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1. Introduction

In this paper we investigate the long-time dynamics of solutions for the quasilinear viscoelastic
equation with nonlinear damping and memory

P — Aty — @Au+ [t = $)Au(s)ds + f(u) + g(u) = h(x),
ulpo =0, (1.1)
u(x,0) = up(x),  u(x,0) = u(x),

where Q is a bounded domain of RY(N > 1) with smooth boundary 6Q, uy is the prescribed past history
of u.
Problem (1.1) can be seen as an extension, accounting for memory effects in the material, of
equations of the form
f(u)uy — Au — Auy, = 0. (1.2)

This equation is interesting not only from the point of view of PDE general theory, but also due to its
applications in Mechanics. In the case f(i,) is a constant, Eq (1.2) has been used to model extensional
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vibrations of thin rods (see Love [1, Chapter 20]). In the case f(u,) is not a constant, Eq (1.2) can model
materials whose density depends on the velocity u,. We refer the reader to Fabrizio and Morro [2] for
several other related models.

When p = 0 and Au, is dropped in (1.1), the related problem has been extensively studied and
several results concerning the global existence, decay of global solution and finite time blow up have
been established. In this direction, we refer the readers to see Ref. [3—12] and the references therein.

Now let us recall some results concerning quasilinear viscoelastic wave equations. In [13],
Cavalcanti et al. studied the following equation with Dirichlet boundary conditions

!
|ty — Auyy — Au + f g(t — s)Au(s)ds — yAu, = 0. (1.3)
0

A global existence result for y > 0, as well as an exponential decay for v > 0, has been established.
This last result has been extended by Messaoudi and Tatar [14] to the case y = 0.
In [15], Messaoudi and Tatar studied the following equation

!
| Puy — Auy — Au + f g(t — $)Au(s)ds = blul’u. (1.4)
0

By introducing a new functional and using a potential well method, they obtained the global existence
of solutions and the uniform decay of the energy if the initial data are in some stable set. In the case
b = 0in (1.4), Messaoudi and Tatar [16] proved the exponential decay of global solutions to (1.4),
without smallness of initial data, considering only the dissipation effect given by the memory. Liu [17]
proved that for certain initial data in the stable set, the solution decays exponentially, and for certain
initial data in the unstable set, the solution blows up in finite time.

Replacing strong damping by weak damping in Eq (1.3), several authors have studied the energy
decay rates of the related problems like

!
[ty — Auy — Au + f g(t — s)Au(s)ds + h(u,) = 0. (1.5
0

When h(u;) = u,, Han and Wang [18] investigated the global existence and exponential stability of
the energy for solutions for Eq (1.5). When h(u,) = |u,|"u,(m > 0), the same authors [19] proved
the general decay of energy for Eq (1.5). Later, Park and Park [20] established the general decay for
Eq (1.5) with general nonlinear weak damping.

Now, we list some important literature on the nonlinear evolution equation with hereditary memory
and variable density. Araujo et al. [21] studied the following equation

t
lu P uy — Auy — aAu + f u(t — s)Au(s)ds — yAu, + f(u) = h(x), (1.6)
and proved the global existence, uniqueness and exponential stability of solutions and existence of the
global attractor. Subsequently, Qin et al. [22,23] proved the upper semicontinuity of pullback attractors
and the existence of uniform attractors by assuming f(x) = 0 and taking a frictional damping u, instead
of strong damping —Au,. However, their argument for uniqueness rely on the differentiability of the
map o(x) = |x|’ at zero, which introduces the further restriction p > 1.
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Lately, the authors [24] established an existence, uniqueness and continuous dependence result for
the weak solutions to the semigroup generated for the system (1.6) in a three-dimensional space when
p € [0,4] and f has polynomial growth of (at most) critical order 5. Then, based on the [24], the same
authors [25] established the existence of the global attractor of optimal regularity for Eq (1.6) when
p € [0,4). Recently, the authors [26] proved that the sole weak dissipation (y = 0) given by the memory
term is enough to ensure existence and optimal regularity of the global attractor. Leuyacc and Parejas
[27] proved the upper semicontinuity of global attractors when p — 0" in (1.6). Li and Jia [28] proved
the existence of a global solution by means of the Galerkin method, establish the exponential stability
result and the polynomial stability result when the kernel u(s) satisfies p’(s) < —kjui(s), 1 < g < 3/2.

Motivated by the works above mentioned, our aim is to present the existence of global attractors for
the problem (1.1).

As in [29-31], we shall introduce a new variable 7' to the system which corresponds to the relative
displacement history.

Let us define

n'(x,s) = u(x, 1) —u(x,t —s), (x,5) € QxXR", r>0.

Note that
(X, ) = =15(x, 5) + u,(x, ).
Thus, the original memory term can be rewritten as

f u(t — s)Au(s)ds = foo,u(s)Au(t —s)ds = f°° u(s)dsAu — f“’ w()An' (s)ds,
— 0 0 0

(o8]

and Eq (1.1) becomes
Pty — Aty — (a - f i ,U(S)dS)AM - f " LA (5)ds + £u) + g(u) = ().
0 0

Assuming for simplicity that @ — fooo u(s)ds = 1, we have the new system

ot uyy — Ay — Au — f"" p()AR' (s)ds + f(u) + g(uy) = h(x),
0
7i(x, 8) = —175(x, 8) + u,(x, s), (1.7)
Ulsa =0, 7'lsa =0,
u(x,0) = up(x), u(x,0) = u(x), 1°x,s) =no(x,s),

where
up(x) = up(x,0), xe€Q,

uy(x) = 0o (x, D=0, X € Q,
770(x’ S) = MO(xa O) - MO(xa _S)a (x’ S) € QxR".

2. Assumptions and the main result

We begin with precise hypotheses on problem (1.7). Assume that

4
O<p<N if N>3 and p>0 if N=1,2, 2.1)
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Concerning the source term f : R — R, we assume that

f(0) =0, |f@) = fO < co(1 + [ul” + WP)u—v|, VYu,veR, (2.2)
where ¢y > 0 and A
O<p<N if N>3 and p>0 if N=1,2. 2.3)
In addition, we assume that
f@u>Fu) >0, VYucekR, 2.4)

where F(u) = fou f(s)ds.
The damping function g € C'(R) is a non-decreasing function with g(0) = 0 and satisfies the
polynomial condition

g9 >0, lg() —gW < er(X + [l + WDlu—vl, Yu,veR, (2.5)

where ¢; > 0 and

O<q<N > if N>3 and ¢>0 if N=12. (2.6)
With respect to the memory component, we assume that
peC®HNLIRY, f(s)<0, 0<u(s)<oo, (2.7)
and there exist kg, k; > 0 such that
f p(s)ds = ko, (2.8)
0
and
w(s) +kiu(s) <0, VseR™. 2.9)

As usual, || - ||, denotes the LP-norms as well as (-, -) denotes either the L*-inner product. Let 2; > 0 be
the first eigenvalue of —A in Hé Q).

In order to consider the relative displacement i as a new variable, one introduces the weighted
L*—space

M= L(R" Hy(Q)) = {g 'R - HN\(Q)

f u()IVEs)IRds < oo},
0

which is a Hilbert space endowed with inner product and norm

& Om = f W(S)VETOds and IR, = fo ()IVERds,
0

respectively.
Next let us introduce the phase space

H = Hy(Q) x Hy(Q) x M,

endowed with the norm
2 2 2 2
Izl = G, v DIz = [Vull; + [IVVI5 + (171l
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Then, the energy of problem (1.7) is given by

_ 1 o+2 1 2 1 2 1 112
E(@) = mlluzllp+2 + EIIVullz + EIIVutllz + Elln Iy, + \ (F(u) — hu)dx. (2.10)

According to the arguments [24] with slightly modified, we can obtain the following well-posedness
result.

Theorem 2.1. Assume the assumptions (2.1)-(2.7) hold. If initial data zo = (ug,u1,n0) € H and
h € L*(Q), then the problem (1.7) admits a unique global solution

z= (u,u;,n') € C([0, T], H), (2.11)

satisfying
u € L*(R"; Hy(Q)), u; € L(R*; Hy(Q)),
uy € L¥(R*; Hy(Q)), n' € LR M.

Remark 1. The well-posedness of problem (1.7) given by Theorem 2.1 implies that the one-parameter
family of operators S () : H — H defined by

S (t)z0 = (u(t), u(),17'(1) = z, t>0, (2.12)

where z = (u(1), u,(1),77'(¢)) is the unique weak solution of the system (1.7), satisfies the semigroup
properties
SO0)=1 and S+ s5)=8()oS(s), t,s =20,

and defines a nonlinear Cy-semigroup. Then problem (1.7) can be viewed as a nonlinear infinite
dynamical system (H, S (¢)).

Now we give the following result concerning the global attractors.
Theorem 2.2. Assume the assumptions (2.1)-(2.7) hold and h € L*(Q). Then the dynamical system
(H, S (1)) generated by (1.7) has a compact global attractor A C H.
3. Global attractors

Before presenting our results we recall some fundamentals of the theory of infinite-dimensional
dynamical systems which can be founded in the book by Chueshov and Lasiecka [32,33].

Theorem 3.1. A dissipative dynamical system (X, S (t)) has a compact global attractor if and only if it
is asymptotically smooth.

The proof of asymptotic smoothness property can be very delicate. Here we use the following
“compensated compactness’result [32,34].

Theorem 3.2. Let (X,S(t)) be a dynamical system on a complete metric space X endowed with a
metric d. Suppose that for any bounded positively invariant set B C X and for any € > 0, there exists
T = T(g, B) such that

IS(T)x = S(TMyllx < &+ Pr(x,y), Vx,yeB,
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where @7 : BX B — R satisfies

lim inf lim inf ®7(z,, 2,,) = O, (3.1)

for any sequence {z,},en in B. Then S (t) is asymptotic smooth in X.

In the sequel we will apply the abstract results presented above to prove Theorem 2.2. Firstly, we
show that the dynamical system (H, S(¢)) is dissipative. The next step is to verify the asymptotic
smoothness. Then the existence of a compact global attractor is guaranteed by Theorem 3.1. In
what follows, the generic positive constants will be denoted as C, while Q(-) will stand for a generic
increasing positive function.

3.1. Existence of an absorbing set

In this section, our aim is to show that the dynamical system (H, S (¢)) is dissipative. To this aim,
we first give some priori estimates used later.

Proposition 3.1. For any initial data zo with ||zo|ll < R, we have the uniform estimate
IVull; + Va3 + 1715, + IVuall; < QR), V> 0.
Proof. Multiplying (1.7) by (u;, 1), we obtain
E'(t) = —(g(us), ur) = (15, 1) m- (3.2)

Owing to (2.7), one can easily see that

1 0 d
M = 5 fg ( fo M(S)aIVn’(s)Fds)dx

1 00
=3 fg ( fo ,u’(s)|V17’(s)|2ds)dx. (3.3)

Combining (3.3) and (3.2), we have

1 00
E0) = -G+ 5 [ HOITHIRs (3.4)
0
Since u(s) is decreasing, g’ > 0 and g(0) = 0, we get
E'(t) <0,

and consequently
E(r) < E(0).

Applying Young inequality yields
[ e < G+ <-ime
udx < =||Vu —||All5.
o 4 27 3, Mk
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It follows promptly from (2.10) that
1 , 1 1 1 1
E(r) > mlluzllﬁiz + ZIIVuH% + EIIVuzlli + Elln’llfw + fQF(u)dx - /l—lllhlli
Then making use of (2.4) we obtain

mlluzllﬁiz + 7 IVully + SVl + EIIU’IIM SE®+ /l—lllhllz < EQ) + A_lllh”T

This means that
IIMIIIZE +[IVulls + [IVudlls + 1715, < QR), > 0. (3.5)

A multiplication of (1.7) by u, gives

f |, 1, dx + [Vl = - f Vu - Vu,dx = (', ) — f fwu,dx
Q Q Q

_fg(ut)uttdx+fhuttdx~ (3.6)
Q Q

Next, we estimate each term individually. By Holder inequality, Poincaré inequality and Young
inequality, we have

1 3
- f Vu - Vuydx < <[Vuglls + Z[IVull3,
o 6 2

1 3k
~01's uyn < IVl + 7°||n’||i4,

and | 3
fg huydx < VB + 5

Using Holder inequality, Poincaré inequality, Young inequality, and (3.5), we have

A3

- fg J@uydx < C(lullpr2 + IIMIIZi;)Ilunll,Hz
< C(IVully + IVullZ MVl
< £IVul} + Q)
and
- fg guudx < C(lluglge2 + IIMIIIZii)Ilunllqu
< C([Vulla + IIVMIIIZii)Ilunllz
< éIIVunH% +Q(R).

Substituting all the above inequalities into (3.6) and taking (3.5) into account, we derive that

1
f |,/ > dx + glqut,H% < Q(R).
Q

This means that
IVuall; < QR). (3.7)
In light of (3.5) and (3.7), we obtain the Proposition 3.1. |
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Now, we introduce the following two functionals

1
O(t) = — f |, u,udx + fVu,Vudx, (3.8)
p+1Ja Q
and 1 00
W(r) = f (Au, - |u,|"ut) f u(s)'(s)dsdx. 3.9)
Q p+1 0
Lemma 3.3. There exists a positive constant Cy, such that
, 1 2 v
(1) < —E(®) — <|IVull3 + CilIVull; + ——llu |5 - Cy f # ($)IVr (9)li5ds. (3.10)
4 P +1 P 0

Proof. A multiplication of the first equation of (1.7) by u gives

2
725 + IVudll3

d)'(t) = f(lutlputt — Auyudx +
Q p+1

:—||Vu||§+foo,u(s)(fAn’(s)u(t)dx)ds—ff(u)udx—fg(ut)udx
0 Q Q Q

1
+ fhudx + P 1||ut||,’0)j:§ + Va5
o

By Holder inequality and Cauchy inequality, we obtain

f u(s)( f An’(s)u(r)dx)ds<||Vu<t)||z f uHIVH lLds
0 Q 0
1
< g||Vu||§ + 2kolIVI7' 3

Using Holder inequality, Young inequality and Sobolev inequality, taking into account (2.5) and (2.6),
we arrive at

fg(ut)udx < f(l + [ Dlulluldx < CCL+ gl Dlluellgallully 2
Q Q
< C( + IVu DIV |Vl

1

< gIIVuH% + C(1 + IVu Ve |3
1

< gIIVuH% + QR)|IVu -

Combining the last two estimates, we end up with

) 1 3
(1) < N, |1 Z||Vu||§+C||Vut||§+2k0||17’||§w— f f(uudx + f hudx.

+2
p+1 p Q Q

Besides, in light of (2.9), we get

1
7134 < T # (I (9)l3ds. (3.11)
0
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Using (2.10), (2.4) and (3.11) yields

1 <
Q'(1) < —E@) - ZIIVullg + llluzllﬁﬁ + C1lIVuy i3 = Cy f 1 (OIV (s)li5ds.
0

This lemma is complete. O

Lemma 3.4. For any 6, > 0, there exists C, > 0 such that
W' (1) <6 CallVu@)llz = (ko = 61 Co)lIVu,(1)ll5 — %uu,(t)ngﬁ
+ kolll[3 = C» fo i 1 ($)IIV7 l15ds. (3.12)
Proof. Taking the time derivative of ¥(), in light of the first equation of (1.7), we get

V(1) = f (= lul” un+Aun)( f oo/l(S)n’(S)dS)dx
Q 0

’ fg(_ lstfb;t " A”f)( fo ) ﬂ(S)ni(s)ds)dx
= f ( —Au— fm u($)An' (s)ds + g(u,) + f(u) — h)( foo H(S)UI(S)ds)dx
o 0 0

o [ (B s [ moas)a

Next, we will estimate the right side of the above identity. Integrating by parts with respect to x and
using Young inequality, we obtain

—LAu(ﬁmy(s)n’(s)ds)dx:LVM-(Lmu(S)Vﬂt(S)dS)dX

2
<61|[Vull; +

461 ”77 ”M’

- fg ( fo mu(s)Anfmds)( fo st (s)ds)d f ( fo zdx

Jj=

N
kofz f ()'5'7(S)

J=

and

)dx

= kolln'lI%-

Applying (2.5), Holder inequality, Sobolev embedding inequality, Young inequality and Proposition

3.1, we obtain
f g(u»( f u(s)n%s)ds)dx: f ,u(S)( f g(u,>n’<s>dx)ds
Q 0 0 Q
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<Cf p() + O Dl Ollga2lln’ (llg2ds
0
<Cf (1 + IV DDV ()] oIV |12 d s
0
1 t
< 61QR)|IVull; + Elln 134
Analogously, but using (2.2) instead of (2.5), we have
f faof f (7 ()ds dx = f ) f Flapr (s)dx)ds
Q 0 0 Q
<Cf p()(A + NuOIE Dl 21y ()1l p2ds
0
<Cf u()(A + [[VuIDIVu@)|l2 IV |l2ds
0
1 t
< 61QR)(IVull3 + 4—51”77 134

Using Holder inequality, Young’s inequality and Sobolev embedding inequality, we get

_ f i f (o (s)ds)dx < f (ALl (llads
Q 0 0

< kollhll3 + Clirf ()11

On the other hand, since

f u(s)m(s)ds = - f u(s)m(s)ds + f u(s)u,(ds = f W ()’ (s)ds + kou,(2),
0 0 0 0

we find

fg( - tt’fbit + Aut)( Lm ,u(s)ni(s)ds)dx

_ 2_& p+2 foo ’ f t
= kol I IS + | | Ao (s)dx)as

1 © t
o1, /J(S)(fglut(t)lpu,(t)n (S))ds.

Applying Holder inequality, Young’s inequality and Sobolev embedding inequality, we obtain

f ,U'(S)( f Aut(t)n’(s)dx)ds < —f K IV, D11V (9)]l2ds
0 Q 0
u©) (%

< 0lIVu,(ll5 — 15, IR (s)l5ds,
1 Jo
and
L "(s) | ()P (1)’ (5) |d <——1 ) "l 3117 ]ps2d
o1, KON mOFu@n9)ds < === | - L Ol ol llorads
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O1(0) o) 1 foo "2
< - ! d
ot el oD Js K (SInll,,ds

< 81CIIVu |37V ~ € f © (S)IIVl13ds
0

< EQR)|IVu i3 - Cf # ()IVr1l3ds.
0
Collecting all the above inequalities and (3.11), we end up with

, ki
W) <6, CaIVUIE = ko = 6 NI = OIS

+ Collhll; - C, f # ()IVr1l3ds.
0

This lemma is complete. O

Lemma 3.5 (Absorbing set). Under the hypotheses of Theorem 2.2, the dynamical system (H, S (1))
corresponding to problem (1.7) has a bounded absorbing set.

Proof. Let us consider a perturbed functional

L(t) = ME(t) + e®(t) + ¥(1) (3.13)
where ®(¢) and W(¢) are the same functional defined in (3.8) and (3.9).
Since i 1
j; hudx < Z||Vu||§ + Z||h||§,
we get

E@) > mllutllﬁiz + 7 IVully + SVl + EIWIIM + . F(u)dx - /l—llthz.

Then making use of (2.4) we obtain
1 1
ZUIVally + IVally + 110 < EQ) + Z”h”g‘ (3.14)
Now we claim that there exist three constants «;, a,, b > 0 such that
a1 E(1) = bl < L) < a2E@) + bl|hII3. (3.15)

To prove this, we first note that

1
[D(1)] < CollVullz + IVull3) < 4C0(E(t) + /l—llhllﬁ),
1

1
[P0 < ColllVull3 + [IVull3) < 4c0(E(r) + ﬂ—nhu%).
1
Hence there exists a constant b > 0 such that

eD(1) + V(D) < b(E(t) + ||h||§).
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Then taking M > b, we get (3.15) withay = M —band a, = M - b.
Combining (3.4), (3.13), Lemma 3.3 and 3.4, we arrive at

L'(t) =ME'(t) + ed’(t) + V' ()

E
<—sE(1) - (ko _5,Cs - ecl)nwtu% - (— - mcz)uwn% + kollhI2

4
M " e
13 (eC + Cy) w(IIVy|l3ds.

0

Choosing &, 6, > 0 small enough and M > 0 sufficiently large such that

k0—51C2—8C] >0, 8—4(51C2>0, M—2(8C1+C2)>0,

then we have
L(t) < —eE®) + kollhll3,

which together with (3.15) implies that
, e be )
L) < ——L(@) + | — + ko] lIAll5.
(0%) (0%)

Integrating the above inequality over [0, ¢], we can derive

azko

L) < LOYe 5" + (1 - e‘fz’)(b ; )||h||§.

g
Using again (3.15) yields

1 k
Et) < 2E0)e 5 + (Zb e 0)||h||§.
(03]

al\" e
Recalling (3.14), we obtain

[[CR7RTB] S %Em)e‘fz’ + Ry,
where

RS = (26 + 22 )ihi + b

This shows that any closed ball B(0, R) with R > R is a bounded absorbing set of (H, S (t)). The proof

of Lemma 3.5 is now complete.

O

As a straight consequence of Lemma 3.5, we have that the solutions of problem (1.7) are globally
bounded provided initial data lying in bounded sets B C H. Namely, let z = (u, u,, ') be a solution of

(1.7) with initial data zo = (ug, u;, 7o) in a bounded set B. Then one has

llzllee < Cp, V220,

(3.16)

where Cp is a constant depending on B. Lemma 3.5 also ensures the existence of bounded positively

invariant sets.
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3.2. A stability inequality

Lemma 3.6 (Stabilizability). Under the hypotheses of Theorem (2.2), given a bounded set B C H, let
21 = (u,u, ') and zp = (v, vy, &) be two weak solutions of problem (1.7) such that z,(0) = (ug, uy, o)
and 7,(0) = (vo, vy, &) are in B. Then

llz1(5) = 22Dl <Cze™11z1(0) = 22(0)II3,

!
+Cp f e O(IW@llpsz + IW@lps2 + W Dllps2 + W (Dllp12)d,
0

where w = u — v and vy, Cy are positive constants depending on B.
Proof. Letus write w = u—vand ' =n' — & Then (w, ") satisfies
Aw + Awy + [ p()AL(5)ds = [Py — vy + F) = FO) + g(ug) = g(vy),
G =—Li+ws (3.17)

w(0) = up—vyg, wil0)=u—vi, &o=mno—&.

Now we consider the functional
1 » 1 2 Lo
E,(1) = 2||VWt||2 + 2IIVW||2 + 2||§ I (3.18)

and its perturbation
G(t) = ME () + ep(t) + Y(1), &>0, (3.19)

where

¢(1) = - f Aw,(w(t)dx,
Q

W) = fg [Aw,—pi1(|ut|Pu,—|v,|ﬂv,>]( fo wu(s){’(s)ds)dx.

We divide the remaining of the proof into five steps. Hereafter, we use Cp to denote several positive
constants.
Step 1. For M > O sufficiently large, there exists &y such that

M IM
?Ew(t) <G < TEW(t), t>0, e€(0,¢&)l. (3.20)
To prove this, we first observe that
1 2 1 2
O < FIVwlly + SIVWilly < Eu(®).
Besides, using Holder inequality, Sobolev inequality, Young inequality and (3.16), we can derive that

Il//(t)|<f0 HOIVW LIV (5)ll2ds
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+2° f LAl + vl Dlwillp2ll o s2ds
0
k 1 «
<50||sz||§ + 5|I§’|IiA + Cgf ()Yl + IVvIDIVW LIV 2 ds
0
k 1 1
<EOIIVW,II§ + §||§t||i4 + CpllVwill; + Ellé’llfw
<CE, ().
Collecting the above two estimates and (3.19), we obtain
(M—-Cp—e)E, (1) <G1t) < (M+Cp+e)E,(2).

Now let us put &g = M/2 — Cg. Then for all € < ¢, the inequality (3.20) holds.
Step 2. There exists a constant C; > 0 such that

’ 1 * ’
E,® <3 f # (OIVL (5)Ids + Calwillpsa + IWillps2)- (3.21)
0

In fact, differentiating (3.18) with respect to ¢ and using (3.17), we have
E () = fg (Vilvie = P )widx — fg (f@) = f)wdx
- L (8(ur) — g(v))wdx + % fo i H IV (s)lI3ds. (3.22)
Using Holder inequality, Sobolev inequality, estimate (3.7) and (3.16) , we have

f(|Vt|thz_|ut|putt)Wtdx<f|vt|p|vtt||wt|dx+f|ut|p|utt||wt|dx
Q Q Q

< (AWl SlVallpsa + el Hllutallos2)Iwel s
CrUIVViIBIVVallz + IVl Vit 1) Wil

<
< Callwillp+2-

Combining (2.2), Holder inequality, Sobolev inequality, and estimate (3.16) yields

- f(f(u) = fONwdx < Cp(l + lully, + VI DIwllpsallwellpo
Q

< Cp(1+[IVally + IIVVIDIVWilalwil 2
<

CB”Wt”p+2-

Since g is a non-decreasing function, this yields

L(g(ut) — g(v))w,dx > 0.

Inserting last three estimates into (3.22), we arrive at
’ 1 * ’
E. (1) < Ef 1 (DIVL(9I5ds + Crllwillpsz + Willpr2).
0
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Step 3. There exists C4 > 0 such that

1 00
¢'(1) < —E\(0) - ZIIVWH% + Ca(Wllpra + IWllp+2) + CalVwill; — Cy f # (OIVL(9)lds.
0

Taking the derivative of ¢(¢), it follows from (3.17) that
o'(t) =- fQAw,,de +[IVwill3
= fg (vl = lu P u)wdx — fg (f(w) = f(m)wdx — fg (8(u;) — g(v,))wdx
+ fo ) u(s) fg AL (s)wdxds — Vw3 + [[Vw,I[3.
From Hoélder inequality, Sobolev embedding, estimate (3.7) and (3.16), we have

f(lv,lpv,,—|u,|pu,,)wdx<f|vt|p|vt,||w|dx+f|ut|p|u,t||w|dx
Q Q Q

< (Wl o lvallosa + el lletallps2) Wl
< CIVVlBIIVVall + IVud BV ul )Wl

<
< Calwllpsz.

Applying (2.2), Holder inequality, Sobolev embedding, and estimate (3.16), we get

- L(f(u) = fONwdx < (L4 (lull? , + VI Dlwllpeal Wl

< Cp(1 +[IVully + IVVIDIVWI W42
<

CB||W||p+2-

(3.23)

(3.24)

Similarly, in light of (2.5), Holder inequality, Young inequality, Sobolev embedding, and estimate

(3.16), we obtain
- fg (g(u) — gv)wdx < Cp(L + llu|I] ., + V17 DlIwillgealwllgra
< ClVw L[Vl < %IIVWH% + CllVwill;.
Using Young inequality gives
fo ) u(s) fg AZ'(s)wdxds < %uwn; + 2kollZ" 3
Combining these six last estimates with (3.18) we end up with
¢'(t) < —E,(1) - %IIVWII§ + CyllVwill; + (% + 2kl + Co(lWllpra + [Wllp42),

which together with (3.11) implies that inequality (3.23) holds for some C4 > 0.
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Step 4. For any 6, > 0, there exists Cs > 0 such that

k 00
Y0 < - ZOIIVW;H% +26,|[Vwl3 = Cs f # (DIVLI5ds. (3.25)
0

Taking derivative of /(¢) and using (3.17), we derive that

Y0 =— f Aw f H($)¢ (s)dsdx — f f H($)AL (s)ds f H(s)¢' (s)dsdx
Q 0 QJO 0

+ L (f@) = f(v) fo H(s)¢' (s)dsdx + L (8(u;) = g(vy) j; H(s)¢ (s)dsdx

+wat fw,u(S){,'(S)dsdx—Lf(lutlpuz—lvtlpvt) fooﬂ(S)éf(S)dsdx
Q 0 p+1Jo 0

6
V4. (3.26)
=1

i

Applying Holder inequality, Young inequality, Sobolev embedding, estimate (3.7) and (3.16), we get

k
Ay < 8|IVwl + ﬁnﬁni@ (3.27)
As < kol 13 (3.28)

Ay <371+ [lull?, + IIVI|ﬁ+2)|IWI|p+zf H(IIL ($)l]pr2ds
0

<CB(l+IIVMII§+|IVVI|§)IIVWIsz HONVE (9)llds
0

Cs

< 6lIVwI + v
2

1134 (3.29)
Ay <291 + ||M||Z+2 + ||\/||f’1+2)llwzllf,+2f0 UL ()Nl g42ds
< Cp(1 +[|Vulls + IIVVIIZ)IIVWAsz UV (9)llds
0
<k0||V 24 CAllZR 3.30
S Z Wt||2+ B”g”M- (3.30)

From (3.17), one can easily see that

fo H(s)¢(s)ds = — fo H(s)(s)ds + fo p(s)wds = kow; + fo ' ()5 (s)ds.

Hence in light of Young inequality we obtain

As < —ko Vw2 f L DIV 5)lads
0
3k, 0) ™
<‘TO”VW’”§‘%) f W (SIVE(s)IRds. (331)
0
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By the monotonicity of function x — |x[°x (o > 0), we get

1

o+ 1 f(|u,|put = vfvow,dx < 0.
Q

Using Holder inequality, Young inequality and estimate (3.16), we obtain

Ag < — 2”[ KUl + WA DI Ollpslln ()llpe2ds
0

<=2 f K UV, + IV ADIVw Ol 1V (9)llads
0

1(0)

< IVwi)l; = Cs f # NIV ()lds. (3.32)
0

Inserting (3.27)-(3.32) into (3.26), (3.11) we end up with

k (o]
Yt) < - ZOIIVWAI% + 26,|[Vwll; — Cs f # ($)IVZ3ds.
0
Step 5. Combining (3.21), (3.23), (3.25) with (3.19), we have

G/ () =ME/(1) + £¢/(1) + /(1
<= (D)~ (2~ CITw B
~ & - 20w + (G - - o) fo IV IRds
+ OB, M, )l + il + Il + Ill2). (3.33)

Firstly we fix € > 0 such that eC4 < ky/2. Then taking 6, > 0 such that , < &/8. For fixed € and 9,
we choose M > 0 so large that M > 2(eC4 + Cs). Then (3.33) along with (3.20) give

G' (1) < = eE,(1) + Cp(IWllpsa + Wl ps2 + [IWillpsz + [Iwillp42)

2¢e

<- =
3M

G@) + Cp(Wllps2 + Wl a2 + Wellps2 + Wil p2)- (3.34)
Integrating (3.34) over (0, ) with respect to ¢, we get
A
G(1) < G(0)e 3" + Cy f eI (Wllpaz + [Wllpra + Willpsa + willps2)dr,
0

which together with (3.20) implies that

!
E,(t) <3E,(0)e™ + CBf eI (Wllpsz + IWllpsz + Willpea + lIwillpi2)dr,
0

where y = 2g/3M is a positive constant. Notice that the functional E,(f) is equivalent to the norm of
H, the proof is complete. m]
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3.3. Existence of global attractor

Lemma 3.7 (Asymptotic smoothness). Under the hypotheses of Theorem 2.2, the dynamical system
corresponding to problem (1.7) is asymptotic smooth.

Proof. Let B be a bounded subset of H positively invariant with respect to S(¢). Let S(#)z;(0) =
(u,u;, ") and S (1)z(0) = (v, v, &) be two solutions for problem (1.7) corresponding to initial data
71(0), z2(0) € B. Given & > 0, we can choose T > 0 so large that Cge™" < &. We claim that there exists
constant Cgr > O such that

llz1 = 22llae < € + P7(21(0), 22(0)), V¥ 21(0),22(0) € B, (3.35)

with

T
D1(eh 2) = Con fo () = VDI 1p + D) ~ V(DI

1
2

1l () = viOIR + () — v,(r>||,%+2>dr) . (3.36)

Indeed, from Lemma 3.6, we have

T % T
Ie1(T) = 22(Tll <Cpe?" + Ca f e ar f (lu(®) = (IR,
0 0

() = VIR, + (0 = (IR + () - v,(f)nf,ﬂ)dr)i

T
<Cpe?" + CBT( j; (le(r) = V@I, + llu(T) = V(D7

1

() = V@I + () = v,<r)||i+2>dr)2,

and consequently (3.35) and (3.36) hold.

We are left to prove that ®; satisfies (3.1). Indeed, given a sequence of initial data z, =
(ug, uj,my) € B, we write S()z, = W"(1),u;(t),n™). Since B is invariant by S(z), ¢ > 0, it follows
that (u(¢), u}'(t), ") uniformly bounded in /. Namely,

(u", u!', ™" is bounded in C([0, T1; Hy(Q) X Hy(Q) X M), T > 0.

Then by compact embedding H)(Q) — L/**(Q) and Hy(Q) — L\**(Q), there exists a subsequence
(", u, 17" such that

u" and u; converges strongly in C([0, T']; L2 (Q));
u" and u;converges strongly in C([0, T']; L? *2(Q)).

Therefore,
T
lim lim (IIM"(T) — " (DI}, + 1 (1) = u]" (DI,
n—00 m—oo 0
(D) = 0O 2 + 1) = Ol Jor = 0,
which implies (3.1) holds. Then asymptotic smoothness follows from Theorem 3.2. O
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Proof of Theorem 2.2. We first note that Lemmas 3.5 and 3.7 imply that (H,S(7)) is a dissipative
dynamical system which is asymptotically smooth. Then the existence of a compact global attractor A
to problem (1.7) in the phase space H follows from Theorem 3.1. O
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