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1. Introduction

In reliability theory, to model the lifetime data with different hazard shapes, it is desirable to
introduce flexible families of distributions, and to this end, there are two methods have been commonly
used to characterise lifetime distribution with considerable flexibility. One method is to adopt the well-
known families of distributions, for example, Gamma, Weibull and Log-normal, which have been
studied quite extensively in the literature, for more discussions on this topic, we refer readers to [1–3].
Marshall and Olkin [4] developed a new method to introduce one parameter to a base distribution
results in a new family of distribution with more flexibility. For example, for a baseline distribution
function F with support R+ = (0,∞) and corresponding survival function F̄, the new distribution
functions can be defined as

G(x;α) =
F(x)

1 − ᾱF̄(x)
, x, α ∈ R+, ᾱ = 1 − α, (1.1)

H(x;α) =
αF(x)

1 − ᾱF(x)
, x, α ∈ R+, ᾱ = 1 − α. (1.2)
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Marshall and Olkin [4] originally proposed the family of distributions in (1.1) and studied it for the
case when F is a Weibull distribution. When F has probability density and hazard rate functions as f
and hF , respectively, then the hazard rate function of G is given by

hF(x;α) =
1

1 − ᾱF̄(x)
hF(x), x, α ∈ R+, ᾱ = 1 − α,

Therefore, one can observe that if hF(x) is decreasing (increasing) in x, then for 0 < α ≤ 1(α ≥ 1),
hF(x;α) is also decreasing in x. Moreover, one can observe that hF(x) ≤ hF(x;α) for 0 < α ≤ 1, and
hF(x;α) ≤ hF(x) for α ≥ 1. For this reason, the parameter α in (1.1) is referred to as a tilt parameter
(see [5]). Note that (1.1) is equivalent to (1.2) if α in (1.1) is changed to 1/α. The proportional hazard
rates (PHR) and the proportional reversed hazard rates (PRHR) models have important applications in
reliability and survival analysis. The random variables X1, · · · , Xn are said to follow: (i) PHR model if
Xi has the survival function F̄Xi(x) = F̄λi(x), i = 1, · · · , n, where F̄ is the baseline survival function and
(λ1, · · · , λn) is the frailty vector; (ii) PRHR model if Xi has the distribution function FXi(x) = Fβi(x),
i = 1, · · · , n, where F is the baseline distribution and (β1, · · · , βn) is the resilience vector. It is well-
known that the Exponential, Weibull, Lomax and Pareto distributions are special cases of the PHR
model, and Fréchet distribution is a special case of the PRHR model. Balakrishnan et al. [6] introduced
two new statistical models by adding a parameter to PHR and PRHR models, which are regarded as
the baseline distributions in G(x;α) and H(x;α), respectively. The two new models are referred to
as the modified proportional hazard rates (MPHR) and modified proportional reversed hazard rates
(MPRHR) models, respectively. These are given by

G(x;α, λ) =
1 − (F̄(x))λ

1 − ᾱ(F̄(x))λ
, x, α ∈ R+, ᾱ = 1 − α, (1.3)

H(x;α, β) =
α(F(x))β

1 − ᾱ(F(x))β
, x, α ∈ R+, ᾱ = 1 − α, (1.4)

where λ and β are the proportional hazard rate and proportional reversed hazard rate parameters,
respectively. We denote X ∼ MPHR(α, λ; F̄) and X ∼ MPRHR(α, β; F) if X has the distribution
functions G(x;α, λ) and H(x;α, β), respectively. For the case λ = β = 1, (1.3) and (1.4) simply reduce
to (1.1) and (1.2), respectively. For the case α = 1, (1.3) and (1.4) simply reduce to the PHR and
PRHR models, respectively. According to the Theorem 2.1 of Navarro et al. [14], (1.3) and (1.4) can
be rewritten the distorted distribution of h1 and h2, respectively, where

h1(u;α, λ) =
1 − (u)λ

1 − ᾱ(u)λ
, h2(u;α, β) =

α(1 − u)β

1 − ᾱ(1 − u)β
, u = F̄(x), x, α ∈ R+, ᾱ = 1 − α, (1.5)

if λ = β = 1, (1.5) just as the distorted distributions of (1.1) and (1.2), respectively. For some special
models, please refer to multiple-outlier models ( [7], [8]), extended exponential and extend Weibull
distribution ( [4], [9]), extended Pareto distribution ( [10]) and extended Lomax distribution ( [11]).

Order statistics play an important role in reliability theory, auction theory, operations research,
and many applied probability areas. Xk:n denotes the kth smallest of random variables X1, . . . , Xn,

k = 1, . . . , n. In reliability theory, Xk:n characterizes the lifetime of a (n − k + 1)-out-of-n system,
which works if at least n − k + 1 of all the n components function normally. Specifically, X1:n

and Xn:n denote the lifetimes of series and parallel systems, respectively. In auction theory, X1:n
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and Xn:n represent the final price of the first-price procurement auction and the first-price sealed-bid
auction (see [12]), respectively. In the past decades, researchers devoted themselves to stochastic
comparisons of order statistics from heterogeneous independent or dependent samples. For example.
Belzunce et al. [13] established some results and applications concerning the likelihood ratio order of
random vectors of order statistics in the case of independent but not necessarily identically distributed
observations and for the case of possible dependent observations. Navarro et al. [14] obtained
ordering properties for coherent systems with possibly dependent identically distributed components.
Balakrishnan and Zhao [15] studied the stochastic comparison of order statistics from independent and
heterogeneous proportional hazard rates models, gamma variables, geometric variables, and negative
binomial variables in the stochastic orders and majorization orders. For more discussions related to
order statistics, one may refer to [16–20]. Besides, many authors have studied stochastic comparisons
of order statistics from heterogeneous samples following some families of lifetime distributions.
For example, Fang et al. [21] conducted stochastic comparisons on sample extremes of dependent
and heterogeneous observations from PHR and PRHR models. Balakrishnan et al. [6] introduced
MPHR and MPRHR model, and established some stochastic comparisons between the corresponding
order statistics with independent samples. Li and Li [22] developed sufficient conditions for the
(reversed) hazard rate order on maximums (minimums) of samples following PRHR (PHR) model
under Archimedean copula. Das and Kayal [23] introduced a scale parameter into the MPHR and
MPRHR models lead to new models, which are called as modified proportional hazard rate scale
(MPHRS) and modified proportional reversed hazard rate scale (MPRHRS) models, respectively, and
obtained some stochastic comparison results on independent samples in term of the usual stochastic,
(reversed) hazard rate orders. Barmalzan et al. [24] discussed the hazard rate order and reversed
hazard rate order of series and parallel systems with dependent components following either MPHR
or MPRHR models under Archimedean copula. Motivated by the work of Balakrishnan et al. [6],
this paper devotes to studying stochastic comparisons of sample extremes arising from heterogeneous
and dependent MPHR and MPRHR models, and we derive the usual stochastic, (reversed) hazard rate
orders of extremes with the heterogeneity considered in the model parameters.

The remaining part of the paper is organized as follows: Section 2 recalls some basic concepts
and notations that will be used in the sequel. Section 3 deals with stochastic comparisons between
minimums of MPRHR (MPHR) sample with Archimedean (survival) copula, respectively. Section 4
presents the corresponding results on maximums of the sample. Section 5 summarizes our research
findings and future directions.

2. Preliminaries

In this section, let us first review some basic concepts that will be used in the sequel. Let X and
Y be two random variables with distribution functions F(x) and G(x), survival functions F̄(x) = 1 −
F(x) and Ḡ(x) = 1 − G(x), probability density functions f (x) and g(x), the hazard rate functions
hX(x) = f (x)/F̄(x) and hY(x) = g(x)/Ḡ(x), and reversed hazard rate functions rX(x) = f (x)/F(x) and
rY(x) = g(x)/G(x), respectively.

Definition 1. X is said to be smaller than Y in the sense of
(i) the usual stochastic order (denoted by X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x ∈ R+;
(ii) the hazard rate order (denoted by X ≤hr Y) if hX(x) ≥ hY(x) for all x ∈ R+ or equivalently, if
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Ḡ(x)/F̄(x) is increasing in x ∈ R+;
(iii) the reversed hazard rate order (denoted by X ≤rh Y) if rX(x) ≤ rY(x) for all x ∈ R+ or

equivalently, if G(x)/F(x) is increasing in x ∈ R+.

It is well known that the hazard rate and reversed hazard rate orders imply the usual stochastic
order, but the converse is not true. For a comprehensive discussion on various stochastic orders and
their applications, one may refer to Shaked and Shanthikumar [25] and Li and Li [26].

Next, we introduce the notion of the weak majorization order. For two real vectors x = (x1, ..., xn)
and y = (y1, ..., yn) ∈ Rn, x(1) ≤ x(2) ≤ · · · ≤ x(n) and y(1) ≤ y(2) ≤ · · · ≤ y(n) denote the increasing
arrangement of the components of x and y, respectively. Denote In = {1, . . . , n}.

Definition 2. The vector x is said to be weakly supermajorized by the vector y (write as x
w
� y ) if∑ j

i=1 x(i) ≥
∑ j

i=1 y(i), for all j ∈ In.

Now, let us review the concept of Archimedean Copulas.

Definition 3. For a decreasing and continuous function ψ : [0,+∞] 7→ [0, 1] such that ψ(0) = 1 and
ψ(+∞) = 0, let φ = ψ−1 be the pseudo-inverse. Then

Cψ(u1, ..., un) = ψ(φ(u1) + ... + φ(un)), ui ∈ [0, 1], i ∈ In,

is said to be an Archimedean copula with generator ψ if (−1)kψk(x) ≥ 0 for k = 0, . . . , n − 2 and
(−1)n−2ψn−2(x) is decreasing and convex.

For detailed discussions on copulas and its applications, one may refer to Nelsen [27].
The following lemmas are useful to establish the main results.

Lemma 1. ( [28]) Let I ⊆ R be an open interval, a continuously differentiable h : In → R is Schur-
convex(Schur-concave) if and only if h is symmetric on In and for all i , j

(xi − x j)
(
∂h(x)
∂xi

−
∂h(x)
∂x j

)
≥ (≤)0.

Lemma 2. ( [29]) For a real function h on A ⊆ Rn, x
w
� y implies h(x) ≤ h(y) if and only if h is

decreasing and Schur-convex onA.

h(x) is Schur-concave onA if and only if −h(x) is Schur-convex. For more details on majorization
and Schur-convexity (concavity), please refer to [29].

Lemma 3. For two n-dimensional Archimedean copulas Cψ1 and Cψ2 , if φ2 ◦ψ1 is super-additive, then
Cψ1(u) ≤ Cψ2(u) for all u ∈ [0, 1]n.

Throughout this paper, all concerned random variables are assumed to be absolutely continuous and
nonnegative, and the terms increasing and decreasing stand for non-decreasing and non-increasing,
respectively. Denote ei = (0, . . . , 0, 1,︸      ︷︷      ︸

i

0, . . . , 0︸  ︷︷  ︸
n−i

) for i ∈ In, and “
sgn
= ” means equality of sign.
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3. Minimum of sample

In this section, we carry out stochastic comparison of smallest order statistics from dependent and
heterogeneous MPHR and MPRHR samples, and the heterogeneity has been considered in the model
parameters.

3.1. On samples of MPHR

In this subsection, we deal with the case of MPHR samples in the sense of the usual stochastic and
hazard rate orders. Let X = (X1, . . . , Xn) be the random vector, we denote X ∼ MPHR(α; λ; F̄;ψ) the
sample follows MPHR model, where F̄ is the baseline survival function, ψ is generator of the associated
Archimedean survival copula, and α = (α1, . . . , αn) and λ = (λ1, . . . , λn) are the tilt parameter vector
and modified proportional hazard rate vector, respectively.

Next, we establish sufficient conditions for the usual stochastic order, whenever the modified
proportional hazard rate parameters may be different with the tilt parameters being equal.

Theorem 1. For X ∼ MPHR(α; λ; F̄;ψ1) and Y ∼ MPHR(α;µ; F̄;ψ2), where 0 < α ≤ 1. If ψ1 or ψ2

is log-concave, and φ2 ◦ ψ1 is super-additive, then λ
w
� µ implies

X1:n ≤st Y1:n.

Proof. The survival function of X1:n can be expressed as

F̄X1:n(x) = ψ1

 n∑
i=1

φ1

(
α(F̄(x))λi

1 − ᾱ(F̄(x))λi

) = J1(α, λ, ψ1, F̄(x)), x ≥ 0.

Assume that ψ1 is log-concave. In order to obtain the required result, according to Lemma 2, it is
sufficient to show that J1(α, λ, ψ1, F̄(x)) is decreasing in λi and Schur-convex in λ for given x ≥ 0 and
0 < α ≤ 1. Taking the partial derivative of J1(α, λ, ψ1, F̄(x)) with respect to λi, i ∈ In, we have

∂J1(α, λ, ψ1, F̄(x))
∂λi

= ψ′1

 n∑
i=1

φ1

(
α(F̄(x))λi

1 − ᾱ(F̄(x))λi

) ln F̄(x) α(F̄(x))λi

1−ᾱ(F̄(x))λi

ψ′
(
φ1

(
α(F̄(x))λi

1−ᾱ(F̄(x))λi

))
(1 − ᾱ(F̄(x))λi)

≤ 0.

That is, J1(α, λ, ψ1, F̄(x)) is decreasing in λi. Furthermore, for i , j, we have

(λi − λ j)
(
∂J1(α, λ, ψ1, F̄(x))

∂λi
−
∂J1(α, λ, ψ1, F̄(x))

∂λ j

)
= ψ′1

 n∑
i=1

φ1

(
α(F̄(x))λi

1 − ᾱ(F̄(x))λi

) ln F̄(x)(λi − λ j)
(
h1(λi) − h1(λ j)

)
,

where

h1(λ) =

α(F̄(x))λ

1−ᾱ(F̄(x))λ

ψ′1

(
φ1

(
α(F̄(x))λ

1−ᾱ(F̄(x))λ

))
(1 − ᾱ(F̄(x))λ)

.
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Since the log-concavity of ψ1 implies the increasing property of ψ1/ψ
′
1, and consider that

φ1(α(F̄(x))λ/(1 − ᾱ(F̄(x))λ)) is increasing in λ, then we have
α(F̄(x))λ

1−ᾱ(F̄(x))λ

ψ′1

(
φ1

(
α(F̄(x))λ

1−ᾱ(F̄(x))λ

)) =
ψ1

(
φ1

(
α(F̄(x))λ

1−ᾱ(F̄(x))λ

))
ψ′1

(
φ1

(
α(F̄(x))λ

1−ᾱ(F̄(x))λ

)) ≤ 0.

On the other hand, 1/(1 − ᾱ(F̄(x))λ) is nonnegative and decreasing in λ. Consequently, h1(λ) is
increasing in λ, which in turn implies that

(λi − λ j)
(
∂J1(α, λ, ψ1, F̄(x))

∂λi
−
∂J1(α, λ, ψ1, F̄(x))

∂λ j

)
≥ 0.

Thus, Schur-convexity of J1(α, λ, ψ1, F̄(x)) follows from Lemma 1. Due to Lemma 2, λ
w
� µ implies

J1(α, λ, ψ1, F̄(x)) ≤ J1(α,µ, ψ1, F̄(x)), and note that φ2 ◦ ψ1 is super-additive, by Lemma 3, we have
J1(α,µ, ψ1, F̄(x)) ≤ J1(α,µ, ψ2, F̄(x)). Hence, it holds that

J1(α, λ, ψ1, F̄(x)) ≤ J1(α,µ, ψ1, F̄(x)) ≤ J1(α,µ, ψ2, F̄(x)).

As a consequence, we conclude that X1:n ≤st Y1:n. For the case of ψ2 is log-concave, the proof can be
obtained in a similar way. Then we complete the proof. �

Remark 1. When α = 1, MPHR model reduces to PHR model, which just the result established in
Theorem 4.1 (ii) of [21].

The next example illustrates the result of Theorem 1.

Example 1. Consider the case of n = 3. Let F̄(x) = e−(ax)b
, a > 0, 0 < b ≤ 1, and generators

ψ1(x) = e
1−ex
θ1 , 0 < θ1 ≤ 1, ψ2(x) = (θ2x+1)−1/θ2 , θ2 > 0. Set α = 0.4, a = 1.2, b = 0.5, θ1 = 0.1, θ2 = 1.2,

λ = (0.4, 0.5, 0.6)
w
� (0.3, 0.4, 0.5) = µ. One can check chat ψ1(x) is log-concave. It can be seen that

[φ2 ◦ψ1(x)]′′ = ex(e 1
θ1
− ex
θ1
)−θ2(θ1 + exθ2

)
θ1
−2 ≥ 0, that is, φ2 ◦ψ1(x) is convex function in x, which implies

that φ2◦ψ1 is super-additive. To plot the whole of survival curves of X1:3 and Y1:3 on [0,∞), we perform
the transformation (x + 1)−1 : [0,∞) 7−→ [0, 1]. Then it is obvious that X1:3 ≤st Y1:3 is equivalent to
(Y1:3 + 1)−1 ≤st (X1:3 + 1)−1. As is seen in Figure 1, the distribution curve of (X1:3 + 1)−1 is always
beneath that of (Y1:3 + 1)−1, that is, X1:3 ≤st Y1:3, which coincides with the result of Theorem 1.

F(X1:3+1)
-1 (x)

G(Y1:3+1)
-1 (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 1. Plots of distribution functions F(X1:3+1)−1(x) and G(Y1:3+1)−1(x).
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The following counterexample shows that the condition ψ1(x) or ψ2(x) is log-concave given in the
above Theorem 1 can’t be dropped.

Counterexample 1. Under the setup of Example 1, let generators ψ1(x) = (θ1x + 1)−1/θ1 , ψ2(x) =

(θ2x + 1)−1/θ2 , θi > 0, i = 1, 2. Note that [logψi(x)]′′ = θi(1 + θix)−2 ≥ 0 for x ≥ 0, thus, ψi(x) is
log-convex. Take θ1 = 10, θ2 = 1.2. As is seen in Figure 2, the survival function F̄X1:3(x) is not always
beneath that of ḠY1:3(x), that is, neither X1:3 ≤st Y1:3 nor X1:3 ≥st Y1:3.

FX1:3 (x)

GY1:3 (x)

0 2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

x

Figure 2. Plots of the survival functions F̄X1:3(x) and ḠY1:3(x).

The following theorem presents the usual stochastic order on sample minimum, here, we assume
that the two samples have common modified proportional hazard rates parameters.

Theorem 2. For X ∼ MPHR(α; λ; F̄;ψ1) and Y ∼ MPHR(β; λ; F̄;ψ2). If φ1 ◦ ψ2 is super-additive,
then α

w
� β implies

X1:n ≥st Y1:n.

Proof. The survival function of X1:n can be written as

F̄X1:n(x) = ψ1

 n∑
i=1

φ1

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) = J2(α, λ, ψ1, F̄(x)), x ≥ 0.

To obtain the required result, it suffices to show that the J2(α, λ, ψ1, F̄(x)) is increasing in αi and Schur-
concave in α, i ∈ In. Differentiating J2(α, λ, ψ1, F̄(x)) with respect to αi, we obtain

∂J2(α, λ, ψ1, F̄(x))
∂αi

= ψ′1

 n∑
i=1

φ1

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) (F̄(x))λ(1 − (F̄(x))λ)

ψ′1

(
φ1

(
αi(F̄(x))λ

1−ᾱi(F̄(x))λ

))
(1 − ᾱi(F̄(x))λ)2

≥ 0.

That is, J2(α, λ, ψ1, F̄(x)) is increasing in αi. Furthermore, for i , j, we have

(αi − α j)
(
∂J2(α, λ, ψ1, F̄(x))

∂αi
−
∂J2(α, λ, ψ1, F̄(x))

∂α j

)
AIMS Mathematics Volume 6, Issue 1, 584–606.
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= ψ′1

 n∑
i=1

φ1

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) (F̄(x))λ(1 − (F̄(x))λ)(αi − α j)
( 1
h2(αi)

−
1

h2(α j)

)
,

where

h2(α) = (1 − ᾱ(F̄(x))λ)2ψ′1

(
φ1

(
α(F̄(x))λ

1 − ᾱ(F̄(x))λ

))
.

By the decreasing and convexity of ψ1, it holds that

∂h2(α)
∂α

= 2(F̄(x))λ(1 − ᾱ(F̄(x))λ)ψ′1

(
φ1

(
α(F̄(x))λ

1 − ᾱ(F̄(x))λ

))

+(F̄(x))λ(1 − (F̄(x))λ)
ψ′′1

(
φ1

(
α(F̄(x))λ

1−ᾱ(F̄(x))λ

))
ψ′1

(
φ1

(
α(F̄(x))λ

1−ᾱ(F̄(x))λ

)) ≤ 0.

Hence, h2(α) is negative and decreasing in α, or equivalently, 1/h2(α) is negative and increasing in α.
Then, for i , j,

(αi − α j)
(
∂J2(α, λ, ψ1, F̄(x))

∂αi
−
∂J2(α, λ, ψ1, F̄(x))

∂α j

)
≤ 0.

It follows from Lemma 1 that J2(α, λ, ψ1, F̄(x)) is Schur-concave, which is equivalent to
−J2(α, λ, ψ1, F̄(x)) is Schur-convex. According to Lemma 2, α

w
� β implies −J2(α, λ, ψ1, F̄(x)) ≤

−J2(β, λ, ψ1, F̄(x)), and note that φ1 ◦ψ2 is super-additive, it holds by Lemma 3 that J2(β, λ, ψ1, F̄(x)) ≥
J2(β, λ, ψ2, F̄(x)). Hence,

J2(α, λ, ψ1, F̄(x)) ≥ J2(β, λ, ψ1, F̄(x)) ≥ J2(β, λ, ψ2, F̄(x)).

That is, X1:n ≥st Y1:n. The desired result then follows. �

The following example demonstrates the theoretical result of Theorem 2.

Example 2. Let F̄(x) = e−(ax)b
, a > 0, 0 < b ≤ 1, and generators ψ1(x) = (θx + 1)−1/θ, θ > 0,

ψ2(x) = e−x. Take n = 3, λ = 0.4, a = 0.5, b = 0.8, θ = 0.7 and α = (0.3, 0.5, 0.7)
w
� (0.2, 0.4, 0.5) = β.

It is easy to check that the conditions of Theorem 2 are all satisfied. The distribution functions of
(X1:3 + 1)−1 and (Y1:3 + 1)−1 are displayed in Figure 3, which confirms X1:3 ≥st Y1:3.
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Figure 3. Plots of distribution functions F(X1:3+1)−1(x) and G(Y1:3+1)−1(x).
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The next theorem gives sufficient conditions guaranteeing the hazard rate order between two
modified proportional hazard rates models with the same modified proportional hazard rates parameters
and the heterogeneous tilt parameters.

Theorem 3. For X ∼ MPHR(α; λ; F̄;ψ) and Y ∼ MPHR(β; λ; F̄;ψ) with log-concave ψ, and −ψ′/ψ
is log-convex. If α

w
� β, then

X1:n ≥hr Y1:n.

Proof. For convenience, let us give the following facts for any x ≥ 0.
%1: ψ(x) ≥ 0 and ψ′(x) ≤ 0.
%2: The log-concave ψ implies the decreasing ψ′/ψ and hence ψ′′(x)ψ(x) ≤ [ψ′(x)]2.
%3: The log-convex −ψ′/ψ implies that {ψ′′(x)ψ(x) − [ψ′(x)]2}/ψ(x)ψ′(x) ≥ 0 increases in x ≥ 0.

Denote h(x) the hazard rate function corresponding to the baseline survival function F̄(x). The
survival function of X1:n can be written as

F̄X1:n(x) = ψ

 n∑
i=1

φ

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) , x ≥ 0,

and the hazard rate function of X1:n is

hX1:n(x) =
ψ′

(∑n
i=1 φ

(
αi(F̄(x))λ

1−ᾱi(F̄(x))λ

))
ψ

(∑n
i=1 φ

(
αi(F̄(x))λ

1−ᾱi(F̄(x))λ

)) n∑
i=1

λh(x)
1 − ᾱi(F̄(x))λ

ψ
(
φ
(

αi(F̄(x))λ

1−ᾱi(F̄(x))λ

))
ψ′

(
φ
(

αi(F̄(x))λ

1−ᾱi(F̄(x))λ

)) = L1(x,α, λ, ψ).

Likewise, Y1:n gets the hazard rate function hY1:n(x) = L1(x,β, λ, ψ) for x ≥ 0. Further denote

A1(α(s,t), x) =
∑
i,s,t

λh(x)
1 − ᾱi(F̄(x))λ

B1(αiei, x), B1(α, x) =
ψ

(∑n
i=1 φ

(
αi(F̄(x))λ

1−ᾱi(F̄(x))λ

))
ψ′

(∑n
i=1 φ

(
αi(F̄(x))λ

1−ᾱi(F̄(x))λ

)) ,
Jψ(x) =

ψ′′(x)ψ(x) − (ψ′(x))2

(ψ(x))2 , C1(α, x) = Jψ

 n∑
i=1

φ

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) B1(α, x).

Then, for any s, t ∈ In with s , t and all ui∈[0, 1] (i ∈ In), we have

∂L1(x,α, λ, ψ)
∂αs

=
(F̄(x))λ(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) n∑
i=1

λh(x)
1 − ᾱi(F̄(x))λ

B1(αiei, x)Jψ

 n∑
i=1

φ

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

)
−

B1(αses, x)
B1(α, x)

λh(x)(F̄(x))λ

(1 − ᾱs(F̄(x))λ)2

−
B2

1(αses, x)
B1(α, x)

λh(x)

(1 − ᾱs(F̄(x))λ)ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) (F̄(x))λ(1 − (F̄(x))λ)
(1 − ᾱs(F̄(x))λ)2

Jψ

(
φ

(
αs(F̄(x))λ

1 − ᾱs(F̄(x))λ

))

=

[
(F̄(x))λ(1 − (F̄(x))λ)A1(α(s,t), x)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) +
(F̄(x))λ(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ( αs(F̄(x))λ

1−ᾱs(F̄(x))λ )
) λh(x)B1(αses, x)

1 − ᾱs(F̄(x))λ
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+
(F̄(x))λ(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) λh(x)
1 − ᾱt(F̄(x))λ

B1(αtet, x)
]
· Jψ

 n∑
i=1

φ

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

)
−

B1(αses, x)
B1(α, x)

λh(x)(F̄(x))λ

(1 − ᾱs(F̄(x))λ)2
−

B1(αses, x)C1(αses, x)

B1(α, x)ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) λh(x)
1 − ᾱs(F̄(x))λ

(F̄(x))λ(1 − (F̄(x))λ)
(1 − ᾱs(F̄(x))λ)2

.

By %3, it holds that C1(α, x) ≥ C1(αses, x), and in combination %1 with %2, we have

∂L1(x,α, λ, ψ)
∂αs

=

[
(F̄(x))λ(1 − (F̄(x))λ)A1(α(s,t), x)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) +
(F̄(x))λ(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) λh(x)B1(αtet, x)
1 − ᾱt(F̄(x))λ

]

·Jψ

 n∑
i=1

φ

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) − B1(αses, x)
B1(α, x)

λh(x)(F̄(x))λ

(1 − ᾱs(F̄(x))λ)2

+
(F̄(x))λ(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) λh(x)
1 − ᾱs(F̄(x))λ

B1(αses, x)
(
C1(α, x) −C1(αses, x)

)
B1(α, x)

≤ 0.

Therefore, L1(x,α, λ, ψ) is decreasing in αi for any i ∈ In. Furthermore, for s, t ∈ In with s , t, we
obtain

(αs − αt)
(
∂L1(x,α, λ, ψ)

∂αs
−
∂L1(x,α, λ, ψ)

∂αt

)
= (αs − αt)Jψ

 n∑
i=1

φ

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) (F̄(x))λ(1 − (F̄(x))λ)A1(α(s,t), x)

·

[
1

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − 1

(1 − ᾱt(F̄(x))λ)2ψ′
(
φ
(

αt(F̄(x))λ

1−ᾱt(F̄(x))λ

))]

+(αs − αt)
(

1
αs
−

1
αt

)
Jψ

 n∑
i=1

φ

(
αi(F̄(x))λ

1 − ᾱi(F̄(x))λ

) (1 − (F̄(x))λ)λh(x)B1(αses, x)B1(αtet, x)
(1 − ᾱs(F̄(x))λ)(1 − ᾱt(F̄(x))λ)

+(αs − αt)
λh(x)(F̄(x))λ

B1(α, x)

(
B1(αtet, x)

(1 − ᾱt(F̄(x))λ)2
−

B1(αses, x)
(1 − ᾱs(F̄(x))λ)2

)
+(αs − αt)

λ h(x)(F̄(x))λ(1 − (F̄(x))λ)
B1(α, x)

·

[B1(αses, x)
(
C1(α, x) −C1(αses, x)

)
(1 − ᾱs(F̄(x))λ)3ψ′

(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − B1(αtet, x)
(
C1(α, x) −C1(αtet, x)

)
(1 − ᾱt(F̄(x))λ)3ψ′

(
φ
(

αt(F̄(x))λ

1−ᾱt(F̄(x))λ

)) ]
sgn
= −(αs − αt)C1(α, x)(F̄(x))λ(1 − (F̄(x))λ)A1(α(s,t), x)

·

[
1

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − 1

(1 − ᾱt(F̄(x))λ)2ψ′
(
φ
(

αt(F̄(x))λ

1−ᾱt(F̄(x))λ

))]

−(αs − αt)
(

1
αs
−

1
αt

)
C1(α, x)

(1 − (F̄(x))λ)λh(x)B1(αses, x)B1(αtet, x)
(1 − ᾱs(F̄(x))λ)(1 − ᾱt(F̄(x))λ)
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−(αs − αt)λh(x)(F̄(x))λ
(

B1(αtet, x)
(1 − ᾱt(F̄(x))λ)2

−
B1(αses, x)

(1 − ᾱs(F̄(x))λ)2

)
−(αs − αt)λh(x)(F̄(x))λ(1 − (F̄(x))λ)

·

[B1(αses, x)
(
C1(α, x) −C1(αses, x)

)
(1 − ᾱs(F̄(x))λ)3ψ′

(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − B1(αtet, x)
(
C1(α, x) −C1(αtet, x)

)
(1 − ᾱt(F̄(x))λ)3ψ′

(
φ
(

αt(F̄(x))λ

1−ᾱt(F̄(x))λ

)) ].
As 1/h2(α) is increasing in α, it holds that

− (αs − αt)C1(α, x)(F̄(x))λ(1 − (F̄(x))λ)A1(α(s,t), x)

·

[
1

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − 1

(1 − ᾱt(F̄(x))λ)2ψ′
(
φ
(

αt(F̄(x))λ

1−ᾱt(F̄(x))λ

))] ≥ 0. (3.1)

Likewise, for αs ≥ αt, we have

−(αs − αt)
(

1
αs
−

1
αt

)
C1(α, x)

(1 − (F̄(x))λ)λh(x)B1(αses, x)B1(αtet, x)
(1 − ᾱs(F̄(x))λ)(1 − ᾱt(F̄(x))λ)

≥ 0. (3.2)

Consider that 1/(1 − ᾱi(F̄(x))λ)2 ≥ 0 is decreasing in αi, %2 implies that B1(αiei, x) is increasing in αi,
and B1(αtet, x) ≤ B1(αses, x) ≤ 0 for αs ≥ αt. Then

−(αs − αt)λh(x)(F̄(x))λ
(

B1(αtet, x)
(1 − ᾱt(F̄(x))λ)2

−
B1(αses, x)

(1 − ᾱs(F̄(x))λ)2

)
≥ 0. (3.3)

Note that 1/(1 − ᾱi(F̄(x))λ) ≥ 0 is decreasing in αi and 1/h2(αi) is increasing in αi. It is clear that

1

(1 − ᾱs(F̄(x))λ)3ψ′
(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

))
is increasing in αi for αs ≥ αt. By %3, for αs ≥ αt, we have C1(α, x) − C1(αtet, x) ≥ C1(α, x) −
C1(αses, x) ≥ 0. It holds that

− (αs − αt)λh(x)(F̄(x))λ(1 − (F̄(x))λ)

·

[B1(αses, x)
(
C1(α, x) −C1(αses, x)

)
(1 − ᾱs(F̄(x))λ)3ψ′

(
φ
(

αs(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − B1(αtet, x)
(
C1(α, x) −C1(αtet, x)

)
(1 − ᾱt(F̄(x))λ)3ψ′

(
φ
(

αt(F̄(x))λ

1−ᾱt(F̄(x))λ

)) ] ≥ 0.
(3.4)

Combing (3.1)-(3.4), we conclude that L1(x,α, λ, ψ) is Schur-convex with respect to α. Thus, according
to Lemma 1 and Lemma 2, α

w
� β implies hX1:n(x) = L1(x,α, λ, ψ) ≤ L1(x,β, λ, ψ) = hY1:n(x) for all x,

that is, X1:n ≥hr Y1:n. �

Remark 2. For two independent samples, we have ψ(x) = e−x, thus Theorem 3 serves as a
generalization of Theorem 3.4 (ii) of [6] to the case of dependent samples with Archimedean survival
copulas.

We present the following example to illustrate the result of Theorem 3.
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Example 3. Let F̄(x) = e−(ax)b
, a > 0, 0 < b ≤ 1, and generator ψ(x) = e

1−ex
θ , 0 < θ ≤ 0.5(3 −

√
5). Set

n = 3, λ = 0.03, a = 5, b = 0.007, θ = 0.1 and α = (0.8, 0.6, 0.4)
w
� (0.7, 0.5, 0.3) = β. One can verify

that the conditions of Theorem 3 are all satisfied. Figure 4 plots the reversed hazard rate functions
of (X1:3 + 1)−1 and (Y1:3 + 1)−1, and it is obvious that X1:3 ≥hr Y1:3 is equivalent to (X1:3 + 1)−1 ≤rh

(Y1:3 + 1)−1, which asserts X1:3 ≥hr Y1:3.

r
(X1:3+1)

-1 (x)

r
(Y1:3+1)

-1 (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

0.025

0.030

x

Figure 4. Plots of reversed hazard rate functions r(X1:3+1)−1(x) and r(Y1:3+1)−1(x).

3.2. On samples of MPRHR

In this subsection, we consider the case of MPRHR samples. Let X = (X1, . . . , Xn) be the random
vector, and X ∼ MPRHR(α;β; F;ψ) , where F is the baseline distribution function, ψ is generator of
the associated Archimedean copula, and α = (α1, . . . , αn) and β = (β1, . . . , βn) are the tilt parameter
vector and modified proportional reversed hazard rate vector, respectively.

Next, we present two results on the heterogeneity among parameters in terms of the usual stochastic
order. The proofs can be obtained along the same way with that of Theorem 1, and thus omitted here.

Theorem 4. For X ∼ MPRHR(α;β; F;ψ1) and Y ∼ MPRHR(α;γ; F;ψ2), where 0 < α ≤ 1. If ψ1 or
ψ2 is log-concave, and φ1 ◦ ψ2 is super-additive, then β

w
� γ implies

X1:n ≥st Y1:n.

Theorem 5. For X ∼ MPRHR(α; β; F;ψ1) and Y ∼ MPRHR(υ; β; F;ψ2). If ψ1 or ψ2 is log-concave,
and φ2 ◦ ψ1 is super-additive, then α

w
� υ implies

X1:n ≤st Y1:n.

The next example is provided to illustrate the result of Theorem 4.

Example 4. Let F̄(x) = e−(ax)b
, a > 0, 0 < b ≤ 1, and generators ψ1(x) = (θ1x + 1)−1/θ1 , θ1 >

0, ψ2(x) = e
1−ex
θ2 , 0 < θ2 ≤ 1. Set n = 3, α = 0.3, θ1 = 0.8, θ2 = 0.9, a = 0.1, b = 0.9, β =

(0.3, 0.3, 0.4)
w
� (0.2, 0.2, 0.3) = γ. It is easy to check that all conditions of Theorem 4 are satisfied.
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The distribution functions of (X1:3 + 1)−1 and (Y1:3 + 1)−1 are plotted in Figure 5, from which we can
confirm that X1:3 ≥st Y1:3.

F
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-1(x)

G
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-1(x)
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0.8

1.0

x

Figure 5. The distribution functions of (X1:3 + 1)−1 and (Y1:3 + 1)−1.

The following theorem compares two sample minimums with common modified proportional
reversed hazard rates parameters and heterogeneous tilt parameters in the sense of the hazard rate
order. The proof is similar to that of Theorem 3 and hence omitted.

Theorem 6. For X ∼ MPRHR(α; β; F;ψ) and Y ∼ MPRHR(υ; β; F;ψ) with log-concave ψ, and
−ψ′/ψ is log-convex. If α

w
� υ, then

X1:n ≤hr Y1:n.

Remark 3. It is mentioned that Theorem 6 generalizes Theorem 4.5 (ii) of [6] to the case of dependent
samples with Archimedean copulas.

Remark 4. According to the Theorem 2.1 of Navarro et al. [10], the coherent system reliability function
can be written as F̄X(x) = h(F̄(x)), where h only depends on structure function and on the survival
copula of (X1, . . . , Xn). Owing to the complexity of coherent system, we only studied the series system
in Section 3 by distored distribution. Based on Archimedean copula K, we obtained the distorted
function representations of series system as follows:

h3(u;α, λ) = K
(

α1(u)λ1

1 − ᾱ1(u)λ1
, . . . ,

αi(u)λi

1 − ᾱi(u)λi
, . . . ,

αn(u)λn

1 − ᾱn(u)λn

)
, (3.5)

h4(u;α,β) = K
(

1 − (1 − u)β1

1 − ᾱ1(1 − u)β1
, . . . ,

1 − (1 − u)βi

1 − ᾱi(1 − u)βi
, . . . ,

1 − (1 − u)βn

1 − ᾱn(1 − u)βn

)
, u = F̄(x), (3.6)

where h3(u;α, λ) and h4(u;α,β) are obtained by MPHR and MPRHR models. In (3.5), if αi = α(i =

1, . . . , n), we can obtain representation of Theorem 1, when λi = λ(i = 1, . . . , n), we can obtain
representation of Theorem 2 and Theorem 3. As for in other Theorem 4, Theorem 5, and Theorem
6, we can obtain in similar way by (3.6).
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4. Maximum of sample

In parallel to the previous section, here, we consider the largest order statistics from dependent and
heterogeneous MPHR and MPRHR samples.

4.1. On samples of MPHR

In this subsection, we deal with the case of MPHR samples in the sense of the usual stochastic and
reversed hazard rate orders. The first theorem establishes sufficient conditions for the usual stochastic
order, which can be verified in a similar method with that of Theorem 1, and thus omitted for brevity.

Theorem 7. For X ∼ MPHR(α; λ; F̄;ψ1) and Y ∼ MPHR(α;µ; F̄;ψ2), where 0 < α ≤ 1. If ψ1 or ψ2

is log-concave, and φ1 ◦ ψ2 is super-additive, then λ
w
� µ implies

Xn:n ≤st Yn:n.

In the following, we give a numerical example to illustrate the effectiveness of Theorem 7.

Example 5. Under the setup of Example 4, set n = 3, α = 0.9, θ1 = 0.9, θ2 = 2, a = 0.5, b = 0.3,
λ = (4, 5, 6)

w
� (3, 4, 5) = µ. One can check that the conditions of Theorem 7 are satisfied. The survival

functions of (X3:3 + 1)−1 and (Y3:3 + 1)−1 are plotted in Figure 6, which verifies that FX3:3(x) ≥ GY3:3(x).
That is, X3:3 ≤st Y3:3.
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Figure 6. Plots of survival functions F̄(X3:3+1)−1(x) and Ḡ(Y3:3+1)−1(x).

The following theorem conducts stochastic comparisons of samples with heterogeneous tilt
parameters in the sense of the usual stochastic order.

Theorem 8. For X ∼ MPHR(α; λ; F̄;ψ1) and Y ∼ MPHR(β; λ; F̄;ψ2). If ψ1 or ψ2 is log-concave,
and φ2 ◦ ψ1 is super-additive, then α

w
� β implies

Xn:n ≥st Yn:n.
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Proof. The distribution function Xn:n is given by

FXn:n(x) = ψ1

 n∑
i=1

φ1

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) = J3(α, λ, ψ1, F̄(x)), x ≥ 0.

Without loss of generality, we assume that ψ1 is log-concave. In order to obtain the desired result, we
just need to prove that J3(α, λ, ψ1, F̄(x)) is decreasing in αi and Schur-convex in α, i ∈ In. Taking the
partial derivative of J3(α, λ, ψ1, F̄(x)) with respect to αi, we get

∂J3(α, λ, ψ1, F̄(x))
∂αi

= ψ′1

 n∑
i=1

φ1

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) −(F̄(x))λ
(

1−(F̄(x))λ

1−ᾱi(F̄(x))λ

)
ψ′1

(
φ1

(
1−(F̄(x))λ

1−ᾱi(F̄(x))λ

))
(1 − ᾱi(F̄(x))λ)

≤ 0.

That is, J3(α, λ, ψ1, F̄(x)) is decreasing in αi. Furthermore, for i , j, it holds that

(αi − α j)
(
∂J3(α, λ, ψ1, F̄(x))

∂αi
−
∂J3(α, λ, ψ1, F̄(x))

∂α j

)
= −ψ′1

 n∑
i=1

φ1

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) (F̄(x))λ(αi − α j)
(
h3(αi) − h3(α j)

)
,

where

h3(α) =

1−(F̄(x))λ

1−ᾱ(F̄(x))λ

ψ′1

(
φ1

(
1−(F̄(x))λ

1−ᾱ(F̄(x))λ

))
(1 − ᾱ(F̄(x))λ)

.

Since the log-concavity of ψ1 implies the increasing property of ψ1/ψ
′
1, and consider that

φ1(1 − (F̄(x))λ/(1 − ᾱ(F̄(x))λ)) is increasing in α, then we have

1−(F̄(x))λ

1−ᾱ(F̄(x))λ

ψ′1

(
φ1

(
1−(F̄(x))λ

1−ᾱ(F̄(x))λ

)) =
ψ1

(
φ1

(
1−(F̄(x))λ

1−ᾱ(F̄(x))λ

))
ψ′1

(
φ1

(
1−(F̄(x))λ

1−ᾱ(F̄(x))λ

))
is negative and is increasing in α for every fixed x ≥ 0. In addition, 1/(1 − ᾱ(F̄(x))λ) ≥ 0 is decreasing
in α. Consequently, h3(α) is increasing in α which in turn implies that

(αi − α j)
(
∂J3(α, λ, ψ1, F̄(x))

∂αi
−
∂J3(α, λ, ψ1, F̄(x))

∂α j

)
≥ 0.

Therefore, J3(α, λ, ψ1, F̄(x)) is decreasing in αi and Schur-convex in α. By Lemma 2, α
w
� β implies

J3(α, λ, ψ1, F̄(x)) ≤ J3(β, λ, ψ1, F̄(x)), and note that φ2 ◦ ψ1 is super-additive, we can conclude by
Lemma 3 that J3(β, λ, ψ1, F̄(x)) ≤ J3(β, λ, ψ2, F̄(x)). Hence,

J3(α, λ, ψ1, F̄(x)) ≤ J3(β, λ, ψ1, F̄(x)) ≤ J3(β, λ, ψ2, F̄(x)),

which implies that Xn:n ≥st Yn:n. The proof can be completed. �

The following numerical example is provided to demonstrate the theoretical result of Theorem 8.
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Example 6. Let F̄(x) = e−(ax)b
, a > 0, 0 < b ≤ 1, and generators ψ1(x) = e−x, ψ2(x) = (θx + 1)−1/θ,

θ > 0. Take n = 3, λ = 0.8, a = 0.5, b = 0.2, θ = 2 and α = (0.3, 0.5, 0.7)
w
� (0.2, 0.4, 0.6) = β. One

can check chat the conditions of Theorem 8 are satisfied. The survival functions of (X3:3 + 1)−1 and
(Y3:3 + 1)−1 are plotted in Figure 7, that is X3:3 ≥st Y3:3, which verifies the result of Theorem 8.

F
(X3:3+1)

-1 (x)

G
(Y3:3+1)

-1 (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 7. Plots of survival functions of (X3:3 + 1)−1(x) and (Y3:3 + 1)−1(x).

In the next theorem, we provide a sufficient condition to obtain the reversed hazard rate order
between two modified proportional hazard rates models when the modified proportional hazard rates
parameters are equal and the tilt parameters are heterogeneous.

Theorem 9. For X ∼ MPHR(α; λ; F̄;ψ) and Y ∼ MPHR(β; λ; F̄;ψ) with log-concave ψ. Assume that
−ψ′/ψ is log-convex. If α

w
� β, then

Xn:n ≥rh Yn:n.

Proof. The distribution function Xn:n is given by

FXn:n(x) = ψ

 n∑
i=1

φ

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) , x ≥ 0,

and the reversed hazard rate function of Xn:n is

rXn:n(x) =
ψ′

(∑n
i=1 φ

(
1−(F̄(x))λ

1−ᾱi(F̄(x))λ

))
ψ

(∑n
i=1 φ

(
1−(F̄(x))λ

1−ᾱi(F̄(x))λ

)) n∑
i=1

λ(F̄(x))λh(x)
1 − (F̄(x))λ

αi

1 − ᾱi(F̄(x))λ
ψ

(
φ
(

1−(F̄(x))λ

1−ᾱi(F̄(x))λ

))
ψ′

(
φ
(

1−(F̄(x))λ

1−ᾱi(F̄(x))λ

))
= L2(x,α, λ, ψ).

Similiarly, Yn:n gets the reversed hazard rate function rYn:n(x) = L2(x,β, λ, ψ) for x ≥ 0. Further denote

A2(α(s,t), x) =
∑
i,s,t

λ(F̄(x))λh(x)
1 − (F̄(x))λ

αiB2(αiei, x)
1 − ᾱi(F̄(x))λ

, B2(α, x) =
ψ

(∑n
i=1 φ

(
1−(F̄(x))λ

1−ᾱi(F̄(x))λ

))
ψ′

(∑n
i=1 φ

(
1−(F̄(x))λ

1−ᾱi(F̄(x))λ

)) ,
Jψ(x) =

ψ′′(x)ψ(x) − (ψ′(x))2

(ψ(x))2 , C2(α, x) = Jψ

 n∑
i=1

φ

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) B2(α, x).
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Note that, for s, t ∈ In with s , t, and ui ∈ [0, 1] (i ∈ In), we have

∂L2(x,α, λ, ψ)
∂αs

=
(F̄(x))λ((F̄(x))λ − 1)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) n∑
i=1

λ(F̄(x))λh(x)
1 − (F̄(x))λ

αiB2(αiei, x)
1 − ᾱi(F̄(x))λ

Jψ

 n∑
i=1

φ

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

)
+

B2(αses, x)
B2(α, x)

λh(x)(F̄(x))λ

(1 − ᾱs(F̄(x))λ)2

−
B2

2(αses, x)
B2(α, x)

(F̄(x))λ((F̄(x))λ − 1)

(1 − ᾱs(F̄(x))λ)3ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) αsλh(x)(F̄(x))λ

(1 − (F̄(x))λ)
Jψ

(
φ

(
1 − (F̄(x))λ

1 − ᾱs(F̄(x))λ

))

=

[
(F̄(x))λ((F̄(x))λ − 1)A2(α(s,t), x)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) +
(F̄(x))λ((F̄(x))λ − 1)αsB2(αses, x)

(1 − ᾱs(F̄(x))λ)3ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) λ(F̄(x))λh(x)
1 − (F̄(x))λ

+
(F̄(x))λ((F̄(x))λ − 1)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) λ(F̄(x))λh(x)
1 − (F̄(x))λ

αtB2(αtet, x)
1 − ᾱt(F̄(x))λ

]
Jψ

 n∑
i=1

φ

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

)
+

B2(αses, x)
B2(α, x)

λh(x)(F̄(x))λ

(1 − ᾱs(F̄(x))λ)2

−
B2(αses, x)C2(αses, x)

B2(α, x)
(F̄(x))λ((F̄(x))λ − 1)

(1 − ᾱs(F̄(x))λ)3ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) αsλh(x)(F̄(x))λ

(1 − (F̄(x))λ)
.

By %1, %2 and C1(α, x) ≥ C1(αses, x), it holds that

∂L2(x,α, λ, ψ)
∂αs

=

[
(F̄(x))λ((F̄(x))λ − 1)A2(α(s,t), x)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) +
(F̄(x))λ((F̄(x))λ − 1)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) λ(F̄(x))λh(x)
(1 − (F̄(x))λ)

·
αtB2(αtet, x)

(1 − ᾱt(F̄(x))λ)

]
Jψ

 n∑
i=1

φ

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) +
B2(αses, x)

B2(α, x)
λh(x)(F̄(x))λ

(1 − ᾱs(F̄(x))λ)2

+
(F̄(x))λ((F̄(x))λ − 1)

(1 − ᾱs(F̄(x))λ)3ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) αsλh(x)(F̄(x))λ

(1 − (F̄(x))λ)

B2(αsesx)
(
C2(α, x) −C2(αses, x)

)
B2(α, x)

≥ 0.

As a result, L2(x,α, λ, ψ) is increasing in αi, for any i ∈ In, and for s, t ∈ In with s , t,

(αs − αt)
(
∂L2(x,α, λ, ψ)

∂αs
−
∂L2(x,α, λ, ψ)

∂αt

)
= −(αs − αt)Jψ

 n∑
i=1

φ

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) (F̄(x))λA1(α(s,t), x)

·

[
(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − (1 − (F̄(x))λ)

(1 − ᾱt(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱt(F̄(x))λ

))]
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+(αs − αt)2Jψ

 n∑
i=1

φ

(
1 − (F̄(x))λ

1 − ᾱi(F̄(x))λ

) λ(F̄(x))2λh(x)
1 − (F̄(x))λ

B2(αses, x)B2(αtet, x)
(1 − ᾱs(F̄(x))λ)(1 − ᾱt(F̄(x))λ)

−(αs − αt)
λh(x)(F̄(x))λ

B2(α, x)

(
B2(αtet, x)

(1 − ᾱt(F̄(x))λ)2
−

B2(αses, x)
(1 − ᾱs(F̄(x))λ)2

)
+(αs − αt)

λh(x)(F̄(x))2λ((F̄(x))λ − 1)
(1 − (F̄(x))λ)B2(α, x)

·

[αsB2(αses, x)
(
C2(α, x) −C2(αses, x)

)
(1 − ᾱs(F̄(x))λ)3ψ′

(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) −
αtB2(αtet, x)

(
C2(α, x) −C2(αtet, x)

)
(1 − ᾱt(F̄(x))λ)3ψ′

(
φ
(

1−(F̄(x))λ

1−ᾱt(F̄(x))λ

)) ]
sgn
= (αs − αt)C2(α, x)(F̄(x))λA2(α(s,t), x)

·

[
(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − (1 − (F̄(x))λ)

(1 − ᾱt(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱt(F̄(x))λ

))]

−(αs − αt)2C2(α, x)
λ(F̄(x))2λh(x)
1 − (F̄(x))λ

B2(αses, x)B2(αtet, x)
(1 − ᾱs(F̄(x))λ)(1 − ᾱt(F̄(x))λ)

+(αs − αt)λh(x)(F̄(x))λ
(

B2(αtet, x)
(1 − ᾱt(F̄(x))λ)2

−
B2(αses, x)

(1 − ᾱs(F̄(x))λ)2

)
+(αs − αt)

λh(x)(F̄(x))2λ(1 − (F̄(x))λ)
(1 − (F̄(x))λ)

·

[αsB2(αses, x)
(
C2(α, x) −C2(αses, x)

)
(1 − ᾱs(F̄(x))λ)3ψ′

(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) −
αtB2(αtet, x)

(
C2(α, x) −C2(αtet, x)

)
(1 − ᾱt(F̄(x))λ)3ψ′

(
φ
(

1−(F̄(x))λ

1−ᾱt(F̄(x))λ

)) ]
.

Since h3(α) is increasing in α, it holds that

(αs − αt)C2(α, x)(F̄(x))λA2(α(s,t), x)

·

[
(1 − (F̄(x))λ)

(1 − ᾱs(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) − (1 − (F̄(x))λ)

(1 − ᾱt(F̄(x))λ)2ψ′
(
φ
(

1−(F̄(x))λ

1−ᾱt(F̄(x))λ

))] ≤ 0. (4.1)

Obviously, for αs ≥ αt,

−(αs − αt)2C2(α, x)
λ(F̄(x))2λh(x)
1 − (F̄(x))λ

B2(αses, x)B2(αtet, x)
(1 − ᾱs(F̄(x))λ)(1 − ᾱt(F̄(x))λ)

≤ 0. (4.2)

Note that 1/(1 − ᾱi(F̄(x))λ)2 ≥ 0 is decreasing in αi, %2 implies that B1(αiei, x) is increasing in αi, and
B1(αtet, x) ≤ B1(αses, x) ≤ 0 for αs ≥ αt. Then, we have

(αs − αt)λh(x)(F̄(x))λ
(

B2(αtet, x)
(1 − ᾱt(F̄(x))λ)2

−
B2(αses, x)

(1 − ᾱs(F̄(x))λ)2

)
≤ 0. (4.3)

Since αi/(1 − ᾱi(F̄(x))λ) and h3(αi) are increasing in αi, and by %3, we have C1(α, x) − C1(αtet, x) ≥
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C1(α, x) −C1(αses, x) ≥ 0 for αs ≥ αt. It is verified that

(αs − αt)
λh(x)(F̄(x))2λ(1 − (F̄(x))λ)

(1 − (F̄(x))λ)

·

[αsB2(αses, x)
(
C2(α, x) −C2(αses, x)

)
(1 − ᾱs(F̄(x))λ)3ψ′

(
φ
(

1−(F̄(x))λ

1−ᾱs(F̄(x))λ

)) −
αtB2(αtet, x)

(
C2(α, x) −C2(αtet, x)

)
(1 − ᾱt(F̄(x))λ)3ψ′

(
φ
(

1−(F̄(x))λ

1−ᾱt(F̄(x))λ

)) ]
≤ 0.

(4.4)

By (4.1)-(4.4), it is plain that L2(x,α, λ, ψ) is increasing in αi and Schur-concave with respect to α.
According to Lemma 1 and Lemma 2, α

w
� β implies −rXn:n(x) = −L2(x,α, λ, ψ) ≤ −L2(x,β, λ, ψ) =

−rYn:n(x) for all x, that is, Xn:n ≥rh Yn:n. This completes the proof. �

Remark 5. Theorem 9 extends Theorem 3.4 (i) of [6] to the case of dependent samples with
Archimedean survival copulas .

The following example illustrates the result of Theorem 9.

Example 7. Let F̄ = e−(ax)b
, a > 0, 0 < b ≤ 1, and ψ(x) = e

1−ex
θ , 0 < θ ≤ 0.5(3 −

√
5). Set n = 3, λ =

3, a = 6, b = 0.08, θ = 0.3 and α = (0.8, 0.6, 0.4)
w
� (0.7, 0.5, 0.3) = β. These satisfy all conditions

of Theorem 9, and the hazard rate functions of (X3:3 + 1)−1 and (Y3:3 + 1)−1 are displayed in Figure 8,
which confirms that X3:3 ≥rh Y3:3.

h
X3:3+1

-1 (x)

h
Y3:3+1

-1 (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x

Figure 8. Plots of the hazard rate functions h(X3:3+1)−1(x) and h(Y3:3+1)−1(x).

4.2. On samples of MPRHR

In this subsection, we consider the case of MPRHR samples. The first two theorems present the
comparison results on the heterogeneity among parameters in terms of the usual stochastic order. The
proofs can be completed in a similar way with that of Theorem 1, and thus are omitted.

Theorem 10. For X ∼ MPRHR(α;β; F;ψ1) and Y ∼ MPRHR(α;γ; F;ψ2), where 0 < α ≤ 1. If ψ1 or
ψ2 is log-concave, and φ2 ◦ ψ1 is super-additive, then β

w
� γ implies

Xn:n ≥st Yn:n.
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Proof. The distribution function of Xn:n can be represented as

FXn:n(x) = ψ1

 n∑
i=1

φ1(
α(F(x))βi

1 − ᾱ(F(x))βi
)

 = J4(α,β, ψ1, F(x)), x ≥ 0.

Suppose that ψ1 is log-concave. To establish the desired result, along with Lemma 2, it suffices to show
that for fixed x ≥ 0 and 0 < α ≤ 1. J4(α,β, ψ1, F(x)) is decreasing in βi and Schur-convex in β. The
partial derivative of J4(α,β, ψ1, F(x)) with respect to βi is

∂J4(α,β, ψ1, F(x))
∂βi

= ψ′1

 n∑
i=1

φ1

(
α(F(x))βi

1 − ᾱ(F(x))βi

) ln F(x) α(F(x))βi

1−ᾱ(F(x))βi

ψ′1

(
φ1

(
α(F(x))βi

1−ᾱ(F(x))βi

))
(1 − ᾱ(F(x))βi)

≤ 0.

Which clearly shows that J4(α,β, ψ1, F(x)) is decreasing in βi. Now, for i , j, we get

(βi − β j)
(
∂J4(α,β, ψ1, F(x))

∂βi
−
∂J4(α,β, ψ1, F(x))

∂β j

)
= ψ′1

 n∑
i=1

φ1

(
α(F(x))βi

1 − ᾱ(F(x))βi

) ln F(x)(βi − β j)
(
h4(βi) − h4(β j)

)
,

where

h4(β) =

α(F(x))β

1−ᾱ(F(x))β

ψ′1

(
φ1

(
α(F(x))β

1−ᾱ(F(x))β

))
(1 − ᾱ(F(x))β)

.

As dicussed in the proof of Theorem 1, for each fixded x > 0, we have

α(F(x))β

1−ᾱ(F(x))β

ψ′1

(
φ1

(
α(F(x))β

1−ᾱ(F(x))β

)) =
ψ1

(
φ1

(
α(F(x))β

1−ᾱ(F(x))β

))
ψ′1

(
φ1

(
α(F(x))β

1−ᾱ(F(x))β

)) ≤ 0.

Moreover, we readily observe that 1/(1 − ᾱ(F(x))β) is nonnegative and decreasing in β for 0 < α ≤ 1.
Upon combining these observations, we find h4(β) to be increasing in β. Consequently

(βi − β j)
(
∂J4(α,β, ψ1, F(x))

∂βi
−
∂J4(α,β, ψ1, F(x))

∂β j

)
≥ 0.

Therefore, Schur-convexity of J4(α,β, ψ1, F(x)) follows from Lemma 1. According to Lemma 2, β
w
� γ

implies J4(α,β, ψ1, F(x)) ≤ J4(α,γ, ψ1, F(x)), and the assumption φ2 ◦ψ1 is super-additive, by Lemma
3, we have J4(α,γ, ψ1, F(x)) ≤ J4(α,γ, ψ2, F(x)). So, we obtain

J4(α,β, ψ1, F(x)) ≤ J4(α,γ, ψ1, F(x)) ≤ J4(α,γ, ψ2, F(x)).

It is clear that we conclude FXn:n(x) ≤ FYn:n(x), that is, Xn:n ≥st Yn:n. For the case of ψ2 is log-concave,
the proof can be obtained in a similar way. This completes the desired proof. �

Remark 6. Theorem 10 generalizes the result of Theorem 5.1 (ii) of [21] to the case of MPHR model.
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Theorem 11. For X ∼ MPRHR(α; β; F;ψ1) and Y ∼ MPRHR(υ; β; F;ψ2). If φ1◦ψ2 is super-additive,
then α

w
� υ implies

Xn:n ≤st Yn:n.

The following example is provided to illustrate the Theorem 11.

Example 8. Under the setup of Example 2, take n = 3, λ = 0.8, a = 0.5, b = 0.4, θ = 0.6 and
α = (0.4, 0.5, 0.6)

w
� (0.3, 0.4, 0.5) = υ. These satisfy all conditions of Theorem 11, and the survival

functions of (X3:3 + 1)−1 and (Y3:3 + 1)−1 are poltted in Figure 9, which asserts X3:3 ≤st Y3:3.

F
X3:3+1

-1 (x)

G
Y3:3+1

-1 (x)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 9. Plots of the survival functions F̄(X3:3+1)−1(x) and Ḡ(Y3:3+1)−1(x).

Now, we present comparison result of sample having common modified proportional reversed
hazard rates parameters and heterogeneous tilt parameters in terms of the reversed hazard rate order.

Theorem 12. For X ∼ MPRHR(α; β; F;ψ) and Y ∼ MPRHR(υ; β; F;ψ) with log-concave ψ, and
−ψ′/ψ is log-convex. If α

w
� υ, then

Xn:n ≤rh Yn:n.

Remark 7. It should be pointed out that Theorem 12 extends Theorem 4.5 (i) of [6] to the case of
dependent samples with Archimedean copulas .

Remark 8. Similarly, according to the Remark 2, based on Archimedean copula K, we obtained the
distorted function representations of parallel system as follows:

h5(u;α, λ) = K
(

1 − (1 − u)λ1

1 − ᾱ1(1 − u)λ1
, . . . ,

1 − (1 − u)λi

1 − ᾱi(1 − u)λi
, . . . ,

1 − (1 − u)λn

1 − ᾱn(1 − u)λn

)
, (4.5)

h6(u;α,β) = K
(

α1(u)β1

1 − ᾱ1(u)β1
, . . . ,

αi(u)βi

1 − ᾱi(u)βi
, . . . ,

αn(u)βn

1 − ᾱn(u)βn

)
, u = F̄(x), (4.6)

where h5(u;α, λ) and h6(u;α,β) are obtained by MPHR and MPRHR models. In (4.5), when αi =

α(i = 1, . . . , n), we can obtain representation of Theorem 7, if λi = λ(i = 1, . . . , n), we can obtain
representation of Theorem 8 and Theorem 9. As for in other Theorem 10, Theorem 11, and Theorem
12, we can obtain in similar way by (4.6).
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5. Conclusion

In this paper, we study stochastic comparisons on minimums and maximums from heterogeneous
MPRHR (MPHR) samples with Archimedean (survival) copulas. Some ordering results are established
for the usual stochastic, hazard rate and reversed rate orders on the smallest and largest order statistics.
These results generalize some known results in the literature. As a further study, it is of interest to
consider other stochastic orders such as likelihood ratio order, star order and dispersive order.
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