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Abstract: The purpose of this paper is to prove the existence of a unique classical solution u(x) to the
quasilinear elliptic partial differential equation ∇· (a(u)∇u) = f for x ∈ Ω, which satisfies the condition
that the average value 1

|Ω|

∫
Ω

udx = u0, where u0 is a given constant and 1
|Ω|

∫
Ω

f dx = 0. Periodic
boundary conditions will be used. That is, we choose for our spatial domain the N-dimensional torus
TN , where N = 2 or N = 3. The key to the proof lies in obtaining a priori estimates for u.
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1. Introduction

In this paper, we consider the existence of a unique, classical solution u(x) to the quasilinear elliptic
equation

∇ · (a(u)∇u) = f (1.1)

for x ∈ Ω, which satisfies the condition that the average value

1
|Ω|

∫
Ω

udx = u0 (1.2)

where u0 is a given constant and 1
|Ω|

∫
Ω

f dx = 0 . Periodic boundary conditions will be used. That is,
we choose for our spatial domain the N-dimensional torus TN , where N = 2 or N = 3.

The purpose of this paper is to prove the existence of a unique classical solution u to (1.1), (1.2).
The proof of the existence theorem uses the method of successive approximations in which an iteration
scheme, based on solving a linearized version of Eq (1.1), will be defined and then convergence of the
sequence of approximating solutions to a unique solution satisfying the quasilinear equation will be
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proven. The key to the proof lies in obtaining a priori estimates for u. To the best of our knowledge,
no other researcher has proven the existence and uniqueness of the solution to this partial differential
equation when the given data is the average value of the solution.

The paper is organized as follows. The main result, Theorem 2.1, is presented and proven in the
next section. The existence of a solution to the linearized equation used in the iteration scheme is
proven in Appendix A. Appendix B presents lemmas supporting the proof of the theorem.

2. Existence theorem

We will be working with the Sobolev space H s(Ω) (where s ≥ 0 is an integer) of real-valued
functions in L2(Ω) whose distribution derivatives up to order s are in L2(Ω). The norm is ‖u‖2s =∑

0≤|α|≤s

∫
Ω
|Dαu|2dx. We are using the standard multi-index notation. We define |F|r,G0

= max{
∣∣∣∣d jF

du j (u∗)
∣∣∣∣ :

u∗ ∈ G0, 0 ≤ j ≤ r}, where F is a function of u and where G0 ⊂ R is a closed, bounded interval. Also,
we let both ∇u and Du denote the gradient of u. And Ck(Ω) is the set of real-valued functions having
all derivatives of order ≤ k continuous in Ω (where k = integer ≥ 0 or k = ∞). The purpose of this
paper is to prove the following theorem:

Theorem 2.1. Let a be a smooth, positive function of u. Let f ∈ H2(Ω) and let 1
|Ω|

∫
Ω

f dx = 0. Let the
domain Ω = TN , the N-dimensional torus, where N = 2 or N = 3.

There exists a constant C1 which depends only on N, Ω such that if

1
(minu∗∈G0

a(u∗))4

∣∣∣∣da
du

∣∣∣∣2
0,G0
‖∇ f ‖20 ≤ C1

and if ∣∣∣∣d2a
du2

∣∣∣∣
0,G0
≤

1
(minu∗∈G0

a(u∗))

∣∣∣∣da
du

∣∣∣∣2
0,G0

(2.1)

where G0 ⊂ R is a closed, bounded interval, then there exists a unique solution u ∈ C2(Ω) to the
equation

∇ · (a(u)∇u) = f (2.2)

which satisfies the condition that the average value

1
|Ω|

∫
Ω

udx = u0 (2.3)

where u0 is a given constant.

Proof.
We begin by using the following change of variables:

v =
( a0

‖∇ f ‖0

)
u

b(v) =
( 1
a0

)
a
(‖∇ f ‖0

a0
v
)
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g =
( 1
‖∇ f ‖0

)
f (2.4)

where the constant a0 = minu∗∈G0
a(u∗) and G0 ⊂ R is a closed, bounded interval.

Under this change of variables the equation (2.2) becomes

∇ · (b(v)∇v) = g (2.5)

And under this change of variables, (2.3) becomes

1
|Ω|

∫
Ω

vdx = v0 =
a0

‖∇ f ‖0
u0 (2.6)

We fix closed, bounded intervals G0 ⊂ R and G1 ⊂ R by defining G0 = {u∗ ∈ R : |u∗ − u0|L∞ ≤
R‖∇ f ‖0

a0
} and G1 = {v∗ ∈ R : |v∗− v0|L∞ ≤ R}, where R is a constant to be defined later. We will prove

that v(x) ∈ G1 for x ∈ Ω. It follows that u(x) ∈ G0 for x ∈ Ω.
We will construct the solution of (2.5), (2.6) through an iteration scheme. To define the iteration

scheme, we will let the sequence of approximate solutions be {vk}. Set the initial iterate v0 = v0. For
k = 0, 1, 2, . . . , construct vk+1 from the previous iterate vk by solving the linear equation

∇ · (b(vk)∇vk+1) = g (2.7)

which satisfies the condition that the average value

1
|Ω|

∫
Ω

vk+1dx = v0 (2.8)

and using periodic boundary conditions.
The existence of a unique solution vk+1 ∈ C2(Ω) to the linear equation (2.7) for fixed k which

satisfies (2.8) is proven in Appendix A. Lemmas supporting the proof are presented in Appendix B.
We proceed now to prove convergence of the iterates as k → ∞ to a unique, classical solution v of
(2.5), (2.6), which therefore produces a unique, classical solution u =

‖∇ f ‖0
a0

v of (2.2), (2.3).
We begin by proving the following proposition:

Proposition 1. Assume that the hypotheses of Theorem 2.1 hold. Then there exist constants C2, C3,
and R such that the following inequalities hold for k = 1, 2, 3 . . . :

‖∇vk‖22 ≤ C2 (2.9)

‖vk‖24 ≤ C3 (2.10)

|vk − v0|L∞ ≤ R (2.11)

‖∇(vk+1 − vk)‖20 ≤
(1
2

)k
C2 (2.12)

where the constants C2, R depend on N and Ω, and where the constant C3 depends on R, u0, a0,
‖∇ f ‖0, ‖∇ f ‖1,

∣∣∣∣da
du

∣∣∣∣
2,G0

, N, and Ω. From (2.11) it follows that vk(x) ∈ G1 for x ∈ Ω and for k = 1, 2, 3 . . . .
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Proof. The proof is by induction on k. We prove in Lemma B.2 in Appendix B that if vk satisfies (2.9)
and (2.11), then vk+1 satisfies (2.9) and (2.10). See Lemma B.2 in Appendix B for the detailed proof.
It only remains to prove inequalities (2.11) for vk+1 − v0 and (2.12) for ∇(vk+1 − vk).

In the estimates below, we will let C denote a generic constant whose value may change from one
relation to the next.
Estimate for |vk+1 − v0|L∞:

Lemma B.2 in Appendix B presents the proof that ‖∇vk+1‖22 ≤ C2. Then by using standard Sobolev
space inequalities we obtain the inequality:

|vk+1 − v0|L∞ ≤ C‖vk+1 − v0‖2

≤ C‖∇(vk+1 − v0)‖1
= C‖∇vk+1‖1

≤ C
√

C2

= R

where the constants C and C2 depend on Ω, N. Here we used the fact that |vk+1 − v0|L∞ ≤ C‖vk+1 − v0‖2

by Sobolev’s Lemma. Since 1
|Ω|

∫
Ω

vk+1dx = v0 by (2.8), it follows that vk+1 − v0 is a zero-mean function
and ‖vk+1 − v0‖0 ≤ C‖∇(vk+1 − v0)‖0 by Poincaré’s inequality. Therefore ‖vk+1 − v0‖2 ≤ C‖∇(vk+1 − v0)‖1.
We define R = C

√
C2. Then inequality (2.11) of Proposition 1 holds for vk+1 − v0.

Estimate for ‖∇(vk+1 − vk)‖20:
From successive iterates of Eq (2.7) we obtain the following:

∇ · (b(vk)∇(vk+1 − vk)) = ∇ · (b(vk)∇vk+1) − ∇ · (b(vk)∇vk)
= g − ∇ · ((b(vk) − b(vk−1))∇vk) − ∇ · (b(vk−1)∇vk)
= −∇ · ((b(vk) − b(vk−1))∇vk) (2.13)

In the estimates that follow, we use the notation (h1, h2) =
∫

Ω
h1h2dx for the L2 inner product of

functions h1, h2. Note that vk − vk−1 is a zero-mean function because vk − vk−1 = (vk − v0) − (vk−1 − v0)
and vk − v0, vk−1 − v0 are zero-mean functions by successive iterates of (2.8).

We define the constant b0 = minv∗∈G1
b(v∗), where G1 ⊂ R is a closed, bounded interval. Note that

b0 = 1 by the definition of the function b in (2.4). Then integration by parts and using Eq (2.13) yields

‖∇(vk+1 − vk)‖20 = (∇(vk+1 − vk),∇(vk+1 − vk))

≤
1
b0

(b(vk)∇(vk+1 − vk),∇(vk+1 − vk))

= −
1
b0

(∇ · (b(vk)∇(vk+1 − vk)), (vk+1 − vk))

=
1
b0

(∇ · ((b(vk) − b(vk−1))∇vk), (vk+1 − vk))

= −
1
b0

((b(vk) − b(vk−1))∇vk,∇(vk+1 − vk))

≤
1
b0
‖(b(vk) − b(vk−1))∇vk‖0‖∇(vk+1 − vk))‖0
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≤
1
b0

∣∣∣∣db
dv

∣∣∣∣
0,G1
‖vk − vk−1‖0|∇vk|L∞‖∇(vk+1 − vk)‖0

≤ C
( 1
b0

)2
∣∣∣∣db
dv

∣∣∣∣2
0,G1
‖∇(vk − vk−1)‖20‖∇vk‖22

+
1
2
‖∇(vk+1 − vk)‖20 (2.14)

where C is a constant which depends on N, Ω. Here we used the fact that |∇vk|L∞ ≤ C‖∇vk‖2 by
Sobolev’s Lemma. And we used Poincaré’s inequality to obtain ‖vk − vk−1‖0 ≤ C‖∇(vk − vk−1)‖0, since
vk − vk−1 is a zero-mean function.

Using the facts that 1
b0

= 1 and that
∣∣∣∣ db

dv

∣∣∣∣2
0,G1

= 1
a4

0
‖∇ f ‖20

∣∣∣∣da
du

∣∣∣∣2
0,G0
≤ C1 by the definition of b(v) in (2.4)

and by the statement of the theorem, and using the fact that ‖∇vk‖22 ≤ C2 by the induction hypothesis,
we obtain from re-arranging terms in (2.14) the inequality

‖∇(vk+1 − vk)‖20 ≤ C
( 1
b0

)2
∣∣∣∣db
dv

∣∣∣∣2
0,G1
‖∇vk‖22‖∇(vk − vk−1)‖20

≤ CC1C2‖∇(vk − vk−1)‖20

≤
1
2
‖∇(vk − vk−1)‖20

(2.15)

where we define the constant C1 to be sufficiently small so that CC1C2 ≤
1
2 . And the constants C, C1,

C2 depend on N, Ω.
By repeatedly applying inequality (2.15) it follows that

‖∇(vk+1 − vk)‖20 ≤
(1
2
)k
‖∇(v1 − v0)‖20

=
(1
2
)k
‖∇v1‖20

≤
(1
2
)kC2 (2.16)

where the initial iterate v0 = v0, which is a constant, and where ‖∇v1‖20 ≤ ‖∇v1‖22 ≤ C2 by Lemma B.2
in Appendix B. Therefore inequality (2.12) of Proposition 1 holds for ∇(vk+1 − vk).

This completes the proof of Proposition 1. �

We now complete the proof of Theorem 2.1. By (2.16), ‖∇(vk+1 − vk)‖0 → 0 as k → ∞ . By
Poincaré’s inequality, ‖vk+1 − vk‖20 ≤ C‖∇(vk+1 − vk)‖20. It follows that ‖vk+1 − vk‖0 → 0 as k → ∞. We
next use the standard interpolation inequality ‖vk+1 − vk‖r ≤ C‖vk+1 − vk‖

β
0‖v

k+1 − vk‖
1−β
4 , where β = 4−r

4 ,
and 0 < r < 4. Then since ‖vk+1− vk‖24 ≤ C

(
‖vk+1‖24 + ‖vk‖24

)
≤ CC3 by (2.10) in Proposition 1, it follows

that ‖vk+1 − vk‖r → 0 as k → ∞ for 0 < r < 4.
Therefore there exists v ∈ Hr(Ω), where r < 4, such that ‖vk − v‖r → 0 as k → ∞. The fact that

v ∈ H4(Ω) can be deduced using boundedness in high norm and a standard compactness argument (see,
for example, Embid [2], Majda [6]). Sobolev’s Lemma implies that v ∈ C2(Ω).

From Lemma A.1 in Appendix A, vk+1 ∈ C2(Ω) is a solution of the linear equation ∇· (b(vk)∇vk+1) =

g for each k ≥ 0, and vk+1 satisfies the condition that 1
|Ω|

∫
Ω

vk+1dx = v0. It follows that v is a classical
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solution of the equation ∇ · (b(v)∇v) = g, and v satisfies the condition that 1
|Ω|

∫
Ω

vdx = v0. The
uniqueness of the solution follows by a standard proof using estimates similar to the estimates used
in the proof of inequality (2.12). Therefore, there exists a unique classical solution u =

(
‖∇ f ‖0

a0

)
v of

∇ · (a(u)∇u) = f which satisfies the condition that 1
|Ω|

∫
Ω

udx = u0. This completes the proof of the
theorem. �

3. Conclusion

We have proven that if

1
(minu∗∈G0

a(u∗))4

∣∣∣∣da
du

∣∣∣∣2
0,G0
‖∇ f ‖20 ≤ C1

and if ∣∣∣∣d2a
du2

∣∣∣∣
0,G0
≤

1
(minu∗∈G0

a(u∗))

∣∣∣∣da
du

∣∣∣∣2
0,G0

where G0 ⊂ R is a closed, bounded interval and where the constant C1 depends on N, Ω, then there
exists a unique solution u ∈ C2(Ω) to the equation

∇ · (a(u)∇u) = f

which satisfies the condition that the average value

1
|Ω|

∫
Ω

udx = u0

where u0 is a given constant, under periodic boundary conditions. We remark that in the trivial case in
which ∇ f = 0 (and therefore f = 0), it follows that u = u0 is the unique solution.
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A. Existence for the linear equation

In this appendix, we present the proof of the existence of a unique, classical solution to the linear
problem (2.7), (2.8).

Lemma A.1. Let b be a smooth positive function of w. Let w ∈ C2(Ω), let g ∈ H2(Ω), and let
1
|Ω|

∫
Ω

gdx = 0. Let the domain Ω = TN , the N-dimensional torus, where N = 2 or N = 3. Then there
exists a unique solution v ∈ C2(Ω) of the equation

∇ · (b(w)∇v) = g (A.1)

which satisfies the condition
1
|Ω|

∫
Ω

vdx = v0 (A.2)

where v0 is a given constant.

Proof.
We define the zero-mean function

v = v −
1
|Ω|

∫
Ω

vdx (A.3)

The existence of a unique zero-mean solution v ∈ C2(Ω) to equation (A.1) under periodic boundary
conditions is a well-known result from the standard theory of elliptic equations (see, e.g., Embid [2],
Evans [3], Gilbarg and Trudinger [4]).

It follows that the function v defined by

v(x) = v(x) + v0 (A.4)

is the unique solution to equation (A.1) which satisfies the condition (A.2) that 1
|Ω|

∫
Ω

vdx = v0.
This completes the proof of the lemma.

�

B. A priori estimates

In this appendix, we present lemmas supporting the proof of the theorem.
We begin by listing several standard Sobolev space inequalities.

AIMS Mathematics Volume 6, Issue 1, 518–531.
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Lemma B.1. (Standard Sobolev Space Inequalities)
(a) Let b be a smooth function of w, and let w(x) be a continuous function such that w(x) ∈ G1 for
x ∈ Ω where G1 ⊂ R is a closed, bounded interval. And let w ∈ Hr+1(Ω) where r ≥ 0.

Then
‖D(b(w))‖2r ≤ C

∣∣∣∣ db
dw

∣∣∣∣2
r,Ḡ1

(1 + |w|L∞)2r‖∇w‖2r (B.1)

where | db
dw |r,G1

= max{
∣∣∣∣ d j+1b
dw j+1 (w∗)

∣∣∣∣ : w∗ ∈ G1, 0 ≤ j ≤ r}. And the constant C depends on r, N, Ω.
(b) If f ∈ Hn(Ω), where Ω ⊂ RN , and r = βm + (1 − β)n, with 0 ≤ β ≤ 1 and m < n, then

‖ f ‖r ≤ C‖ f ‖βm‖ f ‖
1−β
n (B.2)

Here C is a constant which depends on m, n, N, Ω.
(c) If f ∈ H s0(Ω) where Ω ⊂ RN , N = 2 or N = 3, and s0 = [ N

2 ] + 1, then

| f |L∞ ≤ C‖ f ‖s0 (B.3)

Here C is a constant which depends on N, Ω.
(d) If D f ∈ Hr1(Ω), g ∈ Hr−1(Ω), where r ≥ 1 and where r1 = max{r − 1, s0} and s0 = [ N

2 ] + 1, then:

‖Dα( f g) − f Dαg‖0 ≤ C‖D f ‖r1‖g‖r−1, (B.4)

where |α| = r and where the constant C depends on r, N, Ω.
These inequalities are well-known. Proofs may be found, for example, in [5], [7]. These inequalities

also appear in [1], [2].

Lemma B.2. Let the function w ∈ C2(Ω) satisfy (2.9), (2.11) in Proposition 1 and let the hypotheses
in the statement of Theorem 2.1 hold. Let b be a smooth, positive function of w. Let g ∈ H2(Ω) and let
1
|Ω|

∫
Ω

gdx = 0. Let (2.4) define the functions b, g. Let the domain Ω = TN , the N-dimensional torus,
where N = 2 or N = 3.

Let v be the solution from Lemma A.1 in Appendix A of

∇ · (b(w)∇v) = g (B.5)

which satisfies the condition
1
|Ω|

∫
Ω

vdx = v0, (B.6)

where v0 is a given constant.
Then ∇v and v satisfy the following inequalities:

‖∇v‖22 ≤ C2

‖v‖24 ≤ C3

where the constant C2 depends on N and Ω and where the constant C3 depends on R, u0, a0, ‖∇ f ‖0,
‖∇ f ‖1,

∣∣∣∣ da
du

∣∣∣∣
2,G0

, N, and Ω.
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Proof.

In the estimates below, we will let C denote a generic constant whose value may change from one
relation to the next. We use the notation (h1, h2) =

∫
Ω

h1h2dx for the L2 inner product of two functions
h1, h2. And we use the notation hα = Dαh for differentiation with a multi-index α.

Estimate for ‖∇v‖20:
Using integration by parts and then substituting equation (B.5) yields

‖∇v‖20 = (∇v,∇v)

≤
1
b0

(b(w)∇v,∇v)

= −
1
b0

(∇ · (b(w)∇v), v −
1
|Ω|

∫
Ω

vdx)

= −
1
b0

(g, v −
1
|Ω|

∫
Ω

vdx)

≤
1
b0
‖g‖0‖v −

1
|Ω|

∫
Ω

vdx‖0

≤
C
b0
‖∇g‖0‖∇v‖0

= C‖∇v‖0 (B.7)

where b0 = minw∗∈G1
b(w∗) = 1 by definition of the function b, and ‖∇g‖0 = 1 by definition of the

function g. Here we used the fact that g and v − 1
|Ω|

∫
Ω

vdx are zero-mean functions and we used
Poincaré’s inequality for a zero-mean function h, namely ‖h‖0 ≤ C‖∇h‖0. The constant C depends on
N, Ω.

It follows that
‖∇v‖20 ≤ C̃ (B.8)

where the generic constant C̃ depends on N, Ω.

Estimate for ‖∇v‖21: To begin, let |α| ≥ 1. Using integration by parts and then substituting equation
(B.5) yields

‖∇vα‖20 = (∇vα,∇vα)

≤
1
b0

(b(w)∇vα,∇vα)

=
1
b0

((b(w)∇v)α,∇vα) −
1
b0

(
(b(w)∇v)α − b(w)∇vα,∇vα

)
= −

1
b0

(∇ · (b(w)∇v)α, vα) −
1
b0

(
(b(w)∇v)α − b(w)∇vα,∇vα

)
= −

1
b0

(gα, vα) −
1
b0

(
(b(w)∇v)α − b(w)∇vα,∇vα

)
(B.9)

where b0 = minw∗∈G1
b(w∗). If |α| = 1 in (B.9) then

‖∇vα‖20 ≤ −
1
b0

(gα, vα) −
1
b0

(
(b(w)∇v)α − b(w)∇vα,∇vα

)
AIMS Mathematics Volume 6, Issue 1, 518–531.
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= −
1
b0

(gα, vα) −
1
b0

(b(w)α∇v,∇vα)

≤
( 1
b0

)
‖gα‖0‖vα‖0 +

( 1
b0

)
‖b(w)α∇v‖0‖∇vα‖0

≤
1
2
( 1
b0

)2
‖gα‖20 +

1
2
‖vα‖20 +

( 1
b0

)
‖

db
dw

wα∇v‖0‖∇vα‖0

≤
1
2
( 1
b0

)2
‖gα‖20 +

1
2
‖vα‖20

+
1
2
( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖wα∇v‖20 +

1
2
‖∇vα‖20 (B.10)

Re-arranging the terms in (B.10) and adding the resulting inequality over |α| = 1 yields∑
|α|=1

‖∇vα‖20 ≤
( 1
b0

)2
‖∇g‖20 + ‖∇v‖20 +

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
|∇w|2L∞‖∇v‖20

≤ 1 + C̃ + C
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖∇w‖22C̃

≤ 1 + C̃ + CC1C2C̃ (B.11)

where the generic constants C, C̃ depend on N, Ω. Here we used the facts that 1
b0

= 1, ‖∇g‖0 = 1, and

‖∇w‖22 ≤ C2. And ‖∇v‖20 ≤ C̃ from (B.8). And we used the fact that
∣∣∣∣ db
dw

∣∣∣∣2
0,G1

=
(
‖∇ f ‖20

a4
0

)∣∣∣∣da
du

∣∣∣∣2
0,G0
≤ C1 by

definition of the function b in (2.4) and by the statement of Theorem 2.1.
From (B.8), (B.11) it follows that

‖∇v‖21 =
∑

0≤|α|≤1

‖∇vα‖20 = ‖∇v‖20 +
∑
|α|=1

‖∇vα‖20

≤ 1 + 2C̃ + CC1C2C̃ (B.12)

Estimate for ‖∇v‖22:
Letting |α| = 2 in inequality (B.9) and then using integration by parts with |γ| = 1 produces

‖∇vα‖20 ≤ −
1
b0

(gα, vα) −
1
b0

(
(b(w)∇v)α − b(w)∇vα,∇vα

)
=

( 1
b0

)
(gα−γ, vα+γ) −

1
b0

(
b(w)α∇v,∇vα

)
−

1
b0

(
b(w)γ∇vα−γ,∇vα

)
−

1
b0

(
b(w)α−γ∇vγ,∇vα

)
=

( 1
b0

)
(gα−γ, vα+γ) −

1
b0

(
(

d2b
dw2 wα−γwγ)∇v,∇vα

)
−

1
b0

(
(

db
dw

wα)∇v,∇vα
)

−
1
b0

(
db
dw

wγ∇vα−γ,∇vα) −
1
b0

(
db
dw

wα−γ∇vγ,∇vα)

≤
( 1
b0

)
‖gα−γ‖0‖vα+γ‖0 +

( 1
b0

)∣∣∣∣ d2b
dw2

∣∣∣∣
0,G1
|wα−γ|L∞ |wγ|L∞‖∇v‖0‖∇vα‖0
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+
( 1
b0

)∣∣∣∣ db
dw

∣∣∣∣
0,G1
‖wα‖0|∇v|L∞‖∇vα‖0

+
( 1
b0

)∣∣∣∣ db
dw

∣∣∣∣
0,G1
|wγ|L∞‖∇vα−γ‖0‖∇vα‖0

+
( 1
b0

)∣∣∣∣ db
dw

∣∣∣∣
0,G1
|wα−γ|L∞‖∇vγ‖0‖∇vα‖0

≤
C
ε

( 1
b0

)2
‖gα−γ‖20 + ε‖∇vα‖20

+
1
4ε

( 1
b0

)2
∣∣∣∣ d2b
dw2

∣∣∣∣2
0,G1
|wα−γ|

2
L∞ |wγ|

2
L∞‖∇v‖20 + ε‖∇vα‖20

+
1
4ε

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖wα‖

2
0|∇v|2L∞ + ε‖∇vα‖20

+
1
4ε

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
|wγ|

2
L∞‖∇vα−γ‖20 + ε‖∇vα‖20

+
1
4ε

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
|wα−γ|

2
L∞‖∇vγ‖20 + ε‖∇vα‖20

≤
C
ε

( 1
b0

)2
‖gα−γ‖20 +

C
ε

( 1
b0

)2
∣∣∣∣ d2b
dw2

∣∣∣∣2
0,G1
‖wα−γ‖

2
2‖wγ‖

2
2‖∇v‖20

+
C
ε

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖Dγwα−γ‖

2
0‖∇v‖22 +

C
ε

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖wγ‖

2
2‖∇vα−γ‖20

+
C
ε

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖wα−γ‖

2
2‖∇vγ‖20 + 5ε‖∇vα‖20

(B.13)

where we used Cauchy’s inequality with ε and we define ε = 1
10 . We also used Sobolev’s Lemma, i.e.,

|h|L∞ ≤ C‖h‖2.
Re-arranging terms in (B.13), and then adding the resulting inequality over |α| = 2 and |γ| = 1,

produces

∑
|α|=2

‖∇vα‖20 ≤ C
( 1
b0

)2
‖∇g‖20 + C

( 1
b0

)2
∣∣∣∣ d2b
dw2

∣∣∣∣2
0,G1
‖∇w‖42‖∇v‖20

+ C
( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖∇w‖21‖∇v‖22 + C

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖∇w‖22‖∇v‖21

≤ C
( 1
b0

)2
‖∇g‖20 + C

( 1
b0

)2
∣∣∣∣ d2b
dw2

∣∣∣∣2
0,G1
‖∇w‖42‖∇v‖22

+ C
( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
0,G1
‖∇w‖22‖∇v‖22

≤ C + (CC2
1C2

2 + CC1C2)‖∇v‖22
≤ C + CC1C2

2‖∇v‖22 (B.14)

where we can assume that C1 < 1 and that C2 > 1. Here we used the fact that ‖∇w‖22 ≤ C2. And

we used the fact that
∣∣∣∣ db
dw

∣∣∣∣2
0,G1

=
(
‖∇ f ‖20

a4
0

)∣∣∣∣ da
du

∣∣∣∣2
0,G0
≤ C1. And we used the fact that

∣∣∣∣ d2b
dw2

∣∣∣∣2
0,G1

=
(
‖∇ f ‖40

a6
0

)∣∣∣∣d2a
du2

∣∣∣∣2
0,G0
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≤
(
‖∇ f ‖40

a8
0

)∣∣∣∣da
du

∣∣∣∣4
0,G0
≤ C2

1 by the definition of b(v) in (2.4) and by the statement of the theorem. And we

used the facts that ‖∇g‖0 = 1 and that 1
b0

= 1.
From (B.14) and from inequality (B.12) for ‖∇v‖21, it follows that

‖∇v‖22 =
∑

0≤|α|≤2

‖∇vα‖20

= ‖∇v‖21 +
∑
|α|=2

‖∇vα‖20

≤ 1 + 2C̃ + CC1C2C̃ + C + CC1C2
2‖∇v‖22

≤ 1 + 2C̃ +
1
2

+ C +
1
2
‖∇v‖22 (B.15)

where the generic constants C, C̃ depend on N, Ω, and where C1 is sufficiently small so that CC1C2C̃ ≤
1
2 and so that CC1C2

2 ≤
1
2 .

Re-arranging terms in (B.15) yields

‖∇v‖22 ≤ 4C̃ + C

= C2 (B.16)

where we define C2 = 4C̃ + C, and where the constant C2 depends on N, Ω.

Estimate for ‖∇v‖23:
Letting |α| = 3 in inequality (B.9) and then using integration by parts with |γ| = 1 produces

‖∇vα‖20 ≤ −
1
b0

(gα, vα) −
1
b0

(((b(w)∇v)α − b(w)∇vα),∇vα)

=
1
b0

(gα−γ, vα+γ) −
1
b0

(((b(w)∇v)α − b(w)∇vα),∇vα)

≤
( 1
b0

)
‖gα−γ‖0‖vα+γ‖0 +

( 1
b0

)
‖(b(w)∇v)α − b(w)∇vα‖0‖∇vα‖0

≤
( 1
b0

)
‖gα−γ‖0‖vα+γ‖0 + C

( 1
b0

)
‖Db‖2‖∇v‖2‖∇vα‖0

≤
C
ε

( 1
b0

)2
‖gα−γ‖20 + ε‖∇vα‖20 +

C
ε

( 1
b0

)2
‖Db‖22‖∇v‖22

+ ε‖∇vα‖20 (B.17)

where ε = 1
4 and where we used the Sobolev space inequality (B.4) from Lemma B.1 with r = |α| = 3

and r1 = 2.
Re-arranging the terms in (B.17) and then adding the resulting inequality over |α| = 3 and |γ| = 1

yields ∑
|α|=3

‖∇vα‖20 ≤ C
( 1
b0

)2
‖g‖22 + C

( 1
b0

)2
‖Db‖22‖∇v‖22
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≤ C
( 1
b0

)2
‖g‖22 + C

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
2,G1

(1 + |w|L∞)4‖∇w‖22‖∇v‖22

= C
( 1
b0

)2
‖g‖22 + C

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
2,G1

(1 + |w − v0 + v0|L∞)4‖∇w‖22‖∇v‖22

≤ C
( 1
b0

)2
‖g‖22 + C

( 1
b0

)2
∣∣∣∣ db
dw

∣∣∣∣2
2,G1

(1 + |w − v0|L∞ + |v0|)4‖∇w‖22‖∇v‖22

≤ C‖∇g‖21 + C
∣∣∣∣ db
dw

∣∣∣∣2
2,G1

(1 + R + |v0|)4C2‖∇v‖22
(B.18)

where we used the Sobolev space inequality (B.1) from Lemma B.1 for ‖Db‖22. We also used the facts
that |w − v0|L∞ ≤ R, ‖∇w‖22 ≤ C2, and b0 = 1. And we used the fact that g is a zero-mean function, so
that ‖g‖0 ≤ C‖∇g‖0 by Poincaré’s inequality.

From (B.18) and from inequality (B.16) for ‖∇v‖22, it follows that

‖∇v‖23 =
∑

0≤|α|≤3

‖∇vα‖20

=
∑

0≤|α|≤2

‖∇vα‖20 +
∑
|α|=3

‖∇vα‖20

= ‖∇v‖22 +
∑
|α|=3

‖∇vα‖20

≤ C2 + C‖∇g‖21

+ C
∣∣∣∣ db
dw

∣∣∣∣2
2,G1

(1 + R + |v0|)4C2
2 (B.19)

Estimate for ‖v‖24:
From (B.19) it follows that

‖v‖24 = ‖v − v0 + v0‖
2
4

≤ C‖v − v0‖
2
4 + C‖v0‖

2
4

≤ C‖∇(v − v0)‖23 + C|v0|
2|Ω|

= C‖∇v‖23 + C|v0|
2|Ω|

≤ CC2 + C‖∇g‖21 + C
∣∣∣∣ db
dw

∣∣∣∣2
2,G1

(1 + R + |v0|)4C2
2

+ C|v0|
2|Ω|

= CC2 + C
‖∇ f ‖21
‖∇ f ‖20

+ C
(‖∇ f ‖20

a4
0

)∣∣∣∣da
du

∣∣∣∣2
2,G0

(1 + R +
( a0

‖∇ f ‖0

)
|u0|)4C2

2

+ C
( a0

‖∇ f ‖0

)2
|u0|

2|Ω|

= C3 (B.20)
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Here we used Poincaré’s inequality for the zero-mean function v−v0, where the constant v0 = 1
|Ω|

∫
Ω

vdx.
And we used the definition of the functions v, b, g from (2.4). This completes the proof of the lemma.
�
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