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Abstract: In a graph G, the distance between two vertices is the length of the shortest path between
them. The maximum distance between a vertex to any other vertex is considered as the eccentricity
of the vertex. In this paper, we introduce the first general Zagreb eccentricity index and found upper
and lower bounds on this index in terms of order, size and diameter. Moreover, we characterize the
extremal graphs in the class of trees, trees with pendant vertices and bipartite graphs. Results on some
famous topological indices can be presented as the corollaries of our main results.
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1. Introduction

All the graphs considered in the paper are simple, finite and undirected. A graph G consists of two
sets named as the set of vertices V(G) and the set of edges E(G). The number of elements in the vertex
set is called the order and the number of edges in the edge set is called the size of the graph G. For
a vertex u ∈ V(G), NG(u) is the set of adjacent vertices with u and is called the set of neighbors of u.
The number of element in NG(u) is called the degree of the vertex u in G and is denoted by dG(u). For
any graph with n vertices, the vertex with degree n − 1 is known as dominating vertex and the vertex
with degree one is known as pendant vertex. The distance between the vertices u and w, dG(u,w), is
the length of the shortest path connecting them. A path whose length is equal to diameter is called
diametrical path of G. For a vertex u ∈ V(G), the maximum distance between the vertex u and any
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other vertex of the graph G is called the eccentricity of u in G and is denoted by ecG(u). A graph G is
said to be a bipartite graph of order n if its vertex set can be partitioned into two disjoint vertex subsets,
say A and B, such that each edge of G has one end in A and other end in B. If |A| = a and |B| = b, then
Ka,b represents the complete bipartite graph in which every vertex of A is adjacent with vertex of B by
an edge. Pn and Cn denote the path and cycle graph on n vertices. For other graph theoretical notations
we refer [1].

Let G and H be two vertex disjoint graph, then the graph G + H is obtained by joining each vertex
of G to each vertex of H by an edge.

A topological index is a numerical quantity associated with a graph. Topological indices have
many applications in chemistry, biology, pharmaceutics and other related fields. There are hundreds of
degree, eccentricity and distance based topological indices have been introduced.

In 1972, Gutman et al. [2] introduced the first Zagreb index of a graph G as

M1(G) =
∑

u∈V(G)

d(u)2

In 2005, Li and Zheng [3] generalized the definition of the first Zagreb index and proposed the first
general Zagreb index by replacing the square by any non-zero real number γ,

Mγ
1 (G) =

∑
u∈V(G)

d(u)γ.

In [4], the authors discussed the behavioral change in the first general Zagreb index for some graph
operations, these operations involve edge moving, edge separating and edge switching in a graph. Liu
et al. [5] studied the Cartesian product of two graphs, where one graph is D-sum and other graph is
any connected graph. Bedratyuk and Savenko [6] expressed the general first Zagreb index in terms of
the star sequence and the formulas of first general Zagreb index of certain cactus chains are discussed
in [7].

In 2010, Todeschini and co-authors [8] proposed the multiplicative version of the first Zagreb index
as ∏

1

(G) =
∏

u∈V(G)

d(u)2.

Recently, Vetrı́k et al. [9] introduced the first general multiplicative Zagreb index of a graph which
is defined as

γ∏
1

(G) =
∏

u∈V(G)

d(u)γ.

In [9], the authors proposed the extremal trees for the general multiplicative Zagreb index in terms of
order, number of pendant vertices, segments and branching vertices. The same author investigated the
extremal graphs with given clique number for the general multiplicative Zagreb index [10]. Recently
in [11], authors found upper and lower bounds for the general multiplicative Zagreb index on the class
of bicyclic, tricyclic and tetracyclic graphs.

Vukičević and Graovac replace the degree of the vertex with the eccentricity of the vertex and
proposed the eccentricity based first Zagreb index as

E1(G) =
∑

u∈V(G)

ec(u)2
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The notation of the total eccentricity index is defined as the ξ(G) =
∑

u∈V(G) ec(u).
In this paper, we introduce the generalized version of the first eccentricity Zagreb index. For any

non-zero real number γ, the first general eccentricity Zagreb index of a graph G is defined as

Eγ
1(G) =

∑
u∈V(G)

ec(u)γ.

We investigate the extremal trees and bipartite graphs with respect to the first general Zagreb ec-
centricity index. Moreover, some bounds on the first general Zagreb eccentricity index are present in
terms of order, size and the diameter of a graph. The presented results are for γ > 0, for γ < 0 results
can be obtained on similar lines.

2. Discussion and main results

In this section, we present some lemmas and our main results. Let Pn and S n be the path and star
with n vertices. Assume T1 be the tree with maximum degree n − 2. From the definition of the first
general Zagreb eccentricity index, we have the following formulas for Pn, S n and T1.

Eγ
1(Pn) =

 2
[∑ n−1

2
i=1 (n − i)γ

]
+

(n−1
2

)γ; n odd
2
[∑ n

2
i=1(n − i)γ

]
; n even

Eγ
1(S n) = (n − 1)2γ + 1

Eγ
1(T1) = (n − 2)3γ + 2γ+1

Let H be a tree as shown in Figure 1. The vertex u has unique neighbor in A and C and t ≥ 1
neighbors in B. Now we obtain a new graph H′ from the graph H by switching these t neighbors from
u to v.

A

B

C

u

v

H H ′

A

B

C

u

v

Figure 1. The graphs H and H′.

Lemma 2.1. Let H and H′ be the above defined graphs. Then for γ > 0
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1. Let P be a diametrical path of H such that E(P) ⊆ E(C). Then Eγ
1(H) > Eγ

1(H′),
2. If diametrical path P contains the vertex u and some vertices from A and C and ecH(u) ≥ ecH(v),

then
Eγ

1(H) ≥ Eγ
1(H′).

Proof. Let y be a pendant vertex of diametrical path P and x ∈ V(H) then ecH(x) = dH(x, y). One can
notice that for x ∈ V(H) − V(B) we have ecH(x) = ecH′(x), otherwise ecH(x) − ecH′(x) = ecH(u) −
ecH′(v) = ecH(u) − ecH(v). Moreover, for (i) and (ii) we have ecH(u) > ecH(v) and ecH(u) ≥ ecH(v),
respectively. Hence, Eγ

1(H) > Eγ
1(H′) and Eγ

1(H) ≥ Eγ
1(H′) for γ > 0. �

Let τ(n, k) contains all the trees of order n with k pendant vertices, where 2 ≤ k ≤ n − 1.

Lemma 2.2. Let G ∈ τ(n, k), where 2 ≤ k ≤ n − 1 such that G has minimum first general Zagreb
eccentricity index for γ > 0. Let P = v1v2 · · · vdvd+1 be a diametrical path in G. Then the vertices with
degree at least three in G can only be the central vertices of P.

Proof. For k= 2 and k= n − 1, τ(n, k) contains only path and star graphs, respectively, hence the result
is obvious. In the following we consider 3 ≤ k ≤ n − 2.

Since G has the minimum first general Zagreb eccentricity index for γ > 0, so from Lemma 2.1 we
have information that no vertex of G with degree at least three is outside P. Now we show that vertices
with degree at least three on P can only be the central vertices of P. Let vi, 2 ≤ i ≤ d and d ≥ 2, be a
vertex of P with degree at least three. Let ecG(vi) > ecG(vi+1), then by applying Lemma 2.1 (ii) we can
obtain a new tree in τ(n, k) with the smaller first general Zagreb eccentricity index for γ > 0, which
is a contradiction. So, ecG(vi) ≤ ecG(vi+1). On similar lines we can get ecG(vi) ≤ ecG(vi−1). We have
ecG(vi) = d + 1 − i or i. For ecG(vi) ≤ ecG(vi+1), i ≤ d + 1 − i ≤ i + 1 and this implies that 2i = d or
d + 1. For ecG(vi) ≤ ecG(vi−1), i ≥ d + 1 − i or i ≤ d − i + 2 and this implies that 2i = d, d + 1 or d + 2.
Hence, vi is a central vertex of P. �

Lemma 2.3. Let G be a tree in τ(n, k) with 3 ≤ k ≤ n − 2. If G has unique vertex of degree at least
three then for γ > 0, we have

Eγ
1(G) ≥ Eγ

1(Tn,k)

and the equality holds for G � Tn,k.

Proof. Let G ∈ τ(n, k) has the minimum first general Zagreb eccentricity index for γ > 0 with unique
vertex of degree at least three. This implies that there is a vertex u ∈ V(G) having k pendant paths. In
these k pendant paths, suppose that Pa, Pb and Pc be the maximum, second maximum and minimum
length paths, i.e. a ≥ b ≥ c. Suppose that uu1 ∈ E(G). For a > b + 1, we have ecG(u) > ecG(u1) and
by applying Lemma 2.1 we can construct a new tree satisfying the given condition with the smaller
first general Zagreb eccentricity index for γ > 0, which is a contradiction. So we have either a = b or
b + 1. Now let a > c + 1. Suppose that u′ and u′′ be the pendant vertices of P1 and P3 and u′w ∈ E(P1).
We attained a new graph G∗ = G − u′w + u′u′′. Clearly, G∗ has unique vertex of degree at least three.
Hence, we obtain ecG∗(v) ≤ ecG∗(v) for all vertices of G, which again leads to a contradiction. Thus
either a = c or a = c + 1, in other words we have G � Tn,k. �

In the following result, we characterize the extremal trees with the maximum and minimum first
general Zagreb eccentricity index.

AIMS Mathematics Volume 6, Issue 1, 532–542.



536

Theorem 2.1. Let T be a tree of order n, then for γ > 0

Eγ
1(T ) ≤ Eγ

1(Pn) (2.1)

and for γ ≥ 1
Eγ

1(S n) ≤ Eγ
1(T ) (2.2)

the equalities in (1) and (2) hold for path and star graphs, respectively, of order n.

Proof. If T is a path of order n, then we have nothing to prove. Let T � Pn be a tree with
the diameter d and Pd+1 = u1u2 · · · udud+1 be the longest path in T . This implies that ecT (u) =

max{dT (u, u1), dT (u, ud+1)} ≤ d, for each u ∈ V(T ). Since T is a tree so u1 and ud+1 must be
pendant vertices. Moreover, T � Pn so there is at least one more pendant vertex, say v, and
vw ∈ E(G). Now we obtain a new tree T ′ from T as T ′ = T − vw + vud+1. Clearly, T ′ has di-
ameter d + 1 with the longest path u1u2 · · · udud+1v. This implies that for u , v we have ecT ′(u) =

max{dT ′(u, u1), dT ′(u, v)} = max{dT (u, u1), dT (u, ud+1) + 1} ≥ max{dT (u, u1), dT (u, ud+1)} = ecT (u) and
for ecT ′(v) = d + 1 > d ≥ ecT (v). From the definition of the first general Zagreb eccentricity index and
the construction of T ′ we have Eγ

1(T ) < Eγ
1(T ′), i.e. this construction increases the Eγ

1 for γ > 0. Now,
if T � Pn then we are done, otherwise there exist at least one pendant vertex, say v′ , u1, ud+1, and we
will repeat the construction. After finite number of repetition, we obtain a tree with maximum degree
two and every repetition increases Eγ

1 , hence Pn gives the maximum Eγ
1 for γ > 0.

Now we will work for the lower bound. If T is S n, then we have nothing to prove and for T � T1

the inequality is strict. Now we suppose that T � S n and T � T1. Let d be the diameter of T and
Pd+1 = u1u2 · · · udud+1 be a longest path in T . Suppose that d(u2) ≥ d(ud). Choose v an arbitrary
maximum degree vertex, unless ud has maximum degree, in which case v is chosen to be u2. We obtain
a new tree T ′′ such that T ′′ = T−udud+1+ud+1v. This implies that ecT ′(u) = max{dT ′(u, u1), dT ′(u, ud)} =

max{dT (u, u1), dT (u, ud+1)−1} ≤ max{dT (u, u1), dT (u, ud+1)} = ecT (u). From this we obtain that Eγ
1(T ) ≥

Eγ
1(T ′), i.e., this construction provides a non-decreased value of Eγ

1 for γ ≥ 1. If T ′′ � T1, the proof
is complete. Otherwise, we will continue the construction as follows; we choose a pendant vertex
from a longest path whose neighbor does not have the maximum degree. Now we obtain a new graph
by deleting that pendant edge and joining this to the maximum degree vertex. After finite number of
repetition we obtain a graph with maximum degree n − 2, i.e. T1 graph. Hence the required result. �

From the above result, we have the following corollaries for the first Zagreb eccentricity and the
total eccentricity indices.

Corollary 2.1. For a tree of order n, the total eccentricity and the first Zagreb indices are given as

2n − 1 ≤ ξ(T ) ≤
 3n2−2n−1

4 ; n odd
3n2−2n

4 ; n even

4n − 3 ≤ E1(T ) ≤
 7n3−9n2−n+3

4 ; n odd
7n3−9n2+2n

4 ; n even

in above both left equalities hold for the star of order n while the right equalities hold for the path of
order n.
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Let Kn−2r−2,2 be the complete bipartite graph of order n−2r, then we obtain a graph G1 from Kn−2r−2,2

by joining the vertices of degree n − 2r − 2 of Kn−2r−2,2 by an edge and attaching two paths Pq+1 with
each of them, i.e. G1 = Kn−2r−2,2 + uv + uwr+1wr · · ·w1 + vwr+2wr+3 · · ·w2r+2 where u and v are the
vertices of degree n − 2r − 2 in Kn−2r−2,2.

Let G2 be a graph of order n obtained from Kn−2r−1,2 by joining a new vertex w to the two vertices
of Kn−2r−1,2 of degree n − 2r − 1 and attaching two paths Pr with each of them, i.e. G2 = Kn−2r−1,2 +

uw + vw + uwrwr−1 · · ·w2w1 + vwr+1wr+2 · · ·w2r. The above discussed graphs G1 and G2 are shown in
Figure 2.

u

v

w1 w2 wr−1 wr

wr+1wr+2w2r w2r−1

G1

u

vwr+1wr+2w2r−1 w2r−1

G2

w

w1 w2 wr−2 wr−1

n− 2r − 2n− 2r − 1

Figure 2. The G1 and G2 graphs.

Now let, τi, i = 1, 2, be the collection of all graphs Hi = (V, E) with diameter d = 2r + i such that
V(Gi) = V(Hi) and E(Gi) ⊆ E(Hi).

The following result provides the lower bound on the first general Zagreb eccentricity index involv-
ing the number of vertices and the diameter of a graph.

Theorem 2.2. For a graph G with vertices n and diameter d, we have

Eγ
1(G) ≥

 2
[∑ d

2
i=1(d − i + 1)γ

]
+ (n − d)

(d
2

)γ; d even

2
[∑ d+1

2
i=1 (d − i + 1)γ + (n − d − 1)

(
d d

2e
)γ]; d odd

(2.3)

and the equality holds if and only if G � Pn or G ∈ τi for i = 1, 2.

Proof. Let Pd+1 = w1w2 · · ·wd+1 be the longest path in G. Also, n ≥ d + 1 and ec(u) ≥ d d
2e for every

u ∈ V(G). Clearly, for n = d + 1 we have G � Pn and the equality holds. Now let n > d + 1 and we
have

d+1∑
j=1

ec(wi)γ =

 2
[∑ d

2
i=1(d − i + 1)γ

]
+

(d
2

)
; d even

2
[∑ d+1

2
i=1 (d − i + 1)γ

]
; d odd

From the definition of Eγ
1 we have

Eγ
1 (G) =

d+1∑
j=1

ec(wi)γ +

n∑
j=d+2

ec(wi)γ

≥

 2
[∑ d

2
i=1(d − i + 1)γ

]
+ (n − d)

(d
2

)γ; d even

2
[∑ d+1

2
i=1 (d − i + 1)γ + (n − d − 1)

(
d d

2e
)γ]; d odd

. (2.4)

Now conversely suppose that equality hold in the result for n > d + 1, then from Eq. 2.4 we get
ec(u) = d d

2e for each u ∈ V(G). This implies that all the vertices w j, d + 2 ≤ j ≤ n, are adjacent with wr

and wr+2 for d = 2r and for d = 2r + 1 vertices w j, d + 2 ≤ j ≤ n, are adjacent with wr+1 and wr+2 and
hence G ∈ τi, i=1,2. �
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Now, we have the following direct result.

Corollary 2.2. Let G be a graph of order n and diameter d. Then for the total eccentcity and first
eccentricity Zagreb indices we have

ζ (G) ≥

 d(2+d+2n)
4 ; n even

3d2+4d+1
4 + (n − d − 1)

⌈
d
2

⌉
; n odd

E1 (G) ≥

 d(3d(3+n)+4d2+2)
12 ; n even

d(7d2+12d+5)
12 + (n − d − 1)

(⌈
d
2

⌉)2
; n odd

both equalities hold if and only if G � Pn or G ∈ τi for i = 1, 2.

The following theorem characterizes the extremal bipartite graphs with respect to the first general
Zagreb eccentricity index.

Theorem 2.3. Let G be a bipartite graph of order n. For γ > 0, we have

Eγ
1(Ka,b) ≤ Eγ

1(G) ≤ Eγ
1(Pn)

and the left and right equalities hold for Ka,b and Pn, respectively, where a + b = n.

Proof. If G � Ka,b, we have nothing to prove. Suppose that G � Ka,b. Clearly, G can be obtained from
Ka,b by removing some edges. From the definition of the first general Zagreb eccentricity index we
have Eγ

1(G) ≥ Eγ
1(Ka,b − e) > Eγ

1(Ka,b) for γ > 0.
For upper bound, if T is a spanning tree of a bipartite graph G, then Eγ

1(G) ≤ Eγ
1(T ) ≤ Eγ

1(Pn), the
last inequality is due to the Theorem 2.1. �

The next results can be obtained easily from the above result.

Corollary 2.3. For a bipartite graph G of order n, the total eccentricity and the first Zagreb indices is
given as

2n ≤ ξ(G) ≤
 3n2−2n−1

4 ; n odd
3n2−2n

4 ; n even

4n ≤ E1(G) ≤
 7n3−9n2−n+3

4 ; n odd
7n3−9n2+2n

4 ; n even

both the equalities on the left and right hand sides hold for Ka,b and Pn, respectively, where a + b = n.

Let n,m and q be positive integers such that n − 1 ≤ m ≤
(

n
2

)
and t =

⌊
2n−1−

√
(2n−1)2−8m
2

⌋
. Let X be

a graph of order n − t and size m −
(

n
2

)
− t(n − t), and G(n,m) be the set of Kt + X graphs. We can

notice that t, 1 ≤ t < n is the greatest integer fulfilling 2m ≥ t(n−1) + t(n− t) or f (t) = t2−2nt + t + 2m,

we have
[
m −

(
n
2

)
− t(n − t)

]
− (n − t − 1) = 1

2 f (t + 1) < 0. This gives that each vertex of X has

eccentricity two in Kt + X.
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Theorem 2.4. Let G be a graph of order n and size m and (n − 1) ≤ m <

(
n
2

)
, then for γ > 0

Eγ
1(G) ≥ (n − t) · 2γ + t

and the equality holds if and only if G ∈ G(n,m).

Proof. Let c, 0 ≤ c ≤ n − 2, be the number of dominating vertices in G. Clearly, for c = 0 we have
Eγ

1(G) ≥ n · 2γ > n · 2γ − 3t. Now suppose that c ≥ 1, this implies that n − c non-dominating vertices
have eccentricity two in G, thus Eγ

1(G) = (n − c) · 2γ + c. Since t is the largest integer fulfilling the
inequality 2m ≥ t(n − 1) + t(n − t) which implies that c ≤ t. Moreover, (n − c) · 2γ + c is a decreasing
function with respect to c for γ > 0. Thus we have the result Eγ

1(G) = (n − c) · 2γ + c ≥ (n − t) · 2γ + t
and the equality holds if and only if G contain exactly t dominating vertices and n − t vertices with
eccentricity two, i.e. G is a graph from G(n,m). �

Corollary 2.4. Let G be a graph of order n and size m and (n − 1) ≤ m <

(
n
2

)
, then we have

ξ(G) ≥ n − t

E1(G) ≥ 4n − 3t

and the equalities hold if and only if G ∈ G(n,m).

For positive integers n and k with 3 ≤ k ≤ n − 2, suppose s = b n−1
k c and t = n − 1 − ks. Let Tn,k be

a tree obtained by attaching k − t paths of s vertices and t paths of s + 1 vertices to a common vertex.
If n − 2 ≡ 0(mod k). then T n,k(q) be a tree obtained by attaching q and k − q path of n−2

k vertices,
respectively, to the two end vertices of an edge, where 1 ≤ q ≤ b k

2c. These graphs are shown in Figure
3.

Tn,k

t

s+ 1

k − t

s

q

n−2
k

k − q

n−2
k

Tn,k(q)

Figure 3. Tn,k and T n,k(q) graphs.

Theorem 2.5. For n ≥ 4 and 3 ≤ k ≤ n− 2, let G ∈ τ(n, k), s = b n−1
k c and t = n− 1− ks. For γ ≥ 1, we

have

Eγ
1 (G) ≥



k
s−1∑
i=0

(2s − i)γ + sγ; t = 0

k
s−1∑
i=0

(2s + 1 − i)γ + 2(s + 1)γ; t = 1

k
s−2∑
i=0

(2s + 1 − i)γ + (2γt + 1) (s + 1)γ; t ≥ 2

and the equality in above holds if and only if G � Tn,k or G � T n,k with 2 ≤ q ≤ b k
2c when n − 2 ≡

0(mod k).
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Proof. Let G be a graph in τ(n, k) having the minimum first general Zagreb eccentricity index. Denot-
ing V3(G) the set of vertices in G of degree at least three. Lemma 2.2 implies that either |V3(G)| = 1
or |V3(G)| = 2. If |V3(G)| = 1, then result follows from Lemma 2.3. Now consider that |V3(G)| = 2
and V3(G) = {u1, u2}. Let P be a diametrical path in G, then from Lemma 2.2 u1u2 ∈ E(P) and
ecG(u1) = ec(u2). Let a and b be the maximum and minimum length of pendant paths at u1 and a > b.
Let H be the graph obtained from G by shifting all the neighbors of u1 in G outside P to u2, then by
Lemma 2.1 (ii) we have Eγ

1(G) = Eγ
1(H). Note that |V3(H)| = 1 and in H there are two pendant paths

of lengths a + 1 and b on u2. As a − b + 1 > 1, we have Eγ
1(G) = Eγ

1(H) > Eγ
1(Tn,k), which is a

contradiction. Hences, all pendant paths on u1 have the same length in G. Similarly, we can show that
each pendant paths at v have the same length. This implies that G � T n,k(q) with 2 ≤ q ≤ b k

2c. �

Corollary 2.5. For n ≥ 4 and 3 ≤ k ≤ n − 2, let G ∈ τ(n, k), s = bn−1
k c and t = n − 1 − ks. Then the

total eccentricity index of G is

ζ (G) ≥


s(3ks+k+2)

2 ; t = 0
(1+s)(4+3ks)

2 ; t = 1
(1+s)(2+3ks+4t)

2 ; t ≥ 2

equality in above holds if and only if G � Tn,k or G � T n,k with 2 ≤ q ≤ b k
2c when n − 2 ≡ 0(mod k).

Corollary 2.6. For n ≥ 4 and 3 ≤ k ≤ n − 2, let G ∈ τ(n, k), s = b n−1
k c and t = n − 1 − ks, then the first

Zagreb eccentricity index

E1 (G) ≥


s(14ks2+9ks+6s+k)

6 ; t = 0
(1+s)(14ks2+s(13k+3)+3)

3 ; t = 1
ks(1+s)(14s+13)+(s+1)2(4t+1)

6 ; t ≥ 2

equality holds if and only if G � Tn,k or G � T n,k with 2 ≤ q ≤ b k
2c when n − 2 ≡ 0(mod k).

Let Tn,q,p be a tree of order n attained by attaching p and q − p pendant vertices to the two pendant
vertices of Pn−q, where 1 ≥ p ≥ bq

2c. Let τn,q be the set of all Tn,p,q trees.

Theorem 2.6. Let G ∈ τ(n, k), where 2 ≤ k ≤ n − 1, then for γ ≥ 1 we have

Eγ
1(G) ≤

 2
[∑ n−k

2
i=1(n − k − i)γ

]
+

(n−k
2

)γ; n − k even

2
[∑ n−k+1

2
i=1 (n − k − i + 1)γ

]
; n − k odd

the equality holds if and only if G ∈ τn,q.

Proof. If d is the diameter of G, then diametrical path P of G contain d − 1 non-pendant vertices thus
k ≤ n − (d − 1), i.e. d ≤ n − k + 1. From Theorem 2.2, we have Eγ

1(G) ≤ φ(n, d) ≤ φ(n, n − k + 1).
Clearly, Eγ

1(G) = φ(n, n − k + 1) if and only if G ∈ τn,k. �

Corollary 2.7. Let G ∈ τ(n, k), where 2 ≤ k ≤ n − 1, then for γ ≥ 1 we have

ζ (G) ≥

 3(k−n)2

4 ; n − k even
(3n2−6kn+4n+3k2−4k+1)

4 ; n − k odd

the equality holds if and only if G ∈ τn,q.
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Corollary 2.8. Let G ∈ τ(n, k), where 2 ≤ k ≤ n − 1, then for γ ≥ 1 we have

E1 (G) ≥

 (n(7n2−6n+2)−k(21n2−12n+2)+3k2(7n−2)−7k3)
12 ; n − k even

(n(7n2+12n+5)+3k2(7n+4)−k(21n2+24n+5)−7k3)
4 ; n − k odd

the equality holds if and only if G ∈ τn,q.

3. Conclusions

The generalized version of the first Zagreb eccentricity index is proposed in this paper. The classes
of trees and bipartite graphs are chosen to find the extremal graphs for the first general Zagreb eccen-
tricity index. Some bounds of the index is also proposed in terms of the number of vertices, number of
edges and diameter. In each case extremal graphs are determined.
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