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convergence rates of the IPWG methods are optimal in L2-norm, while they are suboptimal for NIPG
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1. Introduction

The weak Galerkin finite element method (WG-FEM) is a class of non-conforming FEMs, in which
the differential operators, such as gradient, divergence, etc., are approximated by their weak forms. The
initial WG method based on a simplicial mesh was introduced by Wang and Ye [25] for solving general
second-order elliptic equations. A new WG method with a stabilizer based on polygonal/polyhedral
elements was proposed by Mu et al. [13, 14] , which brings great convenience and flexibility in mesh
generation and assembly of the stiffness matrix. This great progress allowed WG-FEMs to flourish in
solving many important PDEs, such as interface problems [11, 17, 21], Helmholtz equation [12, 28],
Maxwell equation [16, 19, 22], biharmonic equation [23], linear elasticity problem [24], Darcy-Stokes
and Darcy flow [4, 8, 27], stochastic equations [33, 34], parabolic equations [3, 7], etc.

Due to the great flexibility in an arbitrary finite element shape and variety of weak finite element
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spaces, many interesting variations of WG methods arose, such as mixed weak Galerkin [26],
least-squares-based weak Galerkin (LSWG) [15], stabilizer-free weak Galerkin [31], modified weak
Galerkin (MWG) [30] and over-penalized weak Galerkin (OPWG) [9, 10], etc. A WG method with a
modified stabilizer, named after over-relaxed WG method [20, 21], exhibits great ability in handling
elliptic (interface) problems with low regularity, and is proven to have super-closeness properties in
solving second-order elliptic problems [29]. By using a Schur complement formulation, the degrees
of freedom of weak Galerkin method with boundary continuity [32] can be reduced to the level of the
continuous Galerkin (CG) methods.

For second-order elliptic equations, each weak function denoted by v = (v0, vb) consists of two parts:
the interior part v0 ∈ L2(K) is defined in each element K ∈ Th and the boundary part vb ∈ L2(∂K) is
defined on the edges/faces of an element K, whereTh is a finite element partition. The gradient operator
is approximated by a discrete weak gradient consisting of piecewise vector-valued polynomials defined
on each element of a finite element partition. Two kinds of elements are commonly employed. The first
kind consists of, see [25] for example, Raviart-Thomas (RT ) element, denoted by (Pk,Pk,RT k), and
Brezzi-Douglas-Marini (BDM) element, denoted by (Pk,Pk+1, [Pk+1]d), where the three components
represent polynomial spaces for two parts of a weak function and its weak gradient, respectively. The
second kind, including (Pk,Pk, [Pk−1]d) and (Pk,Pk−1, [Pk−1]d) with an integer k ≥ 1, is most widely
used in practical applications. Compared to RT and BDM elements, a stabilizer is required to control
the discontinuity of interior part and edge part of weak function within each element of finite element
partition consisting of an arbitrary polygon or polyhedron shapes.

By taking completely discontinuous approximation functions as shape functions, the WG method
inherits many advantages of the DG method, like complex geometries and various boundary conditions
can be treated. Traditionally, WG-FEMs are based on the weak functions with the single-valued
boundary part on each interior edge of a partition. We proposed and analyzed the OPWG method
based on RT element for second-order elliptic problems [10], where the shape function along the
interior edges/faces are double-valued. The main idea there is to integrate WG-FEM and DG-FEM,
expecting to inherit more advantages of the DG methods. In [9], an OPWG method, based on element
(Pk,Pk, [Pk−1]d) and (Pk,Pk−1, [Pk−1]d), with a stabilizer term is proposed. First, the defect of fast-
increasing condition numbers is perfectly settled by using a simple block-diagonal preconditioner. The
reduction of the degree of freedoms by a Schur complement algorithm makes the OPWG method
attractive and comparable to the HDG and the primal DG methods (cf [9]). Besides, it makes an
adaptive approximation or hp-WG possible and the OPWG method is promising in parallel computing
and approximating discontinuous solutions of PDEs.

In this paper, we propose a family of interior-penalized weak Galerkin (IPWG) methods based
on element (Pk,Pk,RT k). First, the ill-conditioned system due to the over-penalization in [9, 10] is
avoided by introducing new terms in the variational formulation. Second, numerical experiments in
Section 5 confirm that the converge rates in L2-norm of all IPWG methods are optimal with respect
to the mesh size h, while for non-symmetric interior penalty Galerkin (NIPG) or incomplete interior
penalty Galerkin (IIPG), they are suboptimal if the polynomial degree is even [18]. Here, we first
introduce the second-order elliptic problem with Dirichlet boundary condition:

−∇ · A∇u = f , in Ω, (1.1)
u = g, on ∂Ω, (1.2)
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where Ω is a polygonal or polyhedral domain in Rd (d = 2, 3), f ∈ L2(Ω) and A is a symmetric positive
definite matrix-valued function on Ω, i.e., there exist two positive numbers A0, A1 > 0 such that

A0ξ
tξ ≤ ξtAξ ≤ A1ξ

tξ, ∀ ξ ∈ Rd,

where ξ is a column vector and ξt is the transpose of ξ.
Throughout the paper, we will use the standard notations for Sobolev spaces and norms [2].

Specifically, for an open bounded domain D ⊂ Rd, d = 2, 3, we use ‖ ·‖Wm,p(Ω) and | · |Wm,p(D) to denote the
norm and seminorm in Wm,p(D) for m ≥ 0. When p = 2, we adopt the notations ‖ · ‖Hm(D) and | · |Hm(D).
In addition, the space H0(D) coincides with L2(D), for which the inner product is denoted by (·, ·)D or
(·, ·) whenever there is no confusion. We introduce the broken Sobolev space for any m ≥ 0,

Hm(Th) :=
{
v ∈ L2(Ω) : v|K ∈ Hm(K), ∀K ∈ Th

}
equipped with the broken Sobolev norm:

‖v‖Hm(Th) =

∑
K∈Th

‖v‖2Hm(K)


1/2

.

The rest of this paper is organized as follows. In Section 2, we recall the definition of the weak
gradient and define jumps of weak functions, as well as some projection operators. In Section 3, we
introduce the IPWG formulations. In Section 4, the a priori error estimates in energy norm and L2-norm
are derived. In the last section, some numerical experiments are presented.

2. Preliminaries

Let Th be a shape regular triangulation of the domain Ω, which is required in classic finite element
analysis, see [2]. Note that we don’t require that the mesh Th is quasi-uniform [2, (4.4.13)]. Let Eh be
the set of all edges (or faces), EI

h the set of all interior edges and EB
h the set of all boundary edges. We

denote by hK the diameter of K ∈ Th and denote by h = maxK∈Th hK mesh size for Th. Let Pk(K) be the
polynomial space of degree no more than k on K ∈ Th. Similarly, Pk(e) denotes the polynomial space
of degree no more than k on e ∈ Eh.

We define the local weak function space on K ∈ Th

W(K) := {v = (v0, vb) : v0 ∈ L2(K), vb ∈ L2(∂K)}.

Definition 1. The weak gradient operator, denoted by ∇w, is a linear operator from W(K) to [H1(K)]d,
such that for any v ∈ W(K) and q ∈ [H1(K)]d, the following holds

(∇wv, q)K = −(v0, ∇ · q)K + 〈vb, q · n〉∂K , ∀ q ∈ [H1(K)]d,

where n is the outward normal direction to ∂K, (·, ·)K is the inner product in L2(K), and 〈·, ·〉∂K is the
inner product in L2(∂K).

We define a discrete weak gradient operator to approximate ∇w in a space of vector polynomials.
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Definition 2. The discrete weak gradient operator, denoted by ∇w,k,K , is a linear operator from W(K)
to Vk(K), such that for any v ∈ W(K) and q ∈ Vk(K), the following holds

(∇w,k,Kv, q)K = −(v0, ∇ · q)K + 〈vb, q · n〉∂K , ∀ q ∈ Vk(K),

where Vk(K) is a subspace of vector-valued polynomials of degree no more than k in element K.

For simplicity of notation, we always denote by ∇w the discrete weak gradient operator ∇w,k,K . In
what follows, we define the discrete weak gradient space as

Vk(K) = RT k(K), k ≥ 0,

where RT k(K) is RT element of order k on K ∈ Th, see [1, 10].
Define the weak Galerkin finite element space associated with Th as

Vh = {(v0, vb) : v0 |K ∈ Pk(K), K ∈ Th;
vb |e ∈ Pk(e) × Pk(e), ∀e ∈ EI

h; vb |e ∈ Pk(e), ∀e ∈ EB
h },

(2.1)

where vb is a double-valued function on each interior edge/face. For convenience, We refer the element
we use as (Pk,Pk,RT k).

Remark 2.1. We note that all results developed in this paper are also valid for (Pk,Pk+1,BDMk),
i.e., weak function space consisting of (Pk(K),Pk+1(e)) and the weak gradient space consisting of
BDMk(K), k ≥ 1, see [1, (2.3.7)] or [25, Section 5] for more details.

We introduce a set of normal vectors of Eh as follows:

D = {ne : ne is unit and normal to e, e ∈ Eh}. (2.2)

If e ∈ ∂Ω, we set ne to be exterior to the domain. Let Ke
i , i = 1, 2 be the elements adjacent to e, we

denote by [vb]|e the jump of vb on the edge e ∈ EI
h whose normal vector ne is oriented from Ke

1 to Ke
2:

[vb]|e = vb |Ke
1
− vb |Ke

2
, ∀e = ∂Ke

1 ∩ ∂Ke
2,

and denote by {vb} the average of vb:

{vb}|e =
1
2

(vb |Ke
1

+ vb |Ke
2
), ∀e = ∂Ke

1 ∩ ∂Ke
2,

We also extend the definition of the jump and average to the edges that belong to the domain boundary,
i.e., [vb]|e = {vb}|e = vb |e, ∀ e ∈ EB

h . In addition, we denote by |e| the length or area of e and by he the
diameter of edge or flat face e ∈ Eh. For a shape regular mesh, one can see that there exist constants κ
and ρe such that κhK ≤ he and ρehd−1

K ≤ |e| ≤ hd−1
K , e ∈ ∂K.

To investigate the approximate properties of WG finite element space Vh and weak gradient space
RT k, we introduce the following three L2 projections:

Q0 : L2(K)→ Pk(K), ∀K ∈ Th,

Qb : L2(e)→ Pk(e), ∀e ∈ Eh,
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Qh : [L2(K)]d → RT k(K), ∀K ∈ Th.

We combine Q0 and Qb by writing Qh = (Q0,Qb). It is easy to see that (see [25]):

∇w(Qhφ) = Qh(∇φ), ∀φ ∈ H1(K). (2.3)

To complete error analysis, we need a divergence conforming projection operator Πh, which satisfies
the following property [1, Section 2.5.2]: for any τ ∈ H(div,Ω)∩Hδ(Th), δ > 1

2 , Πhτ ∈ H(div,Ω); and
on each element K ∈ Th, one has Πh(τ|K) ∈ RT k(K) and the following commutative identity holds

Q0∇ · τ = ∇ · Πhτ, ∀K ∈ Th, (2.4)

which implies
(∇ · τ, v0)K = (∇ · Πhτ, v0)K , v0 ∈ Pk(K). (2.5)

Moreover, there holds for all m ≥ 1 [1, Proposition 2.5.3]

‖∇ · (τ − Πhτ)‖L2(K) ≤ Chmin{m,k+1}
K ‖∇ · τ‖Hm(K), ∀K ∈ Th. (2.6)

3. The interior-penalized weak Galerkin scheme

For any w, v ∈ Vh, we define the following bilinear forms

b(w, v) := −
∑
e∈Eh

∫
e
{A∇ww · ne}[vb] + ε

∑
e∈Eh

∫
e
{A∇wv · ne}[wb],

J(w, v) :=
∑
e∈Eh

σe

|e|β

∫
e
[wb][vb],

aε(w, v) :=(A∇ww,∇wv) + b(w, v) + J(w, v),

where σe is the so-called penalty parameter depending on the mesh Th, and β is strictly positive
depending on the spatial dimension d. In what follows, we take ε = −1, 0, 1, and denote σ =

mine∈Eh σ
e.

A class of interior-penalized weak Galerkin approximations of (1.1)-(1.2) can be obtained by
finding uh = (u0, ub) ∈ Vh such that

aε(uh, v) = fh(v), ∀ v = (v0, vb) ∈ Vh, (3.1)

where

fh(v) := ( f , v0) + ε
∑
e∈EB

h

∫
e
(A∇wv · ne)Qbg ds +

∑
e∈EB

h

σe

|e|β

∫
e

vbQbg ds.

Remark 3.1. In the case of ε = −1, aε(·, ·) is symmetry, and we will see that this method converges if
β(d−1) ≥ 1 and σ large enough; In the case of ε = 0, the method converges under the same conditions
as the case of ε = −1; In the case of ε = 1, the method converges for any strictly positive values of σe.
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To justify the well-posedness of (3.1), we equip Vh with the norm [10]:

9v92 := (A∇wv,∇wv) +
∑
e∈Eh

1
|e|β
‖[vb]‖2L2(e). (3.2)

The following classic trace inequality can be derived from a trace theorem and a scaling argument,
see, e.g., [2, 5].

Lemma 3.1 (Trace inequality). Suppose that the triangulation Th is shape regular, then there exists a
constant C such that for any K ∈ Th and edge e ∈ ∂K, for any φ ∈ H1(K), it holds

‖φ‖2e ≤ C
(
h−1

K ‖φ‖
2
L2(K) + hK‖∇φ‖

2
L2(K)

)
, (3.3)

and for any ψ ∈ Pk(K), it holds

‖∇ψ‖L2(K) ≤ Ch−1
K ‖ψ‖L2(K). (3.4)

We mimic the procedure of [18, Section 2.7.1] for interior-penalized DG method to prove the
following coercivity.

Proposition 3.1 (Coercivity). For each v ∈ Vh, the bilinear form aε(·, ·) is coercive

aε(v, v) ≥ κ 9 v92, (3.5)

with

(1) κ = 1 if ε = 1 and σe > 0;
(2) κ = 1

2 if ε = −1 or 0, and β(d − 1) ≥ 1 and choosing σe > 0 large enough. For instance, one can
choose σe as follows

σe ≥
2C2

t A2
1n0

A0
+

1
2

if ε = −1, and σe ≥
C2

t A2
1n0

A0
+

1
2

if ε = 0.

Here, Ct is from the trace inequality and n0 is the maximum number of neighbors an element could
have (n0 = 3 if d = 2 and n0 = 4 if d = 3).

Proof. By the definition of aε(·, ·), for each v ∈ Vh, there holds

aε(v, v) = (A∇wv,∇wv) + (ε − 1)
∑
e∈Eh

∫
e
{A∇wv · ne}[vb] + J(v, v).

First, in the case of ε = 1, by the definition of energy norm (3.2), we have

aε ≥ 9v 92 .

Next, we focus on the cases of ε = −1 and 0. Without loss of generality, we assume that edge e ∈ Eh is
shared by two elements Ke

i , i = 1, 2. Trace inequality leads to

‖{A∇wv · ne}‖L2(e) ≤
1
2

2∑
i=1

‖(A∇wv · ne)|Ke
i
‖L2(e)
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≤
CtA1

2

2∑
i=1

h−
1
2

Ke
i
‖∇wv‖L2(Ke

i ).

Using |e| ≤ hd−1
Ke

i
yields

∣∣∣∣∣∫
e
{A∇wv · ne}[vb]

∣∣∣∣∣ ≤CtA1

2

2∑
i=1

h−
1
2

Ke
i
‖∇wv‖L2(Ke

i )‖[vb]‖L2(e)

≤
CtA1

2

 2∑
i=1

h
β(d−1)−1

2
Ke

i
‖∇wv‖L2(Ke

i )

 |e|− β2 ‖[vb]‖L2(e)

≤CtA1

 2∑
i=1

‖∇wv‖2L2(Ke
i )


1
2

|e|−
β
2 ‖[vb]‖L2(e),

where we have assumed β(d− 1) ≥ 1 and h ≤ 1. Summing over all edges and using Young’s inequality
with δ > 0, we obtain ∣∣∣∣∣∣∣∑e∈Eh

∫
e
{A∇wv · ne}[vb]

∣∣∣∣∣∣∣
≤CtA1

∑
e∈Eh

2∑
i=1

‖∇wv‖2L2(Ke
i )


1
2
∑

e∈Eh

|e|−β‖[vb]‖2L2(e)


1/2

≤
CtA1

√
n0

√
A0

∑
K∈Th

‖A
1
2∇wv‖2L2(K)


1
2
∑

e∈Eh

|e|−β‖[vb]‖2L2(e)


1/2

≤
δ

2

∑
K∈Th

‖A
1
2∇wv‖2L2(K) +

C2
t A2

1n0

2δA0

∑
e∈Eh

|e|−β‖[vb]‖2L2(e).

(3.6)

Thus, aε(·, ·) becomes

|aε(v, v)| ≥
∑
K∈Th

‖A
1
2∇wv‖2L2(K) − |ε − 1|

∣∣∣∣∣∣∣∑e∈Eh

∫
e
{A∇wv · ne}[vb]

∣∣∣∣∣∣∣ + J(v, v)

≥

(
1 −

δ

2
|ε − 1|

) ∑
K∈Th

‖A
1
2∇wv‖2L2(K)

+
∑
e∈Eh

(
σe −

C2
t A2

1n0

2δA0
|ε − 1|

)
|e|−β‖[vb]‖2L2(e).

By taking δ = 1
2 for ε = −1 and δ = 1 for ε = 0, then, for σe large enough (for example, σe ≥

2C2
t A2

1n0

A0
+ 1

2

if ε = −1 and σe ≥
C2

t A2
1n0

A0
+ 1

2 if ε = 0), we have the following coercivity result

aε ≥
1
2

9 v 92 .

�
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The following uniqueness is a direct consequence of Proposition 3.1.

Proposition 3.2 (Uniqueness). Under the conditions given in Proposition 3.1, the interior-penalized
weak Galerkin methods (3.1) have one and only one solution.

4. Error estimates

The goal of this section is to establish error estimates for the IPWG methods (3.1). The error is
measured in two norms: the triple-bar norm as defined in (3.2) and the standard L2 norm.

We first state two approximation properties of the operator Πh, which can be proved by combining
[25, Lemma 7.3] with the approximation result in [1, Proposition 2.5.1].

Lemma 4.1. Let Πh be the local projection operator defined in Section 2. For all u ∈ H s(Ω) with s ≥ 2,
we have

‖Πh(A∇u) − A∇u‖L2(Ω) ≤ C

∑
K∈Th

h2 min{k+2,s}−2
K ‖u‖Hs(K)


1
2

, (4.1)

‖Πh(A∇u) − A∇w(Qhu)‖L2(Ω) ≤ C

∑
K∈Th

h2 min{k+2,s}−2
K ‖u‖Hs(K)


1
2

. (4.2)

Next, we state an important result for the projection operator Πh.

Lemma 4.2. Let τ ∈ H(div,Ω) be a smooth vector-valued function and Πh be the local projection
operator defined in Section 2. Then, the following identify holds true∑

K∈Th

(−∇ · τ, v0)K =
∑
K∈Th

(Πhτ,∇wvh)K −
∑
e∈Eh

〈[vb],Πhτ · ne〉e, vh ∈ Vh. (4.3)

Proof. See [10, Lemma 4.2]. �

In what follows, we define
eh = (e0, eb) := Qhu − uh.

Testing (1.1) with v0 of v = (v0, vb) ∈ Vh and using (4.3) lead to∑
K∈Th

(ΠhA∇u,∇wvh)K −
∑
e∈Eh

〈[vb],ΠhA∇u · ne〉e = ( f , v0), (4.4)

which can be rewritten as∑
K∈Th

(A∇wQhu,∇wvh)K = ( f , v0) −
∑
K∈Th

(ΠhA∇u − A∇wQhu,∇wvh)K

+
∑
e∈Eh

〈[vb],ΠhA∇u · ne〉e.
(4.5)

By adding
−

∑
e∈Eh

〈[vb], {A∇wQhu · ne}〉e + ε
∑
e∈Eh

〈[Qbu], {A∇wv · ne}〉e + J(Qhu, v)
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to both sides of (4.5) and noticing that [Qbu]|e = 0 for e ∈ EI
h and [Qbu]|e = Qb(g|e) for boundary edge

e ∈ EB
h , we obtain

aε(Qhu, v) = fh(v) −
∑
K∈Th

(ΠhA∇u − A∇wQhu,∇wvh)K

+
∑
e∈Eh

〈JvbK, {(ΠhA∇u − A∇wQhu) · ne}〉e.
(4.6)

Subtracting (3.1) from (4.6) leads to

aε(eh, vh) = −
∑
K∈Th

(ΠhA∇u − A∇wQhu,∇wvh)K

+
∑
e∈Eh

〈JvbK, {(ΠhA∇u − A∇wQhu) · ne}〉e,
(4.7)

which is the error equation for the IPWG approximations (3.1).

Lemma 4.3. Let Th be a shape regular partition. Then for any u ∈ H s(K) and v = (v0, vb) ∈ Vh, we
have for any s ≥ 2

|`1(u, v)| ≤ C

∑
K∈Th

h2 min(k+2,s)−2
K ‖u‖2Hs(K)


1
2

9 v9, (4.8)

|`2(u, v)| ≤ C

∑
K∈Th

h2 min(k+2,s)−2
K ‖u‖2Hs(K)


1
2

9 v9, (4.9)

where

`1(u, v) :=
∑
K∈Th

(ΠhA∇u − A∇wQhu,∇wvh)K ,

`2(u, v) :=
∑
e∈Eh

〈JvbK, {(ΠhA∇u − A∇wQhu) · ne}〉e.

Note that the estimate (4.9) holds if β(d − 1) ≥ 1.

Proof. The estimate (4.8) is a direct result of Lemma 4.1. We now estimate (4.9). Assume that β(d −
1) ≥ 1, which is given in Proposition 3.1. By using the trace inequality and recalling |e| ≤ hd−1

e , we
obtain

|e|
β
2 ‖(ΠhA∇u − A∇wQhu)|K‖L2(e) ≤Ch

β(d−1)−1
2

e ‖ΠhA∇u − A∇wQhu‖L2(K)

≤C‖ΠhA∇u − A∇wQhu‖L2(K).

Let Ke
1 and Ke

2 be the adjacent elements containing edge e ∈ Eh. Then, it follows that∣∣∣∣∣∫
e
{(ΠhA∇u − A∇wQhu) · ne}[vb]

∣∣∣∣∣
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≤|e|
β
2

 2∑
i=1

‖(ΠhA∇u − A∇wQhu)|Ke
i
‖2L2(e)

1/2

|e|−
β
2 ‖[vb]‖L2(e)

≤C

 2∑
i=1

‖ΠhA∇u − A∇wQhu‖2L2(Ke
i )


1
2

|e|−
β
2 ‖[vb]‖L2(e).

Summing over all edges leads to (4.9). �

The following theorem follows from Lemma 4.3.

Theorem 4.1. Assume the conditions of Proposition 3.1 hold true and the exact solution u of (1.1)-
(1.2) belongs to H s(Th) with s ≥ 2. Let uh ∈ Vh be a numerical solution of (3.1). Then, there exits a
constant C > 0 independent of mesh size h such that

9Qhu − uh9 ≤ C

∑
K∈Th

h2 min(k+2,s)−2
K ‖u‖2Hs(K)


1/2

. (4.10)

In the rest of the section, we shall derive an error estimate in L2-norm for the IPWG methods (3.1)
by using a duality argument. Suppose the dual problem: Find a solution w ∈ H1

0(Ω) satisfying

−∇ · (A∇w) = e0, in Ω, (4.11)

has the usual H2-regularity, i.e., there exists a constant C > 0 such that

‖w‖H2(Ω) ≤ C‖e0‖L2(Ω). (4.12)

Theorem 4.2. Under the conditions of Theorem 4.1, and assume that the dual problem (4.11) has the
H2-regularity. Then, there exits a constant C > 0 independent of the mesh size h such that

‖e0‖ ≤C
[ (

h + |1 + ε |h
β(d−1)−1

2

)
9 eh9

+ hmin{k+2,s}‖u‖Hs(Ω) + hmin{k+1,2}‖Q0 f − f ‖L2(Ω)

]
.

(4.13)

Note that for ε = −1, the a priori estimate (4.13) is optimal if k ≥ 1; For ε = 0, 1, the estimate is
optimal if k ≥ 1 and β(d − 1) − 1 ≥ 2.

Remark 4.1. One can see that, with sufficient smoothness of u and f , the IPWG (ε = −1) method
possesses a superconvergence with O(hk+2). The same superconvergence holds true for IPWG (ε = 0, 1)
with an over-penalization such that β(d − 1) − 1 ≥ 2.

Proof. Let wh = {w0,wb} ∈ Vh be the IPWG solution of (4.11), then wh satisfies the weak formulation

aε(wh, eh) = (e0, e0),

and the priori estimate
9 wh − Qhw9 ≤ Ch‖w‖H2(Ω) ≤ Ch‖e0‖L2(Ω). (4.14)
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Thus, we can obtain

‖e0‖
2
L2(Ω) = aε(wh, eh) = aε(wh − Qhw, eh) + aε(Qhw, eh). (4.15)

We now estimate the second term on the right hand side. By taking

T := (1 + ε)
∑
e∈Eh

〈{A∇wQhw · ne}, [eb]〉e

and noticing [Qbw] = 0 on all edges e ∈ Eh, we obtain from the error equation (4.7)

aε(Qhw, eh) = aε(eh,Qhw) − T

= −(ΠhA∇u − A∇wQhu,∇wQhw) − T

= −(ΠhA∇u − A∇u,Qh∇w) + (A∇u − AQh∇u,Qh∇w) − T.

The second term on the right hand side clearly is zero by noticing that the coefficient A is piecewise
constant and Qh is an L2 projection. Next, we turn to the first term. By using ΠhA∇u ∈ H(div,Ω) and
(2.4), an integration by parts leads to

(ΠhA∇u − A∇u,∇w) =(∇ · (ΠhA∇u − A∇u),w)
=(Q0(∇ · A∇u) − ∇ · A∇u,w − Q0w)
≤‖Q0 f − f ‖L2(Ω)‖w − Q0w‖L2(Ω)

≤Chmin{k+1,2}‖Q0 f − f ‖L2(Ω)‖w‖H2(Ω).

(4.16)

It is easy to see that T = 0 when ε = −1, hence, one has to estimate T if ε = 0 or 1. The same
technique as in (3.6) leads to

|T | ≤ C|1 + ε |h
β(d−1)−1

2 ‖A
1
2∇wQhw‖ 9 eh9

≤ C|1 + ε |h
β(d−1)−1

2 ‖∇w‖L2(Ω) 9 eh9

≤ C|1 + ε |h
β(d−1)−1

2 ‖w‖H2(Ω) 9 eh 9 .

(4.17)

Hence, we can obtain from (4.16), (4.17) and (4.1)

aε(Qhw, eh) = − (ΠhA∇u − A∇u,Qh∇w) − T

= − (ΠhA∇u − A∇u,∇w) + (ΠhA∇u − A∇u,∇w − Qh∇w) − T

≤C
(
hmin{k+1,2}‖Q0 f − f ‖L2(Ω) + hmin{k+2,s}‖u‖Hs(Ω)

)
‖w‖H2(Ω)

+ C|1 + ε |h
β(d−1)−1

2 ‖w‖H2(Ω) 9 eh 9 .

Substituting the above estimate into (4.15) and using the continuity of aε and (4.14), we arrive at

‖e0‖
2
L2(Ω) ≤C

(
h 9 eh 9 +hmin{k+1,2}‖Q0 f − f ‖L2(Ω)

+ hmin{k+2,s}‖u‖Hs(Ω) + |1 + ε |h
β(d−1)−1

2 9 eh 9
)
‖e0‖L2(Ω),

which completes the proof. �
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5. Numerical experiments

In this section, we present a series of computational examples to numerically investigate the
asymptotic convergence behaviour of the proposed IPWG methods.

We take Ω = (0, 1)2, and multilevel uniform triangular meshes are employed. The meshes are
generated in the following way. First, we partition the square domain into N×N subsquares uniformly;
then we divide each subsquare into two triangles by the diagonal line with a negative slope, completing
the construction of uniformly refined triangular meshes, see Figure 1. Set the mesh size h = 1

N .

Figure 1. Uniform mesh: the initial one (1/h = 4, Left) and the finest one (1/h = 64, Right).

Example 1 (A model problem with a smooth solution). Consider the problem (1.1)-(1.2) with the
following analytical solution

u(x, y) = sin(2πx) cos(2πy),

and the diffusion matrix A =

[
1 0
0 1

]
.

For comparison between the IPWG method and the original WG method, the relative errors in 9 ·9
and L2-norms, defined as

9Qhu − uh9
9Qhu9

and
‖Q0u − u0‖0,Ω

‖Q0u‖0,Ω
,

of the WG method with the element (Pk,Pk,RT k) in Table 1, from which one can see that the WG
method converges optimally.

It follows from Theorem 4.1, all IPWG solutions with ε = −1, 0, 1 converge optimally with rates
O(hk) in 9 · 9-norm. Since the diffusion coefficient A is constant and the domain Ω is convex, the
duality problem possesses the H2-regularity. Thus, from Theorem 4.2, the IPWG solution with ε = −1
should converge optimally given by O(hk+1) in L2-norm; and converge sub-optimally in L2-norm given
by O(hk) for ε = 0, 1 without over-penalization.

The relative errors between the exact solution and IPWG (ε = −1, β = 1) solution in 9 · 9- and
L2-norm are listed in Table 2. Note that, for ε = 0, 1, the IPWG methods produce the same numerical
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results as in the case of ε = −1, see Table 2. It can be seen from Tables 2 and 3 that errors of the IPWG
(ε = −1, 0, 1) solutions are numerically the same as those of the WG method, and all the convergence
rates are optimal without any over-penalization. The numerical results are fairly in agreement with the
theoretical estimates given by Theorems 4.1-4.2. In addition, one can see that from Table 3, the IPWG
method with ε = 1, σe = 0 also has optimal rates while there is no theoretical proof.

Table 1. Example 1: WG (Pk,Pk,RT k) on the uniform mesh.

1
h k = 0 k = 1 k = 2

9eh9 ‖e0‖ 9eh9 ‖e0‖ 9eh9 ‖e0‖

4 1.4965e-01 1.2161e-01 9.0195e-02 2.9052e-02 2.2838e-02 5.9333e-03
8 6.7432e-02 3.2514e-02 2.4268e-02 4.4436e-03 3.0978e-03 4.2542e-04

16 3.2959e-02 8.2472e-03 6.2017e-03 5.8857e-04 3.9578e-04 2.7683e-05
32 1.6391e-02 2.0684e-03 1.5611e-03 7.4796e-05 4.9772e-05 1.7512e-06
64 8.1848e-03 5.1750e-04 3.9119e-04 9.3966e-06 6.2356e-06 1.0994e-07

R. 1.0019 1.9989 1.9966 2.9928 2.9967 3.9936

Table 2. Example 1: IPWG (ε = −1) on the uniform mesh. The results for ε = 0, 1 are the
same.

1
h k = 0, σ = 1 k = 1, σ = 8 k = 2, σ = 16

9eh9 ‖e0‖ 9eh9 ‖e0‖ 9eh9 ‖e0‖

4 1.4965e-01 1.2161e-01 9.0195e-02 2.9052e-02 2.2838e-02 5.9333e-03
8 6.7432e-02 3.2514e-02 2.4268e-02 4.4436e-03 3.0978e-03 4.2542e-04

16 3.2959e-02 8.2472e-03 6.2017e-03 5.8857e-04 3.9578e-04 2.7683e-05
32 1.6391e-02 2.0684e-03 1.5611e-03 7.4796e-05 4.9772e-05 1.7512e-06
64 8.1848e-03 5.1750e-04 3.9119e-04 9.3966e-06 6.2357e-06 1.0994e-07

R. 1.0019 1.9989 1.9966 2.9928 2.9967 3.9936

Table 3. Example 1: IPWG (ε = 1, σe = 0) on the uniform mesh.

1
h k = 0 k = 1 k = 2

9eh9 ‖e0‖ 9eh9 ‖e0‖ 9eh9 ‖e0‖

4 1.4965e-01 1.2161e-01 9.0195e-02 2.9052e-02 2.2838e-02 5.9333e-03
8 6.7432e-02 3.2514e-02 2.4268e-02 4.4436e-03 3.0978e-03 4.2542e-04

16 3.2959e-02 8.2472e-03 6.2017e-03 5.8857e-04 3.9578e-04 2.7683e-05
32 1.6391e-02 2.0684e-03 1.5611e-03 7.4796e-05 4.9772e-05 1.7512e-06
64 8.1848e-03 5.1750e-04 3.9119e-04 9.3966e-06 6.2358e-06 1.0995e-07

R. 1.0019 1.9989 1.9966 2.9928 2.9966 3.9934
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Example 2 (A model problem with a corner singularity). We consider the Poisson equation defined on
the unit square with the exact solution

u(x, y) = x(1 − x)y(1 − y)r−2+α,

where r =
√

x2 + y2 and α ∈ (0, 1]. As we known

u ∈ H1
0(Ω) ∩ H1+α−ε(Ω) and u < H1+α(Ω),

where ε is any small, but positive number. In numerical experiments, we set α = 0.5.

The problem is tested on the uniform and locally refined meshes to investigate the convergence
behaviour of the IPWG method, respectively. We set β such that β(d − 1) − 1 = 0, i.e., β = 1 for d = 2.
From Table 4, we observe all cases of the IPWG method with ε = −1, 0, 1 converge optimally at O(hα)
in 9 · 9-norm and O(h1+α) in L2-norm, or equivalently

9eh9 = O(Dof−α/2), ‖e0‖0,Ω = O(Dof−(1+α)/2),

where the Dof denotes the degrees of freedom.

Table 4. Example 2: IPWG (ε = −1, 0, 1) on the uniform mesh.

1
h k = 0, σ = 1 k = 1, σ = 8 k = 2, σ = 16

9eh9 ‖e0‖ 9eh9 ‖e0‖ 9eh9 ‖e0‖

4 2.7492e-01 1.2997e-01 2.1727e-01 5.9929e-02 1.8548e-01 3.5250e-02
8 2.1024e-01 5.3331e-02 1.5230e-01 2.2183e-02 1.3414e-01 1.3052e-02

16 1.5262e-01 1.9166e-02 1.0708e-01 8.0616e-03 9.6047e-02 4.7269e-03
32 1.0897e-01 6.7197e-03 7.5498e-02 2.8925e-03 6.8364e-02 1.6918e-03
64 7.7349e-02 2.3579e-03 5.3312e-02 1.0304e-03 4.8505e-02 6.0183e-04

R. 0.4945 1.5109 0.5020 1.4891 0.4951 1.4911

Next, we employ a series of locally-refined meshes generated by Gmsh [6], see Figure 2, to illustrate
the convergence behaviour of the IPWG methods for Example 2. For simplicity, we set ε = −1, β = 1,
and we set σ = 1, 8, 16 for k = 0, 1, 2, respectively. The convergence rates of the relative error respect
to Dof1/2 are plotted in Figure 3. One can see that the IPWG method on the locally-refined mesh
performs better than the uniform mesh in the sense that higher convergence rates in 9 ·9 and L2-norms
are observed.
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Figure 2. Locally-refined meshes with 26, 96, 354, 1310 elements, respectively.

Figure 3. Example 2: Convergence rates of the IPWG method (ε = −1) on the locally refined
mesh with respect to Dof1/2. Left: 9Qhu − uh9; Right: ‖Qhu − uh‖0,Ω.
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6. Conclusions

We have presented a family of IPWG methods for the second-order elliptic problems and established
optimal a priori error estimates. The superconvergence of the new method is revealed. The new method
has many in common with the DG method: they share a similar numerical formulation; they have
the same conditions for the uniqueness, see Proposition 3.2; and the penalty parameter σe which, in
practice, needs to be adjusted according to the mesh used because there is still no explicit formula for
it.

Yet, it is worthy to note that the new method possesses its own merits. First, the IPWG method
exhibits more stability on the polynomial order than IPDG. In detail, numerical experiments for
Example 1 state the convergence rates in H1 and L2 norms of all IPWG methods are optimal (in fact
they are superconvergent) without the over-penalization, no matter the polynomial degree is even or
odd. In contrast, for the NIPG and IIPG methods, the converge rates are suboptimal if the polynomial
degree is even [18]. Second, Theorem 4.2 reveals superconvergence of the IPWG method if the exact
solution is smooth enough. To the end, the degrees of freedom defined on the interior of each element
can be reduced by a Schur complement formulation, see [9], and only the unknowns on each edge/face
of the mesh left.
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