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1. Introduction

The complex-valued function F' = u+iv is called p-harmonic functionif Fis2p (p > 1, p € N) times
continuously differentiable in U = {z € C : |z] < 1} and satisfies the equation A’F = A(AP"'F) = 0,
where A := A' represents the complex Laplacian operator:

B 49? B & N i

C 0207 0xr Oy
It is obvious that F is harmonic and bi-harmonic for p = 1 and p = 2 respectively (see [1-6]).
The function F is p-harmonic if and only if F has the following form

p
F@2) = ) 1P fy @), (1.1)

u=1

where f,_,11(z) is harmonic (or Af,_,.1 = 0) (see [7]) and satisfies

fp—y+1 = hp—y+1 + gp—,u+1a (12)
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(o)

hput@ = D @y pnd 1 Sp<poar, =1) (1.3)
k=1
and

8p-u+1(2) = Zbk,p—u+lzk (I <pu<p,|bryl <1). (1.4)
k=1
We denote by Jr the Jacobian of F, that is

Jre = |F. P = |F:.

Then the function F is sense-preserving and locally univalent if Jr > 0 (see [1,2]).

We denote by S H,, the class of sense-preserving and univalent p-harmonic functions F' of the form
(1.1). The class S H, has recently raised the interest of many researchers (see for instance [8—14]).

Furthermore, we let TH),, be the subclass of S H,, consisting of the functions F as in (1.1), where
fp—u+1 has the form (1.2) and

(o)

k

hp(@) = 2= ) lag, I,
k=2

(1.5)
a1 (D) = = D Nk ppr | 2 < p < p), (1.6)
k=1
8pur1(@) = = Y byt (1 < < p). (1.7)
k=1
Let
P ©0 [eS]
F(Z) = Z |Z|2(ﬂ_1)(Z ak,p—,u+lzk + Z Bk,p—/ﬁlzk) € SHp
=1 k=1 k=1
and

p (o) (e8]

G(Z) = Z |Z|2(”_1)(Z Ak’p_#HZk + Z Bk’p_#ﬂzk) eSH,,

=1 f=1 =1
where a;, = 1 and A, , = 1. In the following, we define the convolution of F and G by
p [ee) (o) _ _
(F+G)@) = ) 11D iy Apuni 2 + D Byt Bepryunr 2. (1.8)
=1 =1 k=1
For F € S H,,, Yagar and Yalgin [8] introduced the generalized Saldgean operator D" as follows,

DYF(2) = F(2),

D}F(z) = (1 = YDYF(2) + Az(D)F (2)). + ADIF (2):],

D\F(z) = D)(D’'F(2)), (1.9)

where A >0andneN={1,2,---}.
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From (1.1) and (1.9), we have

p o
DiF(2) = Z o2 Z[l + (k= DA+ 20 = DAV ap-n 2,

+§zkﬁﬂ”zz + (k= 1)+ 2(u — DA Bypy (1.10)
=1
where a; , = 1 and |b; | < 1.

In particular, for p = 1, we obtain univalent harmonic functions with the generalized Saligean
operator defined by Li and Liu [15]. Let p = 1 and g(z) = 0, the generalized Séldgean operator of
univalent functions are obtained by Al-Oboudi [16]. Alsolet p = 1, 4 = 0 and g(z) = 0, then we get
the classical Sdldgean operator [17].

According to (1.10) and the above definition of convolution, we obtain

P P
DiF(2) = F@) ) 11 (0@ + @u@) 5 . x ) 1P 9u(2) + 9, Q),

u=1 u=1

n times

where
[I+2u—-DAlz-[1+Qu-1)- 1)/l]z
¢h(Z)-— (1 —'Z)z
Using the operator D'}, Yagar and Yalgin [8] introduced and studied the subclass S H,(n, 4,5) of
S H,, satisfying the condition

(1.11)

l)"+1 (Z)
D"F ()
An analytic function s : U — C is subordinate to an analytic function ¢ : U — C, if there is a
function v satisfying v(0) = 0 and |v(z)] < 1 (z € U), such that s(z) = t(v(2))(z € U), we note that
5(z) < (). In particular, if ¢ is univalent in U, then the following conclusion is true

$(z) < H(z) & s(0) = t(0) and s(U) C {(U).

>B (1>0,0<p<1).

Inspired by Janowski [18], we define the subclass of S H), as below.
Definition 1. Suppose 4 > 0,-1 < B <0 < A < 1,p € Nand n € Ny. The function F is in
HL}(A, A, B) if it satisfies

D''F(z) 1+Az
D'FG)  1+BZ

(1.12)

where D'\F(z) is given by (1.10).

ForA=1-28(0<p<1), B=-1,theclass HL}(4, A, B) reduces to the class S H,(n, 4, B).
In particular, let
HL,(A,A,B) = HL'(1, A, B) N TH,. (1.13)
In this paper, convolution propertles coefﬁment conditions, distortion estimates, extreme functions
and convex combination of the class HL | (/1 A, B) are obtained. On the one hand, the results presented
here generalize the results of Yasar and Yalgln [8]. On the other hand, we obtain some new results on
sufficient convolution condition of the class.
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2. Basic properties

First of all, we provide the necessary and sufficient convolution conditions.

Theorem 1. The function F € HL;’,(/l,A, B) iff

P
DiF() * ) 1P D(0u(2) + B, (2) # 0 (z € W),
pu=1

where .
®,(z2) = (1 + By)pu(z) — (1 +A)()1—_Z xeCll=1

and ¢,(z) given by (1.11).

Proof. Let F € HL/(A, A, B). According to Definition 1 and the subordination relationship, there exists
an analytic function w satisfying w(0) = 0 and |w(z)| < 1, such that

D""F(2) 1+Aw®)
D'F(z) 1+ Bw()’

(zel),

which is equivalent for y € C with |y| = 1

D''F(z) 1+Ay
D'F() = 1+By

2.1

Now for
p —
DiF(z) = DiF 20J‘”(—Z +— )
"F(2) = D) (z)*;m ot

and

P
Dy FQR) = DiF @)+ ) 1P () + 0u3),
pu=1
where ¢,(z) is defined by (1.11).
The inequality (2.1) yields

(1 + By) (D' F(2)) — (1 + AY) (D F(2))

(1+Ay)

1+ Ay)z
I_ZZ+<1+B)«><,0,1<Z>—M

-z |

p
= DiF(D) * ) 1P 10+ Bgu(2) -

u=1
£0,

which is the required necessary condition.
The sufficiency of Theorem 1 is proved as follows.

Let B
DF(z) 1+ Az
2 and NG =
DiFE @ =175

M(z) = (z€U).
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It is clear that M(z) is harmonic in U and N(z) is univalent in Y. From (2.1), it is easy to see that
M(U) N N(OU) = 0, that is, M(U) c C\N(OU). By M(0) = N(0) = 1, we have M(U) c N(U).
According to the subordination relationship, we obtain

M(z) < N(2),
that is,
Di''F(z) 1+A
L F@) < Z, (z e U).
D F(2) 1+ Bz
Therefore, we complete the proof of Theorem 1. O

Theorem 2. Let A > 1 and a,, = 1. For the class of HL;’,(/l,A, B), the sufficient condition on the
coefficients of a function F of the class to be sense preserving and univalent in U is

P o
D2 A B) (ks + b popl) < 2A = B), (22)
pu=1 k=1
where
¢Z’H(/1,A, By =[A-B)+(1-B) (k=1 +2(u-1)A][1+(k-1DA+2u-1)1]". (2.3)

Proof. In order to prove F is sense preserving. We only need to show
Jr =|F. = |F* > 0.
For z # 0, we have

gD

Jr(@) = (F.| + |F- |>[

I+ Z kag, 2" + Z Z[(k 1= Dagpyn? + (= Dby 2]

u=2 k=1
Zkbkp +Z -

|2(y 1
Z[w Vet poin 2+ ket 1 = Dby o2 ]H

p
> (F+IFD|2 = 3 D20 = 1)+ Bkt + 1k )|
pu=1 k=1
L& ¢ (4, A, B)
> (IF.| +IFz)|2 - — syt | + b oyt ])
[ yzz;kzzll (A B) k,p—p+1 k,p—p+1 ]

> 0.

It is easy to show that Jz(0) > 0. Thus, F is sense preserving.
For 71,2, € U and z; # 25, according to the condition (2.2), we get

P
|F(z1) = F(z2)l = Z(Izllz(“_”fp—yﬂ(zl) — 122 fyp1(22))

p=1
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|21 1 DZE — |z Dz ")

p (e8] — — (e8]
2 z -
Z Z Ak, p—p+1 + Z Dip-p+1
i1 —22 =1 i1 —22

p
> |z - Zzl[l b1l = Zk(|ak,,| + by - Z D= 1)+ )iyl + |bk,p_y+1|>]
2 k=1

© ¢ (LA, B)

e COSNIE )

Therefore, F is univalent in U.
According to Definition 1 and the subordination relationship, we have F € HLZ(/I,A, B) iff

<1l@zelU),

D' F(z) — DF ()
AD!F(z) — BD"*'F(z)

that is,
|JADF(z) — BD""'F(2)| — ID""'F(z) — D"F(z)| > 0 (z € U). (2.4)

Thus, from (1.10) and (2.4) we get
|JAD'F(z) — BD' F(2)| — D' F(z) — DiF(2)|

2 (A= B)lz| - Z(l + (k= DA)"[(A = B) + (1 = B)(k = DAl plzl*

- Z(l + (k= DA)"[(A = B) + (1 = B)(k = DIy pllzl*

p

= 1P B A Bk ol + Vo oy 112
u=2 k=1
p

> 12 = B = D 3 01,4 A Bt pptl + i),
u=1 k=1
Consequently, we infer that the sufficient condition (2.2) for F € HL) (4, A, B) holds true. |

Theorem 3. The coefficient condition (2.2) characterizes the elements of i—fi;(ﬂ; A, B).

Proof. By Theorem 2, the sufficient part is true. For the necessary part, let F' € ﬁi;(ﬂ; A, B). By (1.12)
and the relationship of subordination, we get
DT‘ F(z) - D F(2)
AD'F(z) — BD'*'F(2)

<1 (zeU), (2.5)
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that is,

p o
Z |Z|2(ﬂ_l) Z Nk,y(lak,p—y+llzk + |bk,p—u+llzk)
u=1 k=1

<1,
[} (o) p [}
2(A-B)z - kZI My lag pl2¢ - kZl My 1 |by |75 — 22 |2]2#=D kZI My (g p—p1125 + b pps1175)
= = 'L[: =
(2.6)
where
My, =0+ (k=DA+2u—-1DAD)"[(A-B)—B((k— DA+ 2(u—-1A)]
and
Nepy=0+(k—=DA+2u—- D" [(k— DA+ 2(u—-1)A].
From (2.6), we have
P 0
Z |Z|2('u_l) Z Nk,u(lak,p—u+llzk + |bk,p—y+llzk)
=1 k=1
Re - - > - <1,
(A-B)z - k22 My lag plz* - kZI My lby |75 — 22 |z]2¢=D kzl My (g p—p1125 + 1br p-p1125)
= = ‘L[: =
2.7
which is equivalent to
P (o]
Z—:l |Z|2('u_l) kz_ll Nk,}l(lak,p—}l-i-llzk + |bk,p—ﬂ+llzk)
Re — <1. (2.8)
2(A - B)Z - Zl |Z|2(ﬂ_l) kzl Mk,ﬂ(lak,p—ﬂ+llzk + |bk,p—ﬂ+llzk)
ll: =
Letz=r(0<r<1),from(2.8), we have
p o
D0 61, A B) (ks + b oyl 7 < 2(A - B), (2.9)
pu=1 k=1
where gbz#(/l, A, B) is given by (2.3).
Setting r — 17 in (2.9), we will get (2.2). Thus, the proof is completed. O

Theorem 4. Let |zl =r < 1. IfF € ﬁlj;(/l;A, B), then

P V4 n
2(A—-B) 1#(/1"4’ B) 2
F < _ +1by +|— - _— _ +1by,_
| <z)|_[;(|al,p il + b1, ,HID]r ( A B ; AR By tputl + b1pi D7

and

]r_( 24-B) & 9,A4AB)

_ e
T LAB) L LA B e |1,pu+1|)}r

p
F (D)l > (2 = > oyt + b1y

u=1

where ¢Z,ﬂ(/l, A, B) is given by (2.3).
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Proof. For F € ﬁZZ(A;A, B), we obtain

[ee)
2
>t + ki)

1 k=2

Mw

)
IF@)I < (Z(|a1,p—ﬂ+l| + |b1,p—,u+l|))r + (

u=l1

=
1l

Using the fact that ¢; (4,A,B) is an increasing function with respect to k and p satisfying
¢Z’#(/1,A, B) > ¢g,1(/l’ A, B), we haVe

|F(z)| < (Zp:(lal,p—pnl + |b1,p—ﬂ+1|))r (¢2(1(4/1 ABL) Z
21

p
/J:l M= 1 k=2

= (LA B)

g | )

Applying Theorem 3, we have

)4 )4 n
2(A - B) 1,4 A, B) >
FQ)| < . ) —(1— T | + b )
FQ) (;qal,p ) e ; s =gy i + b )

Using the same methods above, we get

Mu

P o0
@12 (1= 11,1 = Y Gt + 11D = Zaak,p_m v |bk,,,_,,+1|>)r2
u=2 k=2

=
Il
—_

P P
2(A -
> (2= D21yt + o1 D) - FGAT (1 Z 2(A 5 (|a1,,,_ﬂ+1|+|b1,,,_#+1|>)r2
u=l1 u=
Hence the proof is completed. O

Corollary 1. Let F be given by (1.1). If F € HL (%; A, B), then
{w ol < p} c F(U),

where
(/l A, B)

P
=2[1- e
g ( u A, B>)+Zl[¢21u AB )("“w il + 151
and ¢, (A, A, B) is given by (2.3).

Theorem 5. If the function F is given by (1.1) and ¢Z,ﬂ(/l,A, B) is given by (2.3), then F lies in
HL,(X; A, B) if and only if

p
F(z) = Z Z (Xk,p—y+1hk,p—y+1(z) + Yk,p—y+1gk,p—y+l(z)) ,

pu=1 k=1

where

2(A-B)

k
—7 (k> 2),
4 (LA, B)

hi p(2) =z, hip(z) =2 —

AIMS Mathematics Volume 6, Issue 1, 569-583.
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2(A-B)
2D=2— =7 (k> 1),
St o (LA, B)
. 2(A-B)
h :_2(;11)—k <;k>1,
kp-u+1(2) = 2= 2] ¢Z#(/1,A,B)Z( <u<p )
2u-1) 2(A - B)

8rp-u+1(2) = 72— 2] FQR<u<pik=1)

¢, (LA.B)

and

p
Z Z(Xk,p—/ﬁl + Yk,p—y+1) =1, (Xk,p—,u+1 >0, Yk,p—,u+1 > 0).
=1 k=1

In particular, for k > 1 and 1 < u < p, {h p—u1(2)} and {8k p-,+1(2)} are the extreme functions of the
class H LZ(/l; A, B).

Proof. Since
p
F(Z) = Z Z (Xk,p—/.l+1hk,p—ﬂ+1(z) + Yk,p—u+1gk,p—u+1(z))

_ 24-B) . 4, \ _24-B) .,
R quklu W Z%(A,A, By

P
24-B)
— g ||2(/1 1)§ ¢ (AAB) kp,u+1Z +Ykp#+12]
ko

and

o 91 (LA, B) 2(A-B) N > G (LA B) 2(A-B) v
£ 2A-B) ¢ (LAB T L 2A-B) ¢ (LAB)

i > ¢ (A B)  2(A - B)

+ T [Xk,p—u+1 + Xk,p—y+1]
sz k=1 2(A - B) ¢k,}1(/l’ A’ B)
P b [
= Z Z(Xk,p—,u+l + Yk,p—u+1) + Z(Xk,p + Yk,p) + Yl,p
=2 k=1 =2
<1-X,,<1

Using Theorem 3, we obtain that F € EZZ(/I; A, B).
For F € f—I‘lj?,(/l;A, B), let

@ (4, A, B)
e >2
k,p 2(A B) |ak,p| (k = ),
¢r1 (4, A, B)
i —— >1
k,p 2(A B) |bkp| (k )
¢y (LA, B)
X p-ps1 = mlak,p—u+ll R=su<pk=1),
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¢ (LA, B)

by p— 2<u<spk>1
Z(A—B) |k,p/4+1|( SHU=p )

Yipsr =

and

(Xk,p—p+1 + Yk,p—y+1) - Z(Xk,p + Yk,p) - Yl,pa
1 k=2

Me

P
Xip=1->

u=2
where X; , > 0. According to Theorem 3, we have

>~
Il

Z(Xk,p—;zﬂhk,p—yﬂ(z) + Yk,p—p+1gk,p—u+1(z))-
k=

M=

F(z) =

Il
—_
—_

7

Thus, we complete the proof. O
Theorem 6. The class ﬁi;(/l; A, B) is convex.

Proof. Suppose F(z) € I—TZI;(A;A, B), where

(5]

oo )4 o
k —k 2(u-1 k|3 _k .
Fi) = 2= Y lay It = Y by plt = Y 1P (laiepuot e + iyt ) (= 1,2,-40).
k=1 u=2 k=1

k=2

Applying Theorem 3, we obtain

p o
D A A B oyt + i) < 2(A - B), (2.10)

pu=1 k=1

where ¢>Z#(/LA, B) is given by (2.3).
For 7, t; =1, 0 < t; < 1, we can write the convex combination of F; as follows

(S

0 0 p 0 0

k & 2u-1 k k
D= 2= 3 tllakpl + b l21)= D P Y (D il el + ik poi21).
_ 2,

i=1 k=2 i=1 k=1 i=1

From (2.10), we obtain

VS 9 (AAB) (&
Z Z m . ([ZZ] ti['aik,p—/,[-{-l + |bik,p—y+1|])

= ¢ (1, A, B)
ﬁ : (laik,p—,u+1| + |bik,p—y+1|)

Using Theorem 3, we get >, t;F; € H~LZ(/1;A, B). Therefore, the proof is completed. m]

Remark 1. In particular, let A = 1 -28 (0 < B8 < 1)and B = —1. Then Theorem I, Theorem 2,
Theorem 4, Theorem 3 and Theorem 6 in [8] are particular cases of Theorem 2, Theorem 4, Theorem
5 and Theorem 6.
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3. Convolution

First of all, we provide a new theorem for convolution of the class ﬁi:,(/l; A, B).

Theorem 7. Let A > 1, p € {1,2,...}, A p_ys1 = A1 ppys1 = 02 < pu < p)and By p_ys1 = by pys1 =
0(1 < < p). IfF. G € HL,(A; A, B), then F G belongs to the class HL,(1; A, B), where ¢; (1, A, B)

is given by (2.3) and
¢5,(1,A, B) > 2p(A - B).

Proof. Let F,G € ﬁi;(ﬂ;A, B). Then the convolution F * G is in T-I‘EZ(/l; A, B) if

)

pu=1 k=2

= ¢, (LA B)

2(A B) (lAk,p—,u+1||ak,p—y+1| + |Bk,p—,u+1||bk,p—y+l|) <L

For F,G € ﬁZZ(ﬁ; A, B), we have

i i w(lakp—u+l| * bep-pnl) <1
i 24-B |

and
i i W(Mkrwﬂ + By p-yil) < 1.
o= 4B | |

From (3.3) and (3.4), we get

“ ¢ (A, A,B)

2(A — B) (|ak,p—y+l| + |bk,p—y+l|) <1

k=2

and
© ¢ (4,A,B)

m(lAk’P—wﬂ +|Bip-us1l) < 1.

k=2

Applying Cauchy-Schwarz inequality to (3.5) and (3.6), we obtain

' (LA B)

) Sah A il + Byt Dt ppot| + g i < 1.

Due to

|Ak,p—ﬂ+1||ak,p—p+1| + IBk,p—p+l||bk,p—p+l| < (lAk,p—p+l| + IBk,p—/t+l|)(|ak,p—u+1| + |bk,p—,u+l|)9

from (3.7) and (3.8), we have

# (LA, B)
Z 2(A B) \/(IAk,p—;Hl”ak,p—/Hll + |Bk,p—u+lllbk,p—p+1|) < 1.

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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From the above inequality, it is easy to see

& #,(A4A
k,
Z Z ZIZA B) \/(l kp-p+i 1@k p—pr1| + 1B p—yst 1D pyr1]) < p

pu=1 k=2

and

2(A - B)

\/(IAk,p—y+1”ak,p—/J+l| + B p—pr i 1br p-pr1]) < W

In order to obtain (3.2), we only need to show

1
(lAk,p—/J+l||ak,p—;1+l| + |Bk,p—p+l”bk,p—,u+1|) < ; \/(IAk,p—,u+l”ak,p—/J+1| + IBk,p—p+l||bk,p—/4+1|),

that is,

1
NVl + B gD <

By (3.10) and (3.11), (3.2) holds true if

24-B) _1

$ (LAB) ~ p’
Foru > 1and k > 2, we can get

rLlikn{(pZ#(/la A’ B)} = ¢g,1(/la A9 B)

Thus, (3.2) holds true if

2(A - B) < 1

" (LAB) " p’
So we get the condition (3.1) of Theorem 7 and complete the proof of Theorem 7.
Finally, we discuss the convolution properties of the class HLZ(/l; A, B).

Lemma 1. (see [19]) Let -1 < B, < B, <Ay <A, < 1. Then

1+A2Z < 1+A12
1+Bz 1+ Bz

(zeU).

Remark 2. Obviously, from Lemma 1, we get (see [8])
HL (A, A,B) C HL,(4;1 = 2B,-1) = SHy(n, 4,B).
Lemma2. Let A, >4, =21, —1<B <By <A, <A L1, pE {1,2,...}. Then

ﬁz;(ﬁz;Az, By) € ﬁZ(/ll;Ab By).

(3.9)

(3.10)

(3.11)

AIMS Mathematics Volume 6, Issue 1, 569-583.
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Proof. Let F € ﬁZ(ﬂz;Az, B»), then ﬁlj’;(/lz; A,, By) C ﬁZZ(ﬂl;Au By) will be proved if we can show

PP el P& g (A A, By)
k, .
Z m (|ak,p—/1+1| + |bk,p—p+]|) < Z TRy

|ak,p—p+1| + |bk,p—;1+1| s (312)
pu=1 k=1 u=1 k=1 2(Ay = By) ( )

or equivalently
¢y (A1, A1, By) B ¢y (A2, Az, By)

Al-BL = A,-B
Since F € HL (A2 A2, B),A> 1, —1 < B, < B, <A, <A, <1, pe{l,2,...}, from (1.12) and
Lemma 1, we have

(3.13)

D F(2) lrAx 1+Ax
DﬁzF(z) 1+Bz 1+ Bz

(zeU),
or equivalently - -
HLp(/lg;Az,Bz) c HLp(/lz;Al,Bl). (314)
Using Theorem 3 and (3.14), we get

¢y (A2, A1, By) - ¢y (12, Az, By)
Al — B - Ay — By

(3.15)

Because (/)Z’ﬂ(/l, A, B) is an increasing function of A4, so from (3.15), we obtain

¢Z,#(/115AlaBl) < ¢Z,ﬂ(/12’A19B1) < ¢Z,IJ(/12’A2’ BZ)
A — B - A — B; - A, — B,

and so (3.13) is established. Also, using (3.12) and Theorem 3, we have F € ﬁZZ(/h;Al, B;). The
proof is completed. O

Theorem 8. Let 1, > 1, > 1, —1<Bl<Bz<A2<A1<1p€{12 }Alp#+1—alpﬂ+1 0@2<
u<p)and By, i1 =byp 1 =01 Spu < P) IfF eHL, »(A23 A2, By) and G € HL, »(A13 A1, By), then
the convolution of F and G is in the class HLp(/lz,Az, B,) and

ﬁ;(ﬂz;Az, By) € ﬁZ(ﬂl;Al, By).

Proof. Let F € HL;(/lz;Az,Bz) and G € HL’;(/ll;Al,Bl), k> 1, 1 < u < p. Then from Theorem 3,
for k > 2, we get
2(A; - By) 2(A; - By)
|ak,p—;1+1| < n <
¢k,‘u(/12’A2’ BZ) (AZ - BZ) + (1 - Bz)(k - 1)/12

<1 and |bgppi] < 1
and

204 -B)  _ 2(A - B)
¢ (A, AL B (A =B+ (1= By)(k— D4,

And so, we conclude that

|Ak,p—,u+l| < <1 and |Bk,p—u+1| <L

Zp: ¢y (A2, Az, By)

ST ks WAk ]+ BB

pu=1 k=2

AIMS Mathematics Volume 6, Issue 1, 569-583.



582

"y & b (A2, Az, By)
k,
< D D e =g kel bl

u=1 k=2

Applying Theorem 3 and Lemma 2, we obtain (F * G)(z) € T{IZ(/IQ;AZ, By) C ﬁ;(/ll;Al, B)) and
so we complete the proof of Theorem 8. O
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