2
odd, ω ∈ Rν,

| < k, ω > ±(λ j,ν + λ− j,ν)| ≥
%

C∗(δ(ν) + ν2)(|k| + δ(|k|))m+1 , (3.7)

where δ(x) = 1 as x = 0 and δ(x) = 0 as x , 0. We put its proof in the Lemma 4.1 below.
Next we will construct a parameter set Rν+1 ⊂ Rν and a symplectic coordinate transformation Tν

so that the transformed Hamiltonian Hν+1 = H∗ν+1 + Pν+1 satisfies the above iteration assumptions with
new parameters εν+1, σν+1,Γν+1 and with ω ∈ Rν+1.

3.1. Solving the homological equations

Let XΨν
be the Hamiltonian vector field for a Hamiltonian Ψν :

Ψν = ενΥν = εν
∑

j∈Z2
odd

[$ j,ν,2,0(ϑ;ω)q jq− j +$ j,ν,1,1(ϑ;ω)q jq̄ j +$ j,ν,0,2(ϑ;ω)q̄ jq̄− j]

where
$ j,ν,2,0(ϑ;ω) = $− j,ν,2,0(ϑ;ω), $ j,ν,0,2(ϑ;ω) = $− j,ν,0,2(ϑ;ω),

$ j,ν,n1,n2(ϑ;ω) =
∑
k∈Zm

$ j,ν,k,n1,n2(ω)ei<k,ϑ>, n1, n2 ∈ N, n1 + n2 = 2 (3.8)

and [$ j,ν,1,1] = 0. Let Xt
Ψν

be its time-t map.
Let Tν = X1

Ψν
where X1

Ψν
denote the time-one map of the Hamiltonian vector field XΨν

, then the
system (3.1)(ν) is transformed into the form (3.1)(ν + 1) and satisfies (3.2)(ν + 1), (3.3)(ν + 1) and
(3.4)(ν + 1). More precisely, the new Hamiltonian Hν+1 can be written as follows by second order
Taylor formula

Hν+1 : = Hν ◦ X1
Ψν

= H∗ν + Pν + {H∗ν ,Ψν}

+ εν

∫ 1

0
(1 − t)

{
{H∗ν ,Ψν},Υν

}
◦ Xt

Ψν
dt + εν

∫ 1

0
{Pν,Υν} ◦ Xt

Ψν
dt. (3.9)
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The Hamiltonian Ψν is satisfies the homological equation

Pν + {H∗ν ,Ψν} = εν
∑

j∈Z2
odd

[η j,ν,1,1]q jq̄ j,

which is equivalent to
− < ω, ∂ϑ$ j,ν,1,1(ϑ;ω) > +η j,ν,1,1(ϑ;ω) = [η j,ν,1,1],
i(λ j,ν + λ− j,ν)$ j,ν,0,2(ϑ;ω)− < ω, ∂ϑ$ j,ν,0,2(ϑ;ω) > +η j,ν,0,2(ϑ;ω) = 0,
−i(λ j,ν + λ− j,ν)$ j,ν,2,0(ϑ;ω)− < ω, ∂ϑ$ j,ν,2,0(ϑ;ω) > +η j,ν,2,0(ϑ;ω) = 0.

(3.10)

Let’s inserting (3.8) into (3.10)
i < k, ω > $ j,ν,k,1,1(ω) = η j,ν,k,1,1(ω), k , 0,
i(< k, ω > +λ j,ν + λ− j,ν)$ j,ν,k,2,0(ω) = η j,ν,k,2,0(ω),
i(< k, ω > −λ j,ν − λ− j,ν)$ j,ν,k,0,2(ω) = η j,ν,k,0,2(ω).

Thus 

$ j,ν,1,1(ϑ;ω) =
∑

0,k∈Zm

η j,ν,k,1,1(ω)
i < k, ω >

ei<k,ϑ>,

$ j,ν,2,0(ϑ;ω) =
∑

k∈Zm

η j,ν,k,2,0(ω)
i(< k, ω > +λ j,ν + λ− j,ν)

ei<k,ϑ>,

$ j,ν,0,2(ϑ;ω) =
∑

k∈Zm

η j,ν,k,0,2(ω)
i(< k, ω > −λ j,ν − λ− j,ν)

ei<k,ϑ>.

(3.11)

3.2. Estimation on the coordinate transformation

Now we’re going to estimate Ψν and X1
Ψν

. By Cauchy’s estimate and (3.2)(ν)

|η j,ν,k,n1,n2 | ≤ ‖η j,ν,n1,n2‖
∗
Θ(σν)×Rνe

−|k|σν ≤ Cλ−1
j e−|k|σν , n1, n2 ∈ N, n1 + n2 = 2 (3.12)

and
|∂î
ωη j,ν,k,n1,n2 | ≤ ‖η j,ν,n1,n2‖

∗
Θ(σν)×Rνe

−|k|σν ≤ Cλ−1
j e−|k|σν , î = 1, 2, 3, 4 (3.13)

can be obtained. By ω ∈ Rν and (3.7)(ν),

sup
(ϑ;ω)∈Θ(σν+1)×Rν

|$ j,ν,1,1| ≤ CC∗λ−1
j %
−1

∑
0,k∈Zm

|k|m+1e−σν |k|eσν+1 |k|

and
sup

(ϑ;ω)∈Θ(σν+1)×Rν
|$ j,ν,n1,n2 | ≤ CC∗λ−1

j %
−1(δ(ν) + ν2)(1 +

∑
0,k∈Zm

|k|m+1e−σν |k|eσν+1 |k|)

for n1 = 0, n2 = 2 or n1 = 2, n2 = 0. According to Lemma 3.3 in [26], for (ϑ;ω) ∈ Θ(σν+1) × Rν ,

|$ j,ν,1,1|, |$ j,ν,2,0|, |$ j,ν,0,2| ≤ CC∗λ−1
j %
−1(ν + 1)4m+4 ≤ Cλ−1

j (ν + 1)12m+28, (3.14)

where C := CC∗%−1. Moreover, in view of (3.3)(ν) and (3.4)(ν),∣∣∣∣∂î
ωλ j,ν

∣∣∣∣ ≤ Cελ−1
j , î = 1, 2, 3, 4. (3.15)
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Similarly ∣∣∣∣∂î
ω$ j,ν,n1,n2

∣∣∣∣ ≤ Cλ−1
j (ν + 1)12m+28, î = 1, 2, 3, 4, n1, n2 ∈ N, n1 + n2 = 2. (3.16)

By (3.14) and (3.16), we have

‖$ j,ν,n1,n2‖
∗
Θ(σν+1)×Rν ≤ Cλ−1

j (ν + 1)12m+28. (3.17)

Similar to the above discussion, the following estimates can be obtained

‖∂ϑ$ j,ν,n1,n2‖
∗
Θ(σν+1)×Rν ≤ Cλ−1

j (ν + 1)12m+30, (3.18)

‖∂ϑϑ$ j,ν,n1,n2‖
∗
Θ(σν+1)×Rν ≤ Cλ−1

j (ν + 1)12m+32. (3.19)

Now let’s estimate the flow Xt
Ψν
, denote

M j,ν(ϑ;ω) =

(
$ j,ν,2,0 +$− j,ν,2,0 $− j,ν,1,1

$ j,ν,1,1 $ j,ν,0,2 +$− j,ν,0,2

)
, J2 = i

(
0 1
−1 0

)
.

By (3.17)–(3.19),
‖M j,ν‖

∗
Θ(σν+1)×Rν ≤ Cλ−1

j (ν + 1)12m+28,

‖∂ϑM j,ν‖
∗
Θ(σν+1)×Rν ≤ Cλ−1

j (ν + 1)12m+30,

‖∂ϑϑM j,ν‖
∗
Θ(σν+1)×Rν ≤ Cλ−1

j (ν + 1)12m+32.

The vector field XΨν
is as follows

ϑ̇ = 0
d
dt

(
q j

q̄− j

)
= ενJ2M j,ν(ϑ;ω) ·

(
q j

q̄− j

)
, j ∈ Z2

odd

J̇ = εν
∑

j∈Z2
odd

[
∂ϑ$ j,ν,2,0(ϑ;ω)q jq− j + ∂ϑ$ j,ν,1,1(ϑ;ω)q jq̄ j + ∂ϑ$ j,ν,0,2(ϑ;ω)q̄ jq̄− j

]
.

The integral from 0 to t of the above equation, we have Xt
Ψν

:

ϑ = ϑC

w(t) = exp
(
ενJMν(ϑC;ω)t

)
· w(0)

J(t) = J(0) +

∫ t

0
εν

∑
j∈Z2

odd

∂ϑ$ j,ν,2,0(ϑC;ω)q j(t)q− j(t)dt

+

∫ t

0
εν

∑
j∈Z2

odd

[
∂ϑ$ j,ν,1,1(ϑC;ω)q j(t)q̄ j(t) + ∂ϑ$ j,ν,0,2(ϑC;ω)q̄ j(t)q̄− j(t)

]
dt.

(3.20)

where (ϑC, J(0),w(0)) is the initial value,

J = i
(

0 Ẽ∞×∞
−Ẽ∞×∞ 0

)
,

AIMS Mathematics Volume 6, Issue 1, 643–674.



654

and Mν(ϑ;ω) are the corresponding matrices. According to εν = ε(1+ρ)ν , then

|ε1−ρ
ν (ν + 1)12m+32(C∗%−1)5ν

| ≤ C, ν = 0, 1, . . . (3.21)

as ε < 1, where C is an absolute constant. In view of (3.17), for ϑ ∈ Θ(σν+1) ,

ενJ2M j,ν(ϑ;ω) = λ−1
j εν(ν + 1)12m+28M∗1

j,ν(ϑ;ω) = λ−1
j ε

ρ
νM∗

j,ν(ϑ;ω), ‖M∗
j,ν(ϑ;ω)‖∗Θ(σν+1)×Rν ≤ C,

then

‖ενJMν(ϑ;ω)‖?a,s,Θ(σν+1)×Rν ≤ Cερν. (3.22)

In view of (3.18),

∂ϑ

(
ενJ2M j,ν(ϑ;ω) ·

(
q j

q̄− j

))
= ε

ρ
ν · ∂ϑ

(
M∗

j,ν(ϑ;ω) ·
(

q j

q̄− j

))
where ∥∥∥∥∥∥∂ϑ

(
M∗

j,ν(ϑ;ω) ·
( q j

q̄− j

))∥∥∥∥∥∥∗
Θ(σν+1)×Rν

≤ C(|q j| + |q̄− j|)

then

‖∂ϑ (ενJMν(ϑ;ω) · w) ‖∗Da,s
ν+1×Rν

≤ CερνΓν+1. (3.23)

By (3.22) and (3.23),
exp (ενJMν(ϑ;ω)t) = Id + g∞ν (ϑ;ω, t) (3.24)

and for t ∈ [0, 1],

‖g∞ν (ϑ;ω, t)‖?a,s,Θ(σν+1)×Rν ≤ Cερν, ‖∂ϑ
(
g∞ν (ϑ;ω, t) · w

)
‖∗Da,s

ν+1×Rν
≤ CερνΓν+1. (3.25)

Let’s define J(t) in (3.20) as
J(t) = J + gJ,ν(ϑ,w;ω, t). (3.26)

By (3.18), (3.25) and (3.21),

‖gJ,ν(ϑ,w;ω, t)‖∗Da,s
ν+1×Rν

≤ CερνΓ
2
ν, t ∈ [0, 1], (3.27)

and for any w′ ∈ la,s × la,s,

‖∂w
(
gJ,ν(ϑ,w;ω, t)

)
· w′‖∗Da,s

ν+1×Rν
≤ CερνΓν · ‖w

′‖a,s, t ∈ [0, 1]. (3.28)

By (3.19), (3.25) and (3.21),

‖∂ϑ
(
gJ,ν(ϑ,w;ω, t)

)
‖∗Da,s

ν+1×Rν
≤ CερνΓ

2
ν, t ∈ [0, 1]. (3.29)

Denote
Xt

Ψν
= ΠZ + gν(ω, t) : Da,s

ν+1 × Rν+1 7→ Da,s
ν (3.30)
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from (3.20), (3.24) and (3.26),
Πϑ ◦ Xt

Ψν
(ϑ, J,w) = ϑ : Da,s

ν+1 × Rν+1 7→ Θ(σν),
Πw ◦ Xt

Ψν
(ϑ, J,w) =

(
Id + g∞ν (ϑ;ω, t)

)
· w : Da,s

ν+1 × Rν+1 7→ la,s × la,s

ΠJ ◦ Xt
Fν

(ϑ, J,w) = J + gJ,ν(ϑ,w;ω, t) : Da,s
ν+1 × Rν+1 7→ C

m
(3.31)

where ΠZ,Πω denote the projectors

ΠZ : Za,s × R0 7−→ Z
a,s, Πω : Za,s × R0 7−→ R0,

and Πϑ,ΠJ,Πw denote the projectors ofZa,s = Cm/2πZm × Cm × la,s × la,s on the first, second and third
factor respectively. According to the first equation of (3.25),(3.27) and (3.31),

|Xt
Ψν
− ΠZ|

∗

a,s,Da,s
ν+1×Rν+1

≤ Cερν. (3.32)

By (3.31), we have

DXt
Ψν

=


Idm×m 0 0

∂ϑ(g∞ν (ϑ;ω, t)w) Id∞×∞ + g∞ν (ϑ;ω, t) 0
∂ϑ(gJ,ν(ϑ,w;ω, t)) ∂w(gJ,ν(ϑ,w;ω, t)) Idm×m


where D is the differentiation operator with respect to (ϑ,w, J). In view of (3.25), (3.28) and (3.29) ,
for w̃ = (ϑ′,w′, J′), (ϑ,w, J) ∈ Da,s

ν+1,

|
(
DXt

Ψν
− Id

)
w̃|a,s ≤ Cερν |w̃|a,s.

Thus
|DXt

Ψν
− Id|�a,s,Da,s

ν+1×Rν+1
< Cερν.

Similarly
|∂î
ω(DXt

Ψν
− Id)|�a,s,Da,s

ν+1×Rν+1
< Cερν, î = 1, 2, 3, 4

and
|DXt

Ψν
− Id|?a,s,Da,s

ν+1×Rν+1
< Cερν. (3.33)

3.3. Estimation for the new normal form and the new smaller terms

Let
λ j,ν+1 = λ j,ν + εν[η j,ν,1,1],

then by (3.2)(ν), it is obvious that λ j,ν+1 satisfies the conditions (3.3)(ν + 1) and (3.4)(ν + 1).
Now let’s estimate the smaller terms of (3.9). Notice that those terms are polynomials of q jq− j, q jq̄ j

and q̄ jq̄− j. So we can write it

εν

∫ 1

0
(1 − t)

{
{H2

ν ,Ψν},Υν

}
◦ Xt

Ψν
dt + εν

∫ 1

0
{Pν,Υν} ◦ Xt

Ψν
dt

= ε2
ν

∑
j∈Z2

odd

[η̃ j,ν+1,2,0(ϑ;ω)q jq− j + η̃ j,ν+1,1,1(ϑ;ω)q jq̄ j + η̃ j,ν+1,0,2(ϑ;ω)q̄ jq̄− j],
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where from
{H∗ν ,Ψν} = εν

∑
j∈Z2

odd

[η j,ν,1,1]q jq̄ j − Pν,

we know that η̃ j,ν+1,n1,n2(ϑ;ω) is a linear combination of the product of $ j,ν,n1,n2 and η j,ν,m1,m2 . By (3.17)
and (3.2)(ν),

$ j,ν,n1,n2(ϑ;ω) = λ−1
j (ν + 1)12m+28$∗j,ν,n1,n2

(ϑ;ω), ‖$∗j,ν,n1,n2
‖∗Θ(σν+1)×Rν ≤ C

and
η j,ν,n1,n2(ϑ;ω) = λ−1

j η
∗
j,ν,n1,n2

(ϑ;ω), ‖η∗j,ν,n1,n2
(ϑ;ω)‖∗Θ(σν+1)×Rν ≤ C

respectively. Thereby , we have

η̃ j,ν+1,n1,n2(ϑ;ω) = λ−1
j (ν + 1)12m+28η̃∗j,ν+1,n1,n2

(ϑ;ω), ‖η̃∗j,ν+1,n1,n2
‖∗Θ(σν+1)×Rν ≤ C.

According to ε1−ρ
ν (ν + 1)12m+28 ≤ 1 as ε < 1, then

η j,ν+1,n1,n2 := ε1−ρ
ν η̃ j,ν+1,n1,n2 = λ−1

j η
∗
j,ν+1,n1,n2

, ‖η∗j,ν+1,n1,n2
‖∗Θ(σν+1)×Rν ≤ C.

From ε
2−(1−ρ)
ν = εν+1, we have (3.1)(ν+ 1) is defined in Da,s

ν+1 and λ j,ν+1 satisfies (3.3)(ν+ 1), (3.4)(ν+ 1)
and η j,ν+1,n1,n2 satisfies (3.2)(ν + 1).

3.4. Convergence and reducibility theorem

The reducibility of the linear Hamiltonian systems can be summarized as follows.

Theorem 3.1. Given σ0 > 0, 0 < γ < 1, 0 < ρ < 1. Then there is a ε∗(γ) > 0 such that for any
0 < ε < ε∗(γ), there exists a set R ⊂ [%, 2%]m, % > 0 with measR ≥ (1 − 2γ

3 )%m and a symplectic
transformation Σ0

∞ defined on Da
∞ × R changes the Hamiltonian (2.8) into

H̄ ◦ Σ0
∞ =< ω, J > +

∑
j∈Z2

odd

µ j|q j|
2,

where
µ j = λ j +

ε

2λ j
[φ] +

1
λ j
ε(1+ρ)µ∗j, ‖µ∗j‖

∗
R ≤ C, j ∈ Z2

odd.

Moreover, there exists a constant C > 0 such that

|Σ0
∞ − id|∗a,s,Da,s

∞ ×R ≤ Cερ,

where id is identity mapping.

Proof. Let η j,0,2,0 = η j,0,0,2 = 1
4λ j
ϕ(ϑ), η j,0,1,1 = 1

2λ j
ϕ(ϑ), we have that H0 = H̄ and

η j,0,n1,n2 = λ−1
j η
∗
j,0,n1,n2

, ‖η∗j,0,n1,n2
‖∗

Θ(σ0)×R0
≤ C, n1, n2 ∈ N, n1 + n2 = 2 where C is an absolute constant.

i.e., the assumptions (3.1),(3.2),(3.3),(3.4) of the iteration are satisfied when ν = 0.
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We obtain the following sequences:

R∞ ⊂ · · · ⊂ Rν ⊂ · · · ⊂ R1 ⊂ R0 ⊂ [%, 2%]m,

Da,s
0 ⊃ Da,s

1 ⊃ · · · ⊃ Da,s
ν ⊃ · · · ⊃ Da,s

∞ .

From (3.30), (3.32) and (3.33), denote

Tν = X1
Fν

= ΠZ + gν(ω, 1) : Da,s
ν+1 × Rν+1 7−→ Da,s

ν (3.34)

then
|Tν − ΠZ|

∗

a,s,Da,s
ν+1×Rν+1

≤ Cερν, |DTν − Id|?a,s,Da,s
ν+1×Rν+1

≤ Cερν. (3.35)

Similar to [27], it can be seen that the limiting transformation T0 ◦T1 ◦· · · converges to a symplectic
coordinate transformation Σ0

∞. And there exists an absolute constant C > 0 independent of j such that

|Σ0
∞ − id|∗a,s,Da,s

∞ ×R ≤ Cερ, (3.36)

with id is identity mapping.
In view of the Hamiltonian (2.8) satisfies the conditions (3.1) − (3.4), (3.6), (3.7) with ν = 0, the

above iterative procedure can run repeatedly. Thus the transformation Σ0
∞ changes the Hamiltonian

(2.8) to
H̄ ◦ Σ0

∞ =< ω, J > +
∑

j∈Z2
odd

µ j|q j|
2, (3.37)

with
µ j = λ j +

ε

2λ j
[φ] +

1
λ j
ε(1+ρ)µ∗j, ‖µ∗j‖

∗
R ≤ C, j ∈ Z2

odd. (3.38)

�

We present the following lemma which has been used in the above iterative procedure. The proof
is similar to Lemma 3.1 in [15].

Lemma 3.1. For any given k ∈ Zm, j ∈ Z2
odd, l̂ ∈ N, denote

I1
k =

{
ω ∈ [%, 2%]m : | < k, ω > | ≤

%

C∗|k|m+1

}
, k , 0,

I
2,+
k, j,l̂

=

{
ω ∈ [%, 2%]m :

∣∣∣< k, ω > +λ j,l̂ + λ− j,l̂

∣∣∣ < %

C∗(δ(l̂) + l̂2)(|k| + δ(|k|))m+1

}
,

I
2,−
k, j,l̂

=

{
ω ∈ [%, 2%]m :

∣∣∣< k, ω > −λ j,l̂ − λ− j,l̂

∣∣∣ < %

C∗(δ(l̂) + l̂2)(|k| + δ(|k|))m+1

}
,

R1 =
⋃

0,k∈Zm

I1
k , R2

l̂
=

⋃
j∈Z2

odd

⋃
k∈Zm

(
I

2,+
k, j,l̂

⋃
I

2,−
k, j,l̂

)
where δ(x) = 1 as x = 0 and δ(x) = 0 as x , 0. Then the sets R1,R2

l̂
is measurable and

measR1 ≤
1
3
γ%m, measR2

l̂
≤

γ(δ(l̂) + l̂)−2

3
∑+∞

î=0(δ(î) + î)−2
%m (3.39)
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if C∗ � 1 large enough.

Let
R00 = [%, 2%]m\R1, R0 = R00 \ R2

0, Rl̂+1 = Rl̂ \ R2
l̂+1
, l̂ = 0, 1, · · · . (3.40)

Then we have (3.6) and (3.7). Denote

R =

∞⋂
l̂=1

Rl̂ (3.41)

then by (3.6),

measR > (1 −
2γ
3

)%m. (3.42)

3.5. The Hamiltonian after the iterative procedure

In view of the symplectic coordinate transformation Σ0
∞ is linear, and (3.36), then

q j ◦ Σ0
∞ = q j + λ−1

j ε
ρg̃∗j,1,∞(ϑ;ω)q j + λ−1

j ε
ρg̃∗j,2,∞(ϑ;ω)q̄− j

where
‖g̃∗

j,l̂,∞
(ϑ;ω)‖∗Θ(σ0/2)×R ≤ C, l̂ = 1, 2.

Thus from (3.37), the Hamiltonian (2.8) is transformed into by Σ0
∞

H00 := H̄ ◦ Σ0
∞ =< ω, J > +

∑
j∈Z2

odd

µ jq jq̄ j, (3.43)

and the Hamiltonian (2.9) is transformed into

G̃4 = G4 ◦ Σ0
∞ =

3
32π2

∑
i − j + d − l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

G̃2,2
i jdl(ϑ;ω)qiq̄ jqdq̄l

+
1

64π2

∑
i + j + d + l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

(G̃4,0
i jdl(ϑ;ω)qiq jqdql + G̃0,4

i jdl(ϑ;ω)q̄iq̄ jq̄dq̄l)

+
1

16π2

∑
i + j + d − l = 0
i, j, d, l ∈ Z2

odd

1√
λiλ jλdλl

(G̃3,1
i jdl(ϑ;ω)qiq jqdq̄l + G̃1,3

i jdl(ϑ;ω)q̄iq̄ jq̄dql)

(3.44)

where

G̃n1,n2
i jdl (ϑ;ω) = Gn1,n2

i jdl (ϑ)

1 +
ερGn1,n2,∗

i jdl (ϑ;ω)

min(|i|2, | j|2, |d|2, |l|2)

 , ‖Gn1,n2,∗
i jdl (ϑ;ω)‖∗Θ(σ0/2)×R ≤ C, (3.45)

with n1, n2 ∈ N, n1 + n2 = 4, n1, n2 = 0, 1, 2, 3, 4.
This means that the transformation Σ0

∞ changes the Hamiltonian (2.7) into

H = H00 + εG̃4. (3.46)
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The following Lemma gives a regularity result, the proof is similar to [13] and is omitted.

Lemma 3.2. For a ≥ 0 and s > 0, the gradients G̃4
q, G̃

4
q̄ are real analytic as maps from some

neighborhood of origin in la,s × la,s into la,s with ‖G̃4
q‖a,s = O(‖q‖3a,s), ‖G̃

4
q̄‖a,s = O(‖q‖3a,s).

4. Partial Birkhoff normal form

As in [13], Let S is an admissible set. We define Z2
∗ = Z2

odd \ S . For simplicity, we define the
following three sets:

S 1 =

(i, j, d, l) ∈ (Z2
odd)4 :

i − j + d − l = 0,
|i|2 − | j|2 + |d|2 − |l|2 , 0,
#(S ∩ {i, j, d, l}) ≥ 2

 (4.1)

and

S 2 =

(i, j, d, l) ∈ (Z2
odd)4 :

i + j + d + l = 0,
|i|2 + | j|2 + |d|2 + |l|2 , 0,
#(S ∩ {i, j, d, l}) ≥ 2

 (4.2)

S 3 =

(i, j, d, l) ∈ (Z2
odd)4 :

i + j + d − l = 0,
|i|2 + | j|2 + |d|2 − |l|2 , 0,
#(S ∩ {i, j, d, l}) ≥ 2.

 . (4.3)

Obviously, the set {
(i, j, d, l) ∈ (Z2

odd)4 :
i + j + d + l = 0,
|i|2 + | j|2 + |d|2 + |l|2 = 0,

}
is empty. Similar to [13], the set{

(i, j, d, l) ∈ (Z2
odd)4 :

i + j + d − l = 0,
|i|2 + | j|2 + |d|2 − |l|2 = 0,

}
is empty.

For Proposition 4.1, we give the following lemma that will be proved in the “Appendix”.

Lemma 4.1. Given % > 0, 0 < γ < 1, and C∗ large enough, ε small enough, then there is a subset
R ⊂ [%, 2%]m with

measR > (1 −
γ

3
)%m (4.4)

so that the following statements hold:
(i) If (i, j, d, l) ∈ S 1 or i− j + d − l = 0, |i|2 − | j|2 + |d|2 − |l|2 = 0, #(S ∩ {i, j, d, l}) = 2 and k , 0, then

for any ω ∈ R, ∣∣∣µi − µ j + µd − µl+ < k, ω >
∣∣∣ ≥ %

C∗(|k| + δ(|k|))m+1 , ∀k ∈ Zm; (4.5)
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(ii) If (i, j, d, l) ∈ S 2, then for any ω ∈ R,∣∣∣µi + µ j + µd + µl+ < k, ω >
∣∣∣ ≥ %

C∗(|k| + δ(|k|))m+1 , ∀k ∈ Zm; (4.6)

(iii) If (i, j, d, l) ∈ S 3, then for any ω ∈ R,∣∣∣µi + µ j + µd − µl+ < k, ω >
∣∣∣ ≥ %

C∗(|k| + δ(|k|))m+1 , ∀k ∈ Zm; (4.7)

where δ(x) = 1 as x = 0 and δ(x) = 0 as x , 0.

Let
R = R ∩ R,

then
measR ≥ (1 − γ)%m.

Next we transform the Hamiltonian (3.46) into some partial Birkhoff form of order four.

Proposition 4.1. For each admissible set S there exists a symplectic change of coordinates X1
F that

changes the hamiltonian H = H00 + εG̃4 with nonlinearity (3.44) into

H ◦ X1
F = N +A + B + B̄ + P, (4.8)

with

N = ε−4 < ω, J > +ε−4
∑
j∈S

µ jI j + ε−4
∑
j∈Z2
∗

µ j|z j|
2 +

3
16π2

∑
i∈S

1
λ2

i

[G̃2,2
iiii ]ξ̃iIi

+
3

8π2

∑
i, j∈S ,i, j

1
λiλ j

[G̃2,2
ii j j]ξ̃iI j +

3
8π2

∑
i∈S , j∈Z2

∗

1
λiλ j

[G̃2,2
ii j j]ξ̃i|z j|

2 (4.9)

A =
3

8π2

∑
d∈L1

1√
λiλ jλdλl

[G̃2,2
i jdl]

√
ξ̃iξ̃ jei(θi−θ j)zd z̄l (4.10)

B =
3

8π2

∑
d∈L2

1√
λiλ jλdλl

[G̃2,2
dil j]

√
ξ̃iξ̃ je−i(θi+θ j)zdzl (4.11)

B̄ =
3

8π2

∑
d∈L2

1√
λiλ jλdλl

[G̃2,2
id jl]

√
ξ̃iξ̃ jei(θi+θ j)z̄d z̄l. (4.12)

P = O(ε2|I|2 + ε2|I|‖z‖2a,s + ε|ξ̃|
1
2 ‖z‖3a,s + ε2‖z‖4a,s + ε2|ξ̃|3

+ε3|ξ̃|
5
2 ‖z‖a,s + ε4|ξ̃|2‖z‖2a,s + ε5|ξ̃|

3
2 ‖z‖3a,s). (4.13)
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Proof. Denote

G̃n1,n2
i jdl (ϑ, ω) =

∑
k∈Zm

Gn1,n2
i jdl,k(ω)ei<k,ϑ>, n1, n2 = 0, 1, 2, 3, 4, n1 + n2 = 4. (4.14)

We find a Hamiltonian

F =
3

32π2

∑
i∈S

∑
k,0

1
λ2

i

·
G2,2

iiii,k

i < k, ω >
ei<k,ϑ>|qi|

4

+
3

8π2

∑
i, j∈S ,i, j

∑
k,0

1
λiλ j

·
G2,2

ii j j,k

i < k, ω >
ei<k,ϑ>|qi|

2|q j|
2

+
3

8π2

∑
i∈S , j∈Z2

∗

∑
k,0

1
λiλ j

·
G2,2

ii j j,k

i < k, ω >
ei<k,ϑ>|qi|

2|q j|
2

+
3

8π2

∑
d∈L1

∑
k,0

1√
λiλ jλdλl

·
G2,2

i jdl,k

i(µi − µ j + µd − µl+ < k, ω >)
ei<k,ϑ>qiq̄ jqdq̄l

+
3

8π2

∑
d∈L2

∑
k,0

1√
λiλ jλdλl

·
G2,2

dil j,k

i(µd + µl − µi − µ j+ < k, ω >)
ei<k,ϑ>q̄iq̄ jqdql

+
3

8π2

∑
d∈L2

∑
k,0

1√
λiλ jλdλl

·
G2,2

id jl,k

i(µi − µd + µ j − µl+ < k, ω >)
ei<k,ϑ>qiq jq̄dq̄l

+
3

8π2

∑
(i, j,d,l)∈S 1

∑
k∈Zm

1√
λiλ jλdλl

·
G2,2

i jdl,k

i(µi − µ j + µd − µl+ < k, ω >)
ei<k,ϑ>qiq̄ jqdq̄l

+
1

64π2

∑
(i, j,d,l)∈S 2

∑
k∈Zm

1√
λiλ jλdλl

·
G4,0

i jdl,k

i(µi + µ j + µd + µl+ < k, ω >)
ei<k,ϑ>qiq jqdql

+
1

64π2

∑
(i, j,d,l)∈S 2

∑
k∈Zm

1√
λiλ jλdλl

·
G0,4

i jdl,k

i(−µi − µ j − µd − µl+ < k, ω >)
ei<k,ϑ>q̄iq̄ jq̄dq̄l

+
1

16π2

∑
(i, j,d,l)∈S 3

∑
k∈Zm

1√
λiλ jλdλl

·
G3,1

i jdl,k

i(µi + µ j + µd − µl+ < k, ω >)
ei<k,ϑ>qiq jqdq̄l

+
1

16π2

∑
(i, j,d,l)∈S 3

∑
k∈Zm

1√
λiλ jλdλl

·
G1,3

i jdl,k

i(−µi − µ j − µd + µl+ < k, ω >)
ei<k,ϑ>q̄iq̄ jq̄dql.

(4.15)

Let X1
F be the time-1 map of the Hamiltonian vector field of εF and denote variables as follows

q j =

{
q j, j ∈ S ,
z j, j ∈ Z2

∗,

then it satisfies

Ĥ = H ◦ X1
F = H00 + εG̃4 + ε{H00, F} + ε2{G̃4, F} + ε2

∫ 1

0
(1 − t){{H, F}, F} ◦ Xt

Fdt

= < ω, J > +
∑
j∈S

µ j|q j|
2 +

∑
j∈Z2
∗

µ j|z j|
2
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+
3ε

32π2

∑
i∈S

1
λ2

i

[G̃2,2
iiii ]|qi|

4 +
3ε
8π2

∑
i, j∈S ,i, j

1
λiλ j

[G̃2,2
ii j j]|qi|

2|q j|
2

+
3ε
8π2

∑
i∈S , j∈Z2

∗

1
λiλ j

[G̃2,2
ii j j]|qi|

2|q j|
2 +

3ε
8π2

∑
d∈L1

1√
λiλ jλdλl

[G̃2,2
i jdl]qiq̄ jqdq̄l

+
3ε
8π2

∑
d∈L2

1√
λiλ jλdλl

[G̃2,2
dil j]q̄iq̄ jqdql +

3ε
8π2

∑
d∈L2

1√
λiλ jλdλl

[G̃2,2
id jl]qiq jq̄dq̄l

+O(ε|q|‖z‖3a,s + ε‖z‖4a,s + ε2|q|6 + ε2|q|5‖z‖a,s + ε2|q|4‖z‖2a,s + ε2|q|3‖z‖3a,s).

Now we introduce the parameter vector ξ̃ = (ξ̃ j) j∈S and the action-angle variable by setting

q j =

√
I j + ξ̃ jeiθ j , q̄ j =

√
I j + ξ̃ je−iθ j , j ∈ S . (4.16)

From the symplectic transformation (4.16), the Hamiltonian Ĥ is changed into

Ĥ = < ω, J > +
∑
j∈S

µ jI j +
∑
j∈Z2
∗

µ j|z j|
2 +

3ε
16π2

∑
i∈S

1
λ2

i

[G̃2,2
iiii ]ξ̃iIi

+
3ε
8π2

∑
i, j∈S ,i, j

1
λiλ j

[G̃2,2
ii j j]ξ̃iI j +

3ε
8π2

∑
i∈S , j∈Z2

∗

1
λiλ j

[G̃2,2
ii j j]ξ̃i|z j|

2

+
3ε
8π2

∑
d∈L1

1√
λiλ jλdλl

[G̃2,2
i jdl]

√
ξ̃iξ̃ jei(θi−θ j)zd z̄l

+
3ε
8π2

∑
d∈L2

1√
λiλ jλdλl

[G̃2,2
dil j]

√
ξ̃iξ̃ je−i(θi+θ j)zdzl

+
3ε
8π2

∑
d∈L2

1√
λiλ jλdλl

[G̃2,2
id jl]

√
ξ̃iξ̃ jei(θi+θ j)z̄d z̄l

+O(ε|I|2 + ε|I|‖z‖2a,s + ε|ξ̃|
1
2 ‖z‖3a,s + ε‖z‖4a,s + ε2|ξ̃|

3

+ε2|ξ̃|
5
2 ‖z‖a,s + ε2|ξ̃|2‖z‖2a,s + ε2|ξ̃|

3
2 ‖z‖3a,s)

Through scaling variables

ξ̃ → ε3ξ̃, J → ε5J, I → ε5I, ϑ→ ε4ϑ, θ → θ, z→ ε
5
2 z, z̄→ ε

5
2 z̄,

and scaling time t → ε9t, the rescaled Hamiltonian can be obtained

H = ε−9Ĥ(ε3ξ̃; ε9J, ε5I, ϑ, θ, ε
5
2 z, ε

5
2 z̄).

Then H satisfies the equation (4.8)–(4.13). �

Now let’s give the estimates of the perturbation P. For this purpose, we need to introduce the
notations which are taken from [13]. Let la,s is now the Hilbert space of all complex sequence
w = (. . . ,w j, . . .) j∈Z2

∗
with

‖w‖a,s =
∑
j∈Z2
∗

|w j|ea| j| · | j|s < ∞, a > 0, s > 0.
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Let x = ϑ ⊕ θ with θ = (θ j) j∈S , y = J ⊕ I, z = (z j) j∈Z2
∗

and ζ = ω ⊕ (ξ̃ j) j∈S , and let’s introduce the
phase space

Pa,s = T̂m+n × Cm+n × la,s × la,s 3 (x, y, z, z̄)

where T̂m+n is the complexiation of the usual (m + n)-torus Tm+n. Let

Da,s(s′, r) := {(x, y, z, z̄) ∈ Pa,s : |Imx| < s′, |y| < r2, ‖z‖a,s + ‖z̄‖a,s < r},

and
|W |r = |x| +

1
r2 |y| +

1
r
‖z‖a,s +

1
r
‖z̄‖a,s

for W = (x, y, z, z̄) ∈ Pa,s. Set α ≡ (. . . , α j, . . .) j∈Z2
∗
, β ≡ (. . . , β j, . . .) j∈Z2

∗
, α j and β j ∈ N with finitely

many nonzero components of positive integers. The product zαz̄β denotes
∏

j zα j

j z̄β j

j . Let

P(x, y, z, z̄) =
∑
α,β

Pαβ(x, y)zαz̄β,

where Pαβ =
∑

k,b Pkbαβybei<k,x> are C4
W functions in parameter ζ in the sense of Whitney. Let

‖P‖Da,s(s′,r),Σ ≡ sup
‖z‖a,s<r,‖z̄‖a,s<r

∑
α,β

‖Pαβ‖|zα||z̄β|,

where, if Pα,β =
∑

k∈Zm+n,b∈Nm+n Pkbαβ(ζ)ybei<k,x>, Pαβ is short for

‖Pαβ‖ ≡
∑
k,b

|Pkbαβ|Σr2|b|e|k|s
′

, |Pkbαβ|Σ ≡ sup
ζ∈Σ

∑
0≤s≤4

|∂s
ζPkbαβ|

the derivatives with respect to ζ are in the sense of Whitney. Denote by XP the vector field
corresponding the Hamiltonian P with respect to the symplectic structure dx ∧ dy + idz ∧ dz̄, namely,

XP = (∂yP,−∂xP, i∇z̄P,−i∇zP).

Its weighted norm is defined by

‖XP‖Da,s(s′,r),Σ ≡ ‖Py‖Da,s(s′,r),Σ +
1
r2 ‖Px‖Da,s(s′,r),Σ

+
1
r

(
∑
j∈Z2
∗

‖Pz j‖Da,s(s′,r),Σe| j|a +
∑
j∈Z2
∗

‖Pz̄ j‖Da,s(s′,r),Σe| j|a).

The following Lemma can be obtained and the proof is similar to Lemma 3.2 in [27].

Lemma 4.2. For given s′, r > 0, the perturbation P(x, y, z, z̄; ζ) is real analytic for (x, y, z, z̄) ∈ Da,s

(s′, r) and Lipschitz in the parameters ζ ∈ Σ, and for any ζ ∈ Σ, its gradients with respect to z, z̄ satisfy

∂zP, ∂z̄P ∈ A(la,s, la,s),

and
‖XP‖Da,s+1(s′,r),Σ ≤ Cε,

where s′ = σ0/3 and r =
√
ε.
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5. An infinite-dimensional KAM theorem for partial differential equations

In order to prove our main result (Theorem 1.1), we need to state a KAM theorem which was proved
by Geng-Zhou [13]. Here we recite the theorem from [13].

Let us consider the perturbations of a family of Hamiltonian

H00 = N +A + B + B̄,

where
N =

∑
j∈S

ω̂ j(ξ)y j +
∑
j∈Z2
∗

Ω̂ j(ξ)z jz̄ j

A =
∑
d∈L1

ad(ξ)ei(xi−x j)zd z̄l

B =
∑
d∈L2

ad(ξ)e−i(xi+x j)zdzl

B̄ =
∑
d∈L2

ād(ξ)ei(xi+x j)z̄d z̄l.

in n-dimensional angle-action coordinates (x, y) and infinite-dimensional coordinates (z, z̄) with
symplectic structure ∑

j∈S

dx j ∧ dy j + i
∑
j∈Z2
∗

dz j ∧ dz̄ j.

The tangent frequencies ω̂ = (ω̂ j) j∈S and normal ones Ω̂ = (Ω̂ j) j∈Z2
∗

depend on n parameters

ξ ∈ Π ⊂ Rn,

with Π a closed bounded set of positive Lebesgue measure.
For each ξ there is an invariant n-torus T n

0 = Tn × {0, 0, 0} with frequencies ω̂(ξ). The aim is to
prove the persistence of a large portion of this family of rotational torus under small perturbations
H = H00 + P of H00. To this end the following assumptions are made.

Assumption A1. (Non-degeneracy): The map ξ 7→ ω̂(ξ) is a C4
W diffeomorphism between Π and

its image.
Assumption A2. (Asymptotics of normal frequencies):

Ω̂ j = ε−ς | j|2 + Ω̃ j, ς > 0

where Ω̃ j is a C4
W functions of ξ and Ω̃ j = O(| j|−ι), ι > 0.

Assumption A3. (Melnikov conditions): Let Bd = Ω̂d for d ∈ Z2
∗ \ (L1 ∪ L2), and let

Bd =

 Ω̂d + ω̂i ad

al Ω̂l + ω̂ j

 , d ∈ L1

Bd =

 Ω̂d − ω̂i ad

āl Ω̂l − ω̂ j

 , d ∈ L2
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there exist γ′, τ > 0 (here I2 is 2 × 2 identity matrix) such that

| < k, ω̂ > | ≥
γ′

|k|τ
, k , 0,

|det(< k, ω̂ > I + Bd)| ≥
γ′

|k|τ
,

|det(< k, ω̂ > I ± Bd ⊗ I2 ± I2 ⊗ Bd′)| ≥
γ′

|k|τ
, k , 0,

where I means the identity matrix.
Assumption A4. (Regularity): A +B + B̄ + P is real analytic in x, y, z, z̄ and Whitney smooth in ξ;

and we have

‖XA‖Da,s(s′,r),Π + ‖XB‖Da,s(s′,r),Π + ‖XB̄‖Da,s(s′,r),Π < 1, ‖XP‖Da,s(s′,r),Π < ε.

Assumption A5. (Zero-momentum condition): The normal form part A + B + B̄ + P satisfies the
following condition

A + B + B̄ + P =
∑

k∈Zn,b∈Nn,α,β

(A + B + B̄ + P)kbαβ(ξ)ybei<k,x>zαz̄β

and we have

(A + B + B̄ + P)kbαβ , 0⇒
n∑

ŝ=1

kŝiŝ +
∑
d∈Z2

∗

(αd − βd)d = 0.

Now we state the basic KAM theorem which is attributed to Geng-Zhou [13], and as a corollary,
we get Theorem 1.1.

Theorem 5.1.( [13] Theorem 2) Assume that the Hamiltonian H = N + A + B + B̄ + P satisfies
(A1) − (A5). Let γ′ > 0 be sufficiently small, then there exists ε > 0 and a, s > 0 such that if
‖XP‖Da,s(s′,r),Π < ε, the following holds: there exists a Cantor subset Πγ′ ⊂ Π with
meas(Π \ Πγ′) = O(γ′ς) (ς is a positive constant) and two maps which are analytic in x and C4

W in ξ,

Ψ : Tn × Πγ′ → Da,s(s′, r), ω̃ : Πγ′ → R
n,

where Ψ is ε

(γ′)16 -close to the trivial embedding Ψ0 : Tn × Π → Tn × {0, 0, 0} and ω̃ is ε-close to the
unperturbed frequency ω̂, such that for any ξ ∈ Πγ′ and x ∈ Tn, the curve t → Ψ(x + ω̃(ξ)t, ξ) is a
quasi-periodic solution of the Hamiltonian equations governed by H = N +A + B + B̄ + P.

In order to apply the above theorem to our problem, we need to introduce a new parameter ω̄ below.
Given ω− ∈ R, for ω ∈ ¯̄R := {ω ∈ R | |ω − ω−| ≤ ε}, we introduce new parameter ω̄ by

ω = ω− + εω̄, ω̄ ∈ [0, 1]m. (5.1)

Then the Hamiltonian (4.8) is changed into

H =< ω̂(ξ), ŷ > + < Ω̂(ξ), ẑ > +A + B + B̄ + P (5.2)
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where ω̂(ξ) = (ε−4ω) ⊕ ω̆, ξ = ω̄ ⊕ ξ̃, ẑ = (|z j|
2) j∈Z2

∗
, x̂ = ϑ ⊕ θ, ŷ = J ⊕ I with

ω̆i = ε−4µi +
3

16π2

1
λ2

i

[G̃2,2
iiii ]ξ̃i +

3
8π2

∑
j∈S

1
λiλ j

[G̃2,2
ii j j]ξ̃ j, i ∈ S , (5.3)

Ω̂d = ε−4µd +
3

8π2

∑
j∈S

1
λ jλd

[G̃2,2
j jdd]ξ̃ j, d ∈ Z2

∗. (5.4)

Denote ω̆(ξ) = ε−4α̃ + Aξ̃, Ω̂(ξ) = ε−4β̃ + Bξ̃, where

α̃ = (. . . , µi, . . .)i∈S , β̃ = (. . . , µd, . . .)d∈Z2
∗
,

A = (G̃i j)i, j∈S , B = (G̃i j)i∈Z2
∗ , j∈S , (5.5)

with

G̃i j =
3 · (2 − δi j)
16π2λiλ j

[G̃2,2
ii j j], δi j =

{
1, i = j,
0, i , j.

(5.6)

Lemma 5.1. Let Π = [0, 1]m+n, for any ε > 0 sufficiently small, r =
√
ε, then we have

‖XP‖Da,s+1(s′,r)×Π ≤ Cε.

The proof of the above lemma is the same as one of Lemma 4.2.

6. Proof of main theorem

In this section, we prove that the Hamiltonian (5.2) satisfies the assumptions (A1) − (A5). In view
of (5.5),(5.6),(2.10) and (3.45),

lim
ε→0

A =
3[φ]
16π2



1
λ2

1

2
λ1λ2

· · ·
2

λ1λn
2

λ2λ1

1
λ2

2

· · ·
2

λ2λn

· · · · · · · · · · · ·

2
λnλ1

2
λnλ2

· · ·
1
λ2

n


n×n

:= Ã =: [φ]Â,

Verifying (A1) : From (5.3),

∂ω̂

∂ξ
=

 ε−3Im 0

ε−3 ·
∂α̃

∂ω
+ ε ·

∂(Aξ̃)
∂ω

A

 , for ξ ∈ Π,

where Im denotes the unit m × m-matrix. It is obvious that detÃ , 0. So detA , 0 can be obtained by
assuming 0 < ε � 1. Thus assumption (A1) is verified.

Verifying (A2) : Take ς = 4, ι = 4, the proof is obvious.
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Verifying (A3) : For (5.2), Bd is defined as follows,

Bd = Ω̂d d ∈ Z2
∗ \ (L1 ∪ L2),

and

Bd =


Ω̂d + ω̆i

3[G̃2,2
i jdl]

√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

3[G̃2,2
i jdl]

√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

Ω̂l + ω̆ j


, d ∈ L1

Bd =


Ω̂d − ω̆i

3[G̃2,2
dil j]

√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

3[G̃2,2
id jl]

√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

Ω̂l − ω̆ j


, d ∈ L2

where (i, j, l) is uniquely determined by d. In the following, we only prove (A3) for det[< k, ω̂(ξ) >
I ± Bd ⊗ I2 ± I2 ⊗ Bd′] which is the most complicated case. For k ∈ Zm+n, b ∈ Nm+n, denote

k = (k1, k2), b = (b1, b2), k1 ∈ Z
m, k2 ∈ Z

n, b1 ∈ N
m, b2 ∈ N

n.

Let

Z(ξ) = < k, ω̂(ξ) > I ± Bd ⊗ I2 ± I2 ⊗ Bd′

= (ε−4 < k1, ω > +ε−4 < k2, α̃ > + < k2, Aξ̃ >)I ± Bd ⊗ I2 ± I2 ⊗ Bd′ .

We need to prove that |Z(ξ)| ≥
γ′

|k|τ
, (k , 0). For this purpose, we need to divide into the following two

cases.
Case 1. When k1 , 0, notice that

∂
(
(ε−4 < k2, α̃ > + < k2, Aξ̃ >)I ± Bd ⊗ I2 ± I2 ⊗ Bd′

)
∂ω̄

= ε−3 · O(ε1+ρ),

and from
∂< k1, ε

−4ω >

∂ω̄
+ ε−3 · O(ε1+ρ) = ε−3(k1 + O(ε1+ρ)

)
, 0, 0 < ε � 1

then all the eigenvalues ofZ(ξ) are not identically zero.
Case 2. When k1 = 0, then

Z(ξ) = (ε−4 < k1, ω > +ε−4 < k2, α̃ > + < k2, Aξ̃ >)I ± Bd ⊗ I2 ± I2 ⊗ Bd′

= (ε−4 < k2, α̃ > + < k2, Aξ̃ >)I ± Bd ⊗ I2 ± I2 ⊗ Bd′ ,
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We assert that all the eigenvalues of Z(ξ) are not identically zero. Here we’re just proving it for
d, d′ ∈ L1, and everything else is similar. Let

Bd = ε−4B1
d + B2

d, ∀d ∈ L1

where

B1
d =

(
µd + µi 0

0 µl + µ j

)
,

B2
d =


−

3[G̃2,2
iiii ]ξ̃i

16π2λ2
i

+

3
∑
κ∈S

( [G̃2,2
κκii]

λiλκ
+

[G̃2,2
κκdd]
λκλd

)ξ̃κ

8π2

3[G̃2,2
i jdl]

√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

3[G̃2,2
i jdl]

√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

−

3[G̃2,2
j j j j]ξ̃ j

16π2λ2
j

+

3
∑
κ∈S

(
[G̃2,2

κκ j j]

λκλ j
+

[G̃2,2
κκll]

λκλl
)ξ̃κ

8π2


.

Then

Z(ξ) = ε−4(< k2, α̃ > I ± B1
d ⊗ I2 ± I2 ⊗ B1

d′) + (< k2, Aξ̃ > I ± B2
d ⊗ I2 ± I2 ⊗ B2

d′).

In view of |i|2 + |d|2 = | j|2 + |l|2 and (2.10),(3.45),

lim
ε→0

B1
d =

(
|i|2 + |d|2 0

0 |i|2 + |d|2

)
:= B̂1

d,

lim
ε→0

B2
d =


−

3[φ]ξ̃i

16π2λ2
i

+

3[φ]
∑
κ∈S

( 1
λκλi

+ 1
λκλd

)ξ̃κ

8π2

3[φ]
√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

3[φ]
√
ξ̃iξ̃ j

8π2
√
λiλ jλdλl

−
3[φ]ξ̃ j

16π2λ2
j

+

3[φ]
∑
κ∈S

( 1
λκλ j

+ 1
λκλl

)ξ̃κ

8π2


:= B̃2

d := [φ]B̂2
d,

Thus,

limε→0Z(ξ)
= ε−4(< k2, α̂ > I ± B̂1

d ⊗ I2 ± I2 ⊗ B̂1
d′) + [φ](< k2, Âξ̃ > I ± B̂2

d ⊗ I2 ± I2 ⊗ B̂2
d′)

= ε−4
(
< k2, α̂ > ±(|i|2 + |d|2) ± (|i′|2 + |d′|2)

)
I

+[φ] < Âk2 ± ( 1
λi

+ 1
λd

)β̂ ± ( 1
λ j

+ 1
λl

)β̂, ξ̃ > I

±


−3[φ]ξ̃i

16π2λ2
i

3[φ]
√
ξ̃iξ̃ j

8π2λiλ j

3[φ]
√
ξ̃iξ̃ j

8π2λiλ j
−

3[φ]ξ̃ j

16π2λ2
j

 ⊗ I2 ± I2 ⊗

 −
3[φ]ξ̃i′

16π2λ2
i′

3[φ]
√
ξ̃i′ ξ̃ j′

8π2λi′λ j′

3[φ]
√
ξ̃i′ ξ̃ j′

8π2λi′λ j′
−

3[φ]ξ̃ j′

16π2λ2
j′

 := Ẑ(ξ)
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with α̂ = (λi1 , λi2 , . . . , λin), β̂ = ( 3
8π2λi1

, 3
8π2λi2

, . . . , 3
8π2λin

) and ξ̃ = (ξ̃i1 , ξ̃i2 , . . . , ξ̃in). The eigenvalues of

Ẑ(ξ) are

ε−4(< k2, α̂ > ±(|i|2 + |d|2) ± (|i′|2 + |d′|2)) + [φ] < Âk2 ± ( 1
λi

+ 1
λd

)β̂ ± ( 1
λ j

+ 1
λl

)β̂, ξ̃ >

±
3[φ]
32π2

[(
−
ξ̃i

λ2
i

−
ξ̃ j

λ2
j

±

√√
ξ̃2

i

λ4
i

+ 14
ξ̃iξ̃ j

λ2
i λ

2
j

+
ξ̃2

j

λ4
j

)
±

(
−
ξ̃i′

λ2
i′
−
ξ̃ j′

λ2
j′
±

√√
ξ̃2

i′

λ4
i′

+ 14
ξ̃i′ ξ̃ j′

λ2
i′λ

2
j′

+
ξ̃2

j′

λ4
j′

)]
.

Similar to [10], we know that all the eigenvalues are not identically zero. Thus all the eigenvalues
of Z(ξ) are not identically zero as 0 < ε � 1. Moreover, they are similar to d ∈ L1, d′ ∈ L2 or
d ∈ L2, d′ ∈ L2, and omit them here.

Hence all eigenvalues of Z(ξ) are not identically zero for k , 0. According to Lemma 3.1 in [10],
det(Z(ξ)) is polynomial function in ξ of order at most four. Thus∣∣∣∂4

ξ(det(Z(ξ)))
∣∣∣ ≥ 1

2
|k| , 0.

By excluding some parameter set with measure O( 4
√
γ′), we get

|det(Z(ξ))| ≥
γ′

|k|τ
, k , 0.

(A3) is verified.
Verifying (A4) : Assumption (A4) can be verified easily fulfilled by Lemma 5.1.
Verifying (A5) : The proof is similar to [27].
By applying Theorem 5.1( [13] Theorem 2), we get Theorem 1.1.

7. Appendix

Proof of Lemma 4.1. Case 1. Similar to Lemma 3.1 in [27], there exists a set R3,1 so that ∀ω ∈ [%, 2%]m\

R3,1, Lemma 4.1(i) is true, and measR3,1 ≤
γ

9%
m. We omit the proof.

Case 2. Assume i + j + d + l = 0, |i|2 + | j|2 + |d|2 + |l|2 , 0 and #(S ∩ {i, j, d, l}) ≥ 2. First of all, we
have

∣∣∣|i|2 + | j|2 + |d|2 + |l|2
∣∣∣ ≥ 1. Denote f (ε) = µi + µ j + µd + µl, then by µ j = λ j + ε

2λ j
[φ] + 1

λ j
ε(1+ρ)µ∗j

we have

f (ε) = |i|2 + | j|2 + |d|2 + |l|2 + ε[φ](
1

2λi
+

1
2λ j

+
1

2λd
+

1
2λl

) + ε(1+ρ)(
µ∗i
λi

+
µ∗j

λ j
+
µ∗d
λd

+
µ∗l
λl

).

Case 1.1. For k = 0, then

| f (ε)+ < k, ω > | = | f (ε)| ≥ 1 −Cε ≥
%

C∗
when ε small enough and C∗ large enough.

Case 1.2. For k , 0, denote

I
3,2
i jdl,k =

{
ω ∈ [%, 2%]m : | f (ε)+ < k, ω > | <

%

C∗|k|m+1

}
,
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and
R3,2 =

⋃
0,k∈Zm

⋃
i, j,d,l

I
3,2
i jdl,k.

Case 1.2.1. When #(S ∩ {i, j, d, l}) = 4. Denote

I
3,2,1
i jdl,k =

{
ω ∈ [%, 2%]m : | f (ε)+ < k, ω > | <

%

C∗|k|m

}
,

R3,2,1 =
⋃

0,k∈Zm

⋃
i∈S , j∈S ,d∈S ,l∈S

I
3,2,1
i jdl,k,

we have

measI3,2,1
i jdl,k ≤

2%m

C∗|k|m+1 .

Let
|k|∞ = max{|k1|, |k2|, . . . , |km|},

in view of ∑
|k|∞=p

1 ≤ 2m(2p + 1)m−1,

|k|∞ ≤ |k| ≤ m|k|∞,

we have

measR3,2,1 = meas
⋃

0,k∈Zm

⋃
i∈S , j∈S ,d∈S ,l∈S

I
3,2,1
i jdl,k ≤

∑
0,k∈Zm

n4 2%m

C∗|k|m+1

≤
C′′1
C∗
%m

∑
0,k∈Zm

1
|k|m+1 ≤

C′1
C∗
%m

∞∑
p=1

(2p + 1)m−1 p−(m+1) ≤
C1

C∗
%m

where the constant C1 depends on n,m. Thus

measR3,2,1 ≤
γ

27
%m

provided C∗ large enough.
Case 1.2.2. When #(S ∩ {i, j, d, l}) = 3. Assume i, j, d ∈ S , l ∈ Z2

∗ without loss of generality. Then
l = −i − j − d is at most n3 different values. Denote

I
3,2,2
i jdl,k =

{
ω ∈ [%, 2%]m : | f (ε)+ < k, ω > | <

%

C∗|k|m

}
,

R3,2,2 =
⋃

0,k∈Zm

⋃
i∈S , j∈S ,d∈S ,l=−i− j−d

I
3,2,2
i jdl,k,

then

measI3,2,2
i jdl,k ≤

2%m

C∗|k|m+1 .
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We obtain

measR3,2,2 = meas
⋃

0,k∈Zm

⋃
i∈S , j∈S ,d∈S ,l=−i− j−d

I
3,2,2
i jdl,k ≤

∑
0,k∈Zm

n6 2%m

C∗|k|m+1 ≤
C2

C∗
%m

where the constant C2 depends on n,m. Thus

measR3,2,2 ≤
γ

27
%m

provided C∗ large enough.
Case 1.2.3. When #(S ∩ {i, j, d, l}) = 2. Assume i, j ∈ S , d, l ∈ Z2

∗ without loss of generality. Then
we have l = −i − j − d and

f (ε) = |i|2 + | j|2 + |d|2 + |i + j + d|2

+ε[φ]( 1
2λi

+ 1
2λ j

+ 1
2λd

+ 1
2λl

) + ε(1+ρ)(µ
∗
i
λi

+
µ∗j
λ j

+
µ∗d
λd

+
µ∗l
λl

)

= g + ε[φ]( 1
2λi

+ 1
2λ j

+ 1
2λd

+ 1
2λl

) + ε(1+ρ)(µ
∗
i
λi

+
µ∗j
λ j

+
µ∗d
λd

+
µ∗l
λl

)

where g = |i|2 + | j|2 + |d|2 + |i + j + d|2 ∈ Z+. Denote

I
3,2,3
i jdl,k =

{
ω ∈ [%, 2%]m : | f (ε)+ < k, ω > | <

%

C∗|k|m+1

}
,

R3,2,3 =
⋃

0,k∈Zm

⋃
i∈S , j∈S ,d∈Z2

∗ ,l=−i− j−d

I
3,2,3
i jdl,k.

For given i, j, g, denote

d∗i jg =
{
d ∈ Z2

∗ : g = |i|2 + | j|2 + |d|2 + |i + j + d|2
}

µ∗i jg,1 = sup
d∈d∗i jg

{
µ∗d
λd

+
µ∗
−i− j−d

λ−i− j−d

}
, µ∗i jg,2 = inf

d∈d∗i jg

{
µ∗d
λd

+
µ∗
−i− j−d

λ−i− j−d

}
g∗ = g + ε[φ](

1
2λi

+
1

2λ j
+

1
2λd

+
1

2λl
)

I
3,2,3,1
i jg,k =

{
ω ∈ [%, 2%]m : | < k, ω > +g∗ + ε(1+ρ)(

µ∗i
λi

+
µ∗j

λ j
+ µ∗i jg,1)| <

%

C∗|k|m+1

}
,

I
3,2,3,2
i jg,k =

{
ω ∈ [%, 2%]m : | < k, ω > +g∗ + ε(1+ρ)(

µ∗i
λi

+
µ∗j

λ j
+ µ∗i jg,2)| <

%

C∗|k|m+1

}
,

then for l = −i − j − d, d ∈ d∗i jg, from ε(1+ρ)(µ
∗
d
λd

+
µ∗
−i− j−d

λ−i− j−d
) is sufficiently small,

I
3,2,3
i jdl,k ⊂ I

3,2,3,1
i jg,k

⋃
I

3,2,3,2
i jg,k .

Thus ⋃
l=−i− j−d

⋃
d∈d∗i jg

I
3,2,3
i jdl,k ⊂ (I3,2,3,1

i jg,k

⋃
I

3,2,3,2
i jg,k ).
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We get

measI3,2,3,1
i jg,k ≤

2%m

C∗|k|m+2 , measI3,2,3,2
i jg,k ≤

2%m

C∗|k|m+2 .

When |g| > |k|% + 4, the sets I3,2,3,1
i jg,k ,I3,2,3,2

i jg,k are empty. So let

R3,2,3 =
⋃

0,k∈Zm

⋃
i∈S , j∈S

⋃
d∈Z2

∗

⋃
l=−i− j−d

I
3,2,3
i jdl,k ⊂

⋃
0,k∈Zm

⋃
i∈S , j∈S

⋃
g∈Z

(I3,2,3,1
i jg,k

⋃
I

3,2,3,2
i jg,k ),

then

measR3,2,3 ≤ meas
⋃

0,k∈Zm

⋃
i∈S , j∈S

⋃
g∈Z

(I3,2,3,1
i jg,k

⋃
I

3,2,3,2
i jg,k )

= meas
⋃

0,k∈Zm

⋃
i∈S , j∈S

⋃
1≤|g|≤|k|%+4

(I2,3,1
i jg,k

⋃
I

2,3,2
i jg,k )

≤
∑

0,k∈Zm

4n2(|k|% + 4)
2%m

C∗|k|m+2 ≤
C3

C∗
%m,

where the constant C3 depends on n,m. Thus

measR3,2,3 ≤
γ

27
%m

provided C∗ large enough. Denote

R3,2 = R3,2,1 ∪ R3,2,2 ∪ R3,2,3,

then we have measR3,2 ≤
γ

9%
m.

Case 3. Similar to Case 2, there exists a set R3,3 so that ∀ω ∈ [%, 2%]m\R3,3, Lemma 4.1(iii) is true,
and measR3,3 ≤

γ

9%
m. We omit the proof.

Denote
R = [%, 2%]m \

(
R3,1 ∪ R3,2 ∪ R3,3

)
,

then it satisfies as required and
measR ≥ (1 −

γ

3
)%m.

�

Symbol description

N is the set of natural Numbers, Z is the set of integers, Zn is an n-dimensional integer space, R is
the set of real Numbers, Rn is an n-dimensional Euclidean space, Tn is an n-dimensional torus.
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