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Abstract: In this article, we investigate a one-dimensional thermoelastic laminated beam system with
viscoelastic dissipation on the effective rotation angle and through heat conduction in the interfacial
slip equations. Under general conditions on the relaxation function and the relationship between the
coeflicients of the wave propagation speed of the first two equations, we show that the solution energy
has an explicit and general decay rate from which the exponential and polynomial stability are just
particular cases. Moreover, we establish a weaker decay result in the case of non-equal wave of speed
propagation and give some examples to illustrate our results. This new result improves substantially
many other results in the literature.
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1. Introduction

The fundamental work of Hansen and Spies [4] modeled a two-layer beam with a structural damping
due to the interfacial slip through the following system

pen+GW—¢,), =0,
LGw =), —~DBw—), —G W —g) =0, (1.1)
Lywy — Dwy, + 3G (Y — @) +4yw + 4Bw;, = 0,

where ¢ = ¢(x,t) is the transverse displacement, ¥ = Y¥(x,1) is the rotation angle, w = w(x,?) is
proportional to the amount of slip along the interface, 3w — i denotes the effective rotation angle. The
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physical quantities p, I,,G, D, and 7y are respectively: the density, mass moment of inertia, shear
stiffness, flexural rigidity, adhesive damping and adhesive stiffness. Equation (1.1); describes the
dynamics of the slip. For g = 0, system (1.1) describes the coupled laminated beams without
structural damping at the interface. In the recent result [1], Apalara considered the
thermoelastic-laminated beam system without structural damping, namely

Peu+G W — o), =0,

L,Bs =), —DBs =), —GW—¢y) =0,
Lysy — Dsy + 3G (Y — @) +4ys + 066, =0,
030, — A, + 651, = 0,

(1.2)

where (x, ) € (0, 1) % (0, +0), 6 = 0(x, t) is the difference temperature. The positive quantities y, 3, k, A
are adhesive stiffness, adhesive damping, heat capacity and the diffusivity respectively. The author
proved that (1.2) is exponential stable provided

D

G
—=—. (1.3)
P
When g > 0, the adhesion at the interface supplies a restoring force proportion to the interfacial slip.
But this is not enough to stabilize system (1.1), see for instance [2]. To achieve exponential or general

stabilization of system (1.1), many authors in literature have used additional damping. In this direction,
Gang et al. [9] studied the following memory-type laminated beam system

Py +GW—¢,), =0,

L,Bw—y),—D@Bw-y),, + f gt—9)Bw—-yY), (x,9)ds -G —¢,) =0 (1.4)
0

3I,wy —3Dw, + 3G (Y — ) +dyw +4pw, =0

and established a general decay result for more regular solutions and ;—; * ,%. Mustafa [15] also

considered the structural damped laminated beam system (1.4) and established a general decay result
provided g = IQ. Feng et al. [8] investigated the following laminated beam system
P

owu + G, + g1(wy) + fiw, &, s) = hy,

L& — G — Déx + 2(6) + (W, &, 5) = ha, (1.5)

Ipsu + Gp — Dsyc + g3(s) + oW, &, 5) = hs
and established the well-posedness, smooth global attractor of finite fractal dimension as well as
existence of generalized exponential attractors. See also, recent results by Enyi et al. [20]. We refer
the reader to [5-7,11,13, 14,17, 18] and the references cited therein for more related results.

In this present paper, we consider a thermoelastic laminated beam problem with a viscoelastic
damping

owy + G (Y — Wx)x =0,
I, 3s =), —D@Bs—y),, + f gt—1)CBs—yY), (x,Ddtr-GW—-—w,) =0
0

31,54 —3Dsy + 3G (Y —w,) + 4ys + 06, = 0,
k@, - /l@xx + 6Sxt = 0

(1.6)
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under initial conditions

w(x, 0) = wo(x), ¥(x,0) = ¢ho(x), s(x,0) = 50(x), O(x,0) = p(x), x<[0,1], (1.7)
wi(x,0) = wi(x), ¥i(x,0) = Y1 (x), 5,(x,0) = 51(x), x€[0,1] '
and boundary conditions
w(0,1) = ¢,(0,2) = 5,(0,1) = 6(0,1) = 0, t € [0, +00), L8
we(l, ) =y(l,1) = s(1,1) = 6,(1,¢) =0, t € [0, +00). (18)

In the system (1.6), the integral represents the viscoelastic damping, and g is the relaxation
function satisfying some suitable assumptions specified in the next section. According to the
Boltzmann Principle, the viscoelastic damping (see [21] for details) is represented by a memory term
in the form of convolution. It acts as a damper to reduce the internal/external forces like the beam’s
weight, heavy loads, wind, etc., that cause undesirable vibrations.

In most of the above works, the authors have established their decay result by including the
structural damping along with other dampings. So, the natural question that comes to mind.

Is it possible to obtain general/optimal decay result (decay rates that agrees with that of
g) to the thermoelastic laminated beam system (1.6)—(1.8), in the absence of the structural
damping.

The novelty of this article is to answer this question in a consenting way, by using the ideas
developed in [10] to establish general and optimal decay results for Problem 1.6. Moreover, we
establish a weaker decay result in the case of a non-equal wave of speed propagation. To the best of
our knowledge, there is no stability result for the latter in the literature.

The rest of work is organized as follows: In Section 2, we recall some preliminaries and assumptions
on the memory term. In Section 3, we state and prove the main stability result for the case equal-speed
and in the case of non-equal-speed of propagation. We also give some examples to illustrate our
findings. Finally, in Section 4, we give the proofs of the lemmas used our main results.

2. Preliminaries
In this section, we recall some useful materials and conditions. Through out this paper, C is a

positive constant that may change through lines, (.,.) and ||.||; denote respectively the inner product
and the norm in L2(0, 1). We assume the relaxation function g obeys the assumptions:

(G1). g : [0, +00) —> (0, +00) is a non-inecreasing C'— function such that
g0)>0, D- f g(ndr =1, > 0. 2.1
0

(G2). There exist a C! function H : [0, +00) — (0, +0c0) which is linear or is strictly convex C? function
on (0, &), € < g(0), with H(0) = H’(0) = 0 and a positive nonincreasing differentiable function
¢ 1[0, +00) — (0, 4+00), such that

gt <—-émH(g(1), t=0, (2.2)
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Remark 2.1. As in [10], we note here that, if H is a strictly increasing convex C*— function on (0, r],
with H(0) = H'(0) = 0, then H has an extension H, which is strictly increasing and strictly convex
C2-function on (0, +c0). For example, H can be defined by

an(—r) 2+ (H () - H' (s + HO) - Hor + 072 g5 2-3)

H(s) = 5

Let
H}(0,1) = {ue H'(0,1)/u(0) = 0}, H0,1) ={ue H'0, )/u(l) =0},
HX(0,1) = {u € H*(0,1)/u, € HI(0, 1)}, HX0,1) = {u € H*(0,1)/u, € HI(0, 1)}.
The existence and regularity result of problem (1.6) is the following

Theorem 2.1. Let (wg, 30—, So,6o) € Hl 0, 1)xH(0, 1))([:[: (0,1)xH!(0, 1) and (wy, 35, -, 81) €
L*(0,1) x L*(0,1) x L*(0, 1) be given. Suppose (G1) and (G2) hold. Then problem (1.6) has a unique
global weak solution (w, 3s — ¥, s, 8) which satisfies

we CR,,H0,1))nC'(R,, L*0,1)), Bs—¢) e CR,, H(0,1)) n C'R.,, L*0, 1)),

se C(R,,H0,1)nC'(R,,L*0,1)), 6 e CR,, L*0, 1)) N L*R,,H'(0,1)).
Furthermore, if (wo, (350 — ¥o), S0, 60) € H2(0, 1) x H2(0, 1) x H*(0, 1) x H*(0,1) n H!(0, 1) and
(w1, (Bsy =), s1) € H(0,1) x H(0, 1) x H'(0, 1), then the solution of (1.6) satisfies
w € C(R,, H2(0,1)) N C'(R., H,(0,1)) N C*(R,, L*(0, 1)),
(Bs—y) € CR,, H2(0,1)) N C'(R,, H/(0,1)) N C*(R,, L*(0, 1)),
s € C(R,, HX(0,1)) N C'(R,, H(0, 1)) N C*(R,, L*(0, 1)),
0 € C(R,, H*(0,1) N H2(0,1)) N C'(R,, H'(0, 1)).

The proof of Theorem 2.1 can be established using the Galerkin approximation method as in [16].
Throughout this paper, we denote by ¢ the binary operator, defined by

(g0 V) (1) = f ot = DIVO —vDdr, 120,
0

We also define A(¢) and C, as follow

+00 2
h(t) = ag(t) — ¢'(f) and C, = f _ 8@ .
o ag(t)-g )

The following lemmas will be applied repeatedly throughout this paper
Lemma 2.1. For any function f € Lfoc([O, +00), L*(0, 1)), we have

2

1 t
j; (j; gt = )(f(1) - f(S))dS) dx < (1 =1Ip)(g o f)), (2.4)

1 X 2
fo ( fo f(y,t)dy) dx < ||f @)l (2.5)
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Lemma 2.2. Letv € H!(0,1) or H!(0,1), we have

2

1 t
f) (j; g(t—s)(v(t) — V(T))dT) dx < C,(1 = ly)(g o)), (2.6)

where C, > 0 is the poincaré constant.

Lemma 2.3. Let (w,3s — ¢, s, 0) be the solution of (1.6). Then, for any 0 < @ < 1 we have

1 t 2
f (f gt—1)(Bs—y), (1) - CBs—y), (1) d‘r) dx < Cy(ho 3s—),) (). 2.7
0o \Jo

Proof. Using Cauchy-Schwarz inequality, we have

2

1 t
fo ( fo gt =1 (Bs—¥), (1) = Bs =), (1) dT) dx

1 s )
_ g-1) — o
_f ( x/h(T W((% ¥)x(1) = (3s tﬁ)x(t))dr) dx o8

+o0 2 !
< (f e ds)f f h(t = 7) (35 = Y)x(7) = 35 = Y),(1))" drdx
o h(™ 0 Jo

=Co(hoBs =)o) ®.

O

Lemma 2.4. [I2] Let F be a convex function on the close interval [a,b], f,j : Q — [a,b] be
integrable functions on €, such that j(x) > 0 and fg j(x)dx = a; > 0. Then, we have the following
Jensen inequality

1 1
F (— f f(y)j(y)dy)s — f F(f(y)j)dy. (2.9)
ar Jo ar; Ja

In particular if F(y) = y%, y>0, p>1,then

1 ;1
(— f f(y)j(y)dy) <— f (fFO))? j)dy. (2.10)
a) Jo a

Lemma 2.5. The energy functional E(t) of the system (1.6)-(1.8) defined by

1
E(t) = 5 [plwll + 3,515 + Ll13s, = il + 3Dlsili + Gllw = wl]
1 : (2.11)
*3 (D - f g(T)dT) 135 = wsllz + (g 0 Bsx = ) (1) + 4llsll; + k||9||§] )
0
satisfies
1 1
E'(t) = 3 (8o Bsy—y) (@) - 58I3sx = Wll3 — All6s13

(2.12)

< %(g'0(3sx—t,//x))(t)§0, Yi>0.
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Proof. Multiplying (1.6),, (1.6),, (1.6); and (1.6),, respectively, by w,, (3s, — ¢,), s; and 6, integrating
over (0, 1), and using integration by parts and the boundary conditions (1.7), we arrive at

1d
3 dr (w3 + Glly = wilB) = (@ = wa), ), (2.13)
1d ) t i
375 |LelBs: =il +| D = f gt | 1135, — Y3 + (g 0 By — o))
] . (2.14)
= G(W = w0, Bs =)} + 5(8 & Bse =Y )(®) = 3835 — Yl
1d
5 BB + 3DlIs.I5 + 4y1s15] = ~3G4W = w). 5 = 661 5. (2.15)
and 4
5 (KIBIB) = 216,15 + 5. .. (2.16)

Adding the equations (2.13)—(2.16), taking into account (G1) and (G2), we obtain (2.12) for regular
solutions. The result remains valid for weak solutions by a density argument. This implies the energy
functional is non-increasing and

E(r) < E0), Vt>0.

3. Stability results
This section is subdivided into two. In the first subsection, we prove the stability result for equal-
wave-speed of propagation, whereas in the second subsection, we focus on the stability result for

non-equal-wave-speed of propagation.

3.1. Equal-wave-speed of propagation

Our aim, in this subsection, is to prove an explicit, general and optimal decay rate of solutions for
system (1.6)—(1.8). To achieve this, we define a Lyapunov functional

6
L(t) = NE(@t) + )" N;i (1), (3.1)

J=1

where N, N;, j=1,2,3,4,5,6 are positive constants to be specified later and

1 !
Ii(n) = _Ipf (3s - lﬁ)zf gt =) (Bs —y)(1) — B3s — ¥)(7)) drdx, 120,
0 0

1 1 X 1 X
L) = 3Ipf ssdx + 3pf w,f s(y)ydydx, I3(t) = —3klpf 9f s;(y)dydx, t>0,
0 0 0 0 0

1 1
Li(t) = —pf wwdx, I5(t) = Ipf (Bs—¥)3s —¥)dx, t>0,
0 0
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1 1 1 t
Ig(t) = 31,G f W — wy)sdx — 3pD f wysudx,  L(f) = f f J(t = 7)3sy — ) (@)drdx, t>0,
0 0 0 0

J(@) = f+°° g(n)dr.

The following lemma is very important in the proof of our stability result.

where

Lemma 3.1. Suppose % = g. Under suitable choice of t,,N, N;, j = 1,2,3,4,5,6, the Lyapunov
functional L satisfies, along the solution of (1.6) — (1.8), the estimate

2 2 2 2 2 2
L'(6) < = B(IwidB + 15 + 135, = will3 + 1sul3 + 113wy = w3 + llyr = wil3)

1 (3.2)
=B (ISl +16:1) + 5 (g © Bsx =) (. ¥ 1 2 1y

and the equivalence relation
a1 E(t) < L(t) < am E(t) (3.3)

holds for some 8> 0, ay, a; > 0.

Proof. By virtue of assumption (3.1) and using h(z) = ag(t)—g’'(?), it follows from Lemmas 2.5, 4.1-4.6
(see the Appendix for detailed derivations) that, for all # > 7, > 0,

) N361 1 1
L'(t) < = [Nyp — Naby] lIwilf3 — [ S Nzc(l + —) — Néc(l + ?) lls:ll5 — 3Nayllsll3
1

2 €

— | Nil,go = Nsl, = Noe1 | I35, = il = [3DN — Naes = NaC = NoCl s 3

[ C Nsl,
= |N6G® ~ M = Moy = Ny NSC] I = wll3 - [% - N - N4e4] Bs: = vl (3.4
[ 1 , Na
—|AN = N,C = N3C (1 + — | = NsC | 10:l5 + > (g o Bsy =) (D)
| €
[N 1 1
-|=-CC, (N5 + N, (1 + —+ —))] (ho@s,— ) (D).
| 2 € 6
Now, we choose
l
Ny=Ns=1, = g‘) (3.5)
and select N large enough such that
M1 = Nllng — Ip > 0. (36)
Next, we choose Ng large so that
1 := NgG* — C > 0. (3.7)
Also, we select N, large enough so that
Uz :=3DN, — C — NgC > 0. (3.8)
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After fixing Ny, N,, Ng, and letting €3 = 2’%, we then select €, &, and ¢4 very small such that
3

p—N264>0, /11—N6€1 >0, M4 Z:%—N162>O (39)

and select Nj large enough so that

N3¢, 1 1
—NCl1+ —])=NeC|1+—|>0. (3.10)
€ €1
Now, we note that “i'(zs(;) = ag?sg;z—(;')(s) < g(s); thus the dominated convergence theorem gives
+00 2
aca:f _ 28Oy 0 as a— 0. (3.11)
o ag(s)—g'(s)

Therefore, we can choose some 0 < @y < 1 such that for all 0 < a < ay,

1
aC, < (3.12)

4C(1+N1(1+E‘—1+é))'

Finally, we select N so large enough and take @ = % So that

1
/lN-NzC-NgC(1+—)—N6C>0,

N 613‘ | (3.13)
——CCC,(1+N1(1+—+—))>0.
2 € €

Combination of (3.6) - (3.13) yields the estimate (3.2). The equivalent relation (3.3) can be obtain
easily by using Young’s, Cauchy-Schwarz, and Poincaré’s inequalities. O

Now, we state and prove our stability result for this subsection.

Theorem 3.1. Assume % = IQ and (G1) and (G2) hold. Then, there exist positive constants a; and a,

such that the energy solution [)(2. 11) satisfies

E@r) < c:tzHl‘1 (Cll f f(‘r)dr), where H (1) = fr TH'(T)dT (3.14)

and H, is a strictly decreasing and strictly convex function on (0, r], with lil’I(} H,(t) = +oo.
11—

Proof. Using the fact that g and ¢ are positive, non-increasing and continuous, and H is positive and
continuous, we have that for all 7 € [0, #y]

0 < g(to) < g(1) < g(0), 0< &) < &) < £(0).

Thus for some constants a, b > 0, we obtain
a < &H(g() <D.
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Therefore, for any ¢ €

and

[0,170], we get

g (1) < —EOH(g() < —ﬁg(m < _ﬁg@ (3.15)
0
£)g(t) < —%g’(n. (3.16)

From (2.12) and (3.15), it follows that

fo gDNBs, =Y )(0) = Bsy = ) = Dlpdr

From (3.2) and (3.17),

L'() <

g0)

<- Y §@NBs, — Y )E) — Bsy — )t — Dll>dr
0
<—-CE'(t), Yt >1. (3.17)
we have

1
“BE@) + 5(8 © Bs: = ¥))D)

1 [
—BE() + 3 j(; gONBsx = Y)(0) = Bse = )t = Dlpdr

1 t
5 f NGBS, = Y)(®) = By = )t = 7)l3dT

1 !
< —BE®)-CE'(t)+ 2 f NGBy — Y )@ — Bs, — Y )t — T)l3d.
Thus, we get
1 !
Li(t) < —BE(t) + 2 f NGBy — Y@ — Bsy — Y )t — T)ll3dT, Yt > 1, (3.13)

where L = L+ CE ~

E by virtue of (3.3). To finish our proof, we distinct two cases:

Case 1: H(t) is linear. In this case, we multiply (3.18) by &(7), keeping in mind (2.12) and (G2), to get

EDL(1)

Therefore

AIMS Mathematics

1 t
< —BEWE() + 55(’) f gONBsy — ¥ )@ — By — Yt — Dlldr
1 !
< —BEWE() + 5 f E@E@NIBsy = Y)(®) — Bsy — Y )t — 1lladr
1 !
< —BEWE() - 5 f g ONBsy = Y1) = Bs, — Yt — Dli3dt
< —BEME() — CE'(t), Yt >t (3.19)
(EL; + CE) (1) < =BE(HE(), Yt =1t (3.20)
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Since £ is non-increasing and L; ~ E, we have
L, =¢L,+CE ~E. (3.21)
Thus, from (3.20), we get for some positive constant «
L(1) < =BER)E(t) < —aé(H)Ly(1), VYt > to. (3.22)

Integrating (3.22) over (¢, t) and recalling (3.21), we obtain

—asz(s)ds t
E(t) <ae o = alHl_] (azf f(s)ds).

Case 2: H(t) is nonlinear. In this case, we consider the functional £(¢) = L(t) + I;(¢). From (3.2) and
Lemma 4.7 (see the Appendix), we obtain

L(t) < —dE@), Yt >t (3.23)

where d > 0 is a positive constant. Therefore,
t
d f E(s)ds < Llt0) - L(1) < L(t).
fo
Hence, we get

f ) E(s)ds < oo. (3.24)
0

Using (3.24), we define p(t) by

!
p() = nf 1352 = (@) = Bsx = )t = Dli3d7,
4]
where 0 < 17 < 1 so that
pt) < 1,Vt > 1. (3.25)

Moreover, we can assume p(f) > 0 for all # > £y; otherwise using (3.18), we obtain an exponential
decay rate. We also define g(¢) by

q(t) = —f g @IBsy = Y )(0) = Bs, = Y — 1)llpdr.

0]

Then g(r) < —CE’(¢), VYt > t,. Now, we have that H is strictly convex on (0, 7] (where r = g(t))) and
H(0) = 0. Thus,
H(ot)<oH(t), 0<o<land7€(0,r]. (3.26)

Using (3.26), condition (G2), (3.25), and Jensen’s inequality, we get
1 ! , 2
gy = —— | PO @MIBsx — Y)(®) — Bsy — ) — Dll2dT
np®) Ji,
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!

1
> —— | pOEDHGEMIBs,: — Y)(®) — Bs, — )t — Dlhdr
np) Jy,

| £
np(t)

> ‘%)H( f g(@ml(3s, - wx)<r>—<3sx—m)(z—r)n%dr)

H(p(Og@Nmll3s, = .)(1) = Bs, = )t = 1)llpd7

( )
fn ( f MB35, = Y1) = B = Yt - r>||§dr) ,
To
where H is the convex extention of H on (0, +o0) (see remark 2.1). From (3.27), we have

| semiGs— 00 - Gr. - - ofar < LA (%55 )

Therefore, (3.18) yields

L/(1) < —BE(t) + CH™! (ﬂ(”)

HONE
For ry < r, we define L;(¢) by

~ E
Li(t):=H’ (r()%) Li(t)+ E(t) ~ E(t)

since L; ~ E. From (3.28) and using the fact that
E'® <0, H@® >0, H' () > 0,

we obtain for all ¢t > 1,

L(t)—roE,(t)H( E())Ll() H( ())L(t)+E(t)

E0) " \"E©O "E(0)
: —( E
< -BEMH’ (ro%)+CH’( E(((t))))H 1( gE ;) E'(1).

(3.27)

(3.28)

(3.29)

Let us consider the convex conjugate of H denoted by H* in the sense of Young (see [3] page 61-64).

Thus,
H' (1) = oY (0) - H|(#H)@)]

and H* satisfies the generalized Young inequality
AB < H*(A) + H(B).

LetA = A (rogg) and B = A" (u23), 1t follows from (2.12) and (3.29)-(3.31) that

Ly(1) < ~BE(A’ (ro EW ) L (H ( E@) )) vonl® g

E©) "EO)) " e
EO\ . B0 ( EO) . . q0)
< -BEMH' ( E(O)) + Cr OE(O)H ( E(O))+C %+E(t)

(3.30)

(3.31)

(3.32)
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Next, we multiply (3.32) by &(¢) and recall that ro% < rand

H, r()& =H ro& ’
E0) E(0)

E E E
EOLY0) < —BEDEDH’ (m%) . Cro%é(t)h” (m%) + Cra(t) + EDE()

| E(® E(f) [ E() ,
< —ﬁf(t)E(I)H (l"om) + Cromf(l‘)H (I"Qm) —CE'(1). (3.33)

Let Ly(t) = &(t)Ls(t) + CE(¢). Since Ly ~ E , it follows that

we arrive at

boL4(t) < E(t) < by Ly(2), (3.34)

for some by, by > 0. Thus (3.33) gives
) E@®) A E@
L,(t) < —-(BEWO)-C H—=EMH —|, YVt = 1,.
(1) < =(BE(0) = Cro)é( )E(O)g() (rOE(O)) 0
We select ry < r small enough so that BE(0) — Cry > 0, we get

E E
L < —mf(t)%f(t)H’ (m%)

for some constant m > 0 and H,(t) = TH’(ryT). We note here that

E@®)
= - HH, | —— Yt >t .
mé(1) Z(E(O))’ = fo, (3.35)
Hé(T) = H’(roT) + rotH/’(roT),
thus the strict convexity of H on (0, r], yields Hy(7) > 0, H}() > 0 on (0, r]. Let

Ly
FQ) = bOE(O)
From (3.34) and (3.35), we obtain
F@t) ~ EQ@) (3.36)
and
F'(t)=a L < -—-mié(t)HL(F (1)), Ve >t (3.37)
0 EQ) - 1 2 , VI 2 1. .
Integrating (3.37) over (¢, t), we arrive at
t t F/(T) _ 1 roF(to) 1
my fm E(rydr < — . —Hz(F(T))dT = 7”_0 fmF(Z) TH’(T)dT' (3.38)
This implies
F(r) < lH;I (nil f f(‘r)dr), where H,(f) = f ! dr. (3.39)
ro fo . TH'(7)

Using the properties of H, we see easily that H, is strictly decreasing function on (0, r] and
lim H,(?) = +o0.
t—0

Hence, (3.14) follows from (3.36) and (3.39). This completes the proof. O
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Remark 3.1. The stability result in (3.1) is general and optimal in the sense that it agrees with the
decay rate of g, see [10], Remark 2.3.

Corollary 3.2. Suppose % = IQ, and (G), and (G,) hold. Let the function H in (G,) be defined by
Hrn)=1", 1<p<?2, (3.40)

then the solution energy (2.11) satisfies

E(t) < aexp (—a1 f f(r)dT), for p =1,
0

C
(1 + fzf(T)d‘r)p1

for some positive constants a,,a, and C.

E) < (3.41)

, forl <p<2

3.2. Nomnequal-wave-speed of propagation

In this subsection, we establish another stability result in the case non-equal speeds of wave
propagation. To achieve this, we consider a stronger solution of (1.6). Let (w,3s — , s,6) be the
strong solution of problem (1.6)—(1.8), then differentiation of 1.6 with respect to ¢ gives

oW +G W —wy),, =0,

Ip (3S - w)m - D(3S - w)xxt + f g(T) (3S - lﬁ)m (X, r— T)dT + g(t)(3so - wO)xx -G (lﬁ - Wx)t =0
0

3IpSm - 3DSXX[ + 3G (l// - W)C)[ + 4)/Sf + (Sex, = 0,
k6 — 20,21 + 653 = 0,

(3.42)
where (x,7) € (0,1) X (0, +0c0) and (35 — ¥),(x,0) = (3so — ¥o).- The modified energy functional
associated to (3.42) is defined by

1
E(1) = E [p”th”% + 3Ipllstt”§ + Ip||3stt - %Il% + 3D||sz||% + G”‘/’z - Wxt”%]
1 (3.43)
+ —
2

4yllsill3 + KlI6; 115 + (D - f g(T)dT) 1352 = Yrulls + (g © B = ¥ur)) (t)] :
0

Lemma 3.2. Let (w,3s — i, s,0) be the strong solution of problem (1.6)-(1.8). Then, the energy
functional (3.43) satisfies, for all t > 0

1 1
E\(n) =5 (8" 0 Bsu—¢) @ - Eg(t)”?’sxt — Yrll = 8B = Y, Bso = Yo)we) — AlOull;  (3.44)

and

E\(t) < C(E1(0) + (350 — %0)sl3) - (3.45)
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Proof. The proof of (3.44) follows the same steps as in the proof of Lemma 2.5. From (3.44), it is
obvious that

E1 (1) < =8B — Yru), 350 = Yo)xx)-
So, using Cauchy-Schwarz inequality, we obtain

1,8(?)
2

(1)
135 = Wl + 211350 — o) 2

E'(t) <
10 < 21,

< g(ME\(1) + %H(?’SO — Y0)ull- (3.46)

14

This implies

d - f gndr| - f g(ndr
7 | E1De o <e Jo %II(%O —Yo)ull; < %“(350 —Yo)ully (3.47)

Integrating (3.47) over (0, ¢) yields

- f mg(T)dT - f g(ndr
E (t)e Jo < Ei(He Jo

1 !
<E0)+ 5+ ( f g(r)dr) 1350 = o).l (3.48)
P 0

1 e
S EO)+ 5 (f g(T)dT) 1350 = Y0).ell5-
P 0

Hence, (3.45) follows. O

Remark 3.2. Using Young’s inequality, we observe from (3.44) and (3.45) that

1 1
Al = —Ej(1) + 3 (& o Bsy =) @) - Eg(f)||3sxz — Wull3 = OB = Yu), (Bso = Y0)xx)
< _E’l(t) — 8(O(Bsy — Yu), (350 — Yo)xx)

< ~E;(0) + §0) (1350 — vl + 11350 — o)) (3.49)
2

< —E}(1) + g(1) (I—Elm 11350 — wo)xxn%)
o)

< C(=E1(0) + c18(1)
for some fixed positive constant cy. Similarly, we obtain

0<—(g oBsy—Uu) @) <C(-EJ() +c18()). (3.50)

As in the case of equal-wave-speed of propagation, we define a Lyapunov functional

6
Lty = NE@) + ) Nil(t) + Nels(0), (3.51)

J=1
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where N, N i J=1,2,3,4,5,6, are positive constants to be specified later and

31 :
I(t) = F([pG —pD) O.w.dx.
0

Lemma 3.3. Suppose % * g. Then, under suitable choice ofN, ]\7]-, j=1,2,3,4,5,6, the Lyapunov

functional L satisfies, along the solution of (1.6), the estimate

- ~ 1

L'(n) <-BE®) + 580 Bs =Y+ C (E1(0) + c18(D), ¥ 1 > 1o, (3.52)
for some positive constants 8 and c; .

Proof. Following the proof of Lemma 3.1, we end up with (3.52). O

Lemma 3.4. Suppose assumptions (G1) and (G2) hold and the function H in (G2) is linear. Let
(w,3s — i, s,0) be the strong solution of problem (1.6)—(1.8). Then,

ED(g © Bsu —Yu))) < C(=EL(1) + c18(1), Y120, (3.53)
where cy is a fixed positive constant.

Proof. Using (3.50) and the fact that £ is decreasing, we have

E(1)(g © (35,4 — Ya))(D)
= &) fo 8(t =) (1352 = Yu)(®) = B = YD) d7

< fo £t = )g(t = 1) (11350 = ) (®) = B — ) (@I3) dr

(3.54)
< fo 8/t =) (138 = Y1) = By~ W) @IB) dr
=~ (g ° Gsu — )
< C(-Ej(1) + c18(0).
O

Our stability result of this subsection is

Theorem 3.3. Assume (G1) and (G2) hold and ;—; # ,%. Then, there exist positive constants ay,a, and
ty > ty such that the energy solution (2.11) satisfies

a

(t = 1) f §(ndr

E(t) < ay(t — to)H;" NVt >t,, where Hy(7) = tH'(7). (3.55)
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Proof. Case 1: H is linear. Multiplying (3.52) by £(¢) and using (G1), we get

EOL (1) < - BEME®) + %f(t) (g0 Bsx —¥)) () + C&@) (E1(1) + ¢18(1))
< - BEME) — CE'(1) — CEO)E| (1) + £(0)e18(D), Y 1> 1
Using the fact that £ non-increasing, we obtain
(6L+ CE+ E\) (1) < -PEDE® + c28(0), Y 1 2 1.
for some fixed positive constant ¢,. This implies
PEDE®) < —(EL+ CE + E\) (1) + c2g(0), ¥ 1> 1. (3.56)

Integrating (3.56) over (¢, t), using the fact that E is non-increasing and the inequality (3.45), we arrive
at

BE() f Er)ydr < B f ET)E(t)dr

<—(6L+ CE+E) (1) + (EL+ CE + Ey) (o) + ¢ ftg(r)dr

(3.57)
< (EL+ CE + E1)(0) + CllBso — o)l + 2 f g(r)dr
0
= (6L + CE + E1) (0) + Cll(350 = Yo)usll3 + c2(D — lo).
Thus, we have
E(t) < —; , Vt>t. (3.58)
f &(nydr
fo
Case II: H is nonlinear. First, we observe from (3.52) that
T N 1 ’
L'(t) < -BE(1) + 3 (8 0 Bsx =) () + C(—E((1) + c18(D) (3.59)

<—BE@M) + C((g o Bsy =) (1) + (g © By — b)) (1) + C(—E((1) + ¢18(1), ¥ 1 > .
From (2.12), (3.16) and (3.50), we have for any ¢ > £

fo gONBs=)(1) = (Bsy = Y)(t = DlipdT + fo NGBSy = Ya)(t) = Bsu = Yt = Dllpd7

1 o
< f g(T)g(T)H(:SSx - '//x)(t) - (3Sx - ‘r//x)(t - T)”%dT
&) Jo

1 o
+— f f(T)g(T)”Bsz - th)(t) - (3Sxt - th)(t - T)”%dT
&(to) Jo
O 3 B B T
< a£0) Jo & (ONBsx = ¥ )(@) = Bsy — Y )t — )3 dT
0 ‘o
- a(g;((tz) | g ONBsy — ¥u)®) — Bsy — Yu)t — Dli3dT

< —C(E'(t) + E{(1)) + c28(1),
(3.60)
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where ¢, is a fixed positive constant. Substituting (3.60) into (3.59), we obtain for any ¢ > £,

L'(t) <=PBE@) - C(E'(H) + E| (1) + c38(t) + C f gOI(Bs, — Y )0 — Bs, — )t — 7)ll5dT
) 0 (3.61)
+C f NG5y — Y)(®) — By — Yt — T)l3dT,

fo

where cj is a fixed positive constant. Now, we define the functional @ by

(1) =7 f—fo f 35, — Y )(@) — By — Yt — 1)li3dr
a [ i (3.62)
+ o o ft 35y — Ya)(®) — Bsy — Yt — D|l5dT, Yt > 1.

Using (2.11), (2.12), (3.43) and (3.45), we easily get

1
r—1

1
t—

f 1352 = ) (O=Bs, = Y)(t = DlipdT + o f 1382 = Ya)(8) = B = W)t = Dll3d7

!

2
<—— | (IBsx =) ®IB + I35, = w)(t = DIB) d

e,
+ - f (”(3sz - l/’xz)(f)”% + 135y — W)t — T)”%) dr
— 0 Jy
< lo(ti o) ft; (EO+Et-1+E(O)+E(t—1)dr

8 t
< Io(t = 19) fm (E(O) + C(EI(O) + (350 — %)xx”%)) dr

< % (E©0) + C(E1(0) + 11350 = Yo)uill3)) < o0, ¥ 1 > 1.

(3.63)
This last inequality allows us to choose 0 < o~ < 1 such that

D) <1, V>t (3.64)

Hence forth, we assume ®(¢) > 0, otherwise, we get immediately from (3.61)

E@) < , Yit>1.

r—1

Next, we define the functional u by

u() = - f &' ONBsy = Y)() = Bsy = Y)(t = Dlzdr
oo (3.65)
- f &' ONBsu = Y1) = Bsy = Yt = Tllpd7

fo

and observe that
wt) < —C(E'(t) + E{(1)) + cag(t), Y it>t, (3.66)
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where ¢y 1s a fixed positive constant. The fact that H 1is strictly convex and H(0) = 0 implies

H(vt)<vH(r), 0<v<landte€ (0,r].

Using assumption (G1), (3.67), Jensen’s inequality and (3.64), we get for any ¢ > ¢,

) = — % . D(0)g (D35, = Y0 = By = )t — 7)l3dT

1

(D(t) CD(t)g (OG5 = Ya)(®) = By = Yo)(t = DlzdT

> — 0) (D(l)f(T)H(g(T))”BSx U@ — By — o)t — T)Hgd?'

(D() CI)(I)S(T)H(g(T))IIGSn Y (O) = By = Yt = Dlizdt
., £

d)( D H(CD(t)g(T))IIGSx YO) = (35, = )t = 1)llpdr

L0
o) Jy

L S0 (t ~ [ Q=T+ D~ T))dr)
— 0 Jp

(o8

_ £t - 1)

(o8

H@Og)B sy = Yu)(®) = By = )t = Dlzdt

H( T @t -1)+ it -1) dT),
=1 Jy

where

Q1 = 1) = I35, = Y1) = Bs, = ) = DI,
Q(t = 7) = B = Y)(O) = Bt = Yt = DI

and H is the C?- strictly increasing and convex extension of H on (0, +o0). This implies

(3.67)

(3.68)

f SONBsy = Y)(®) — B, = Yt = Dl3dT + f 8ONBSw = Y1) = B = Yt = Dll5d7

(t=10) o[ ou)
< p H (f(t)([ — to)) , Y>>t

Thus, the inequality (3.61) becomes

ou(t)
&)t — 1o)

L) < = BE(t) = C(E'(t) + E (1)) + c28(1) + C(t; ) -1 ( ) Vit

Let Li(¢) := L(t) + C(E(t) + E,(t)) . Then (3.70) becomes

C(t—19) ~, ( ou(r)
H
£ — 1)

L/(t) < —BE(1) + )+ c3g(®), Yt > 1.

For 0 < r; < r, we define the functional L, by

(3.69)

(3.70)

(3.71)
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~ 1 ry (t)
Ly(1) := (t 0 E(O)) Li(®),, Yt>1. (3.72)
From (3.71) and the fact that
E®)<0, H@®) >0, H () > 0,
we obtain, for all > 1,
son (o EQ® rn E'®)\ A r E@) - E(1)
sl ‘( (A OME ro'E<0>)H (t—to E<0>)L‘“) (r—r E<0>) 4@
A [ T (®) 1 E@\ Ci—-1t) [ n E®\ [ ou®
=~ PEOH ( “h E<0>) +eag®A ( n ro‘E<0>) e (t— to‘E<0>)H (f(t)(t— m))'
(3.73)
Let H* be the convex conjugate of H as in (3.30) and let
= I-_I’( il @) and B=H"! (L(t))
t—ty E(0) D)t —1o)

Then, (3.30), (3.31) and (3.73) yield, for all # > ¢,

=, 7 =3 L ®) n_ E®
Ly(t) < -BE()H (t— o E(O))+C3 0H (Z—to.m)

+C(f—l‘0)l_—l*(g,( r E(t))) L Cl—1)  ou)
o 00— 1)

o t—ty E0)
s S ] )
<— (BE(0)-Cr I)E(((t))) (: fto.g(((t)))) + C% + c3g)H ( ilro'%) (3.74)
By selecting ; small enough so that (BE(0) — Cry) > 0, we arrive at
I < - ﬁzE(((t))) (Zi‘to. g(((t)))) ; c’;g; +C3g(t)ﬁ’(tilto.%), Vi1, (3.75)
for some positive constant /3,.
Now, multiplying (3.75) by £(r) and recalling that 1, 22 < r, we arrive at
EOLL(D < Bt o (t . E’f(((t)))) 4 Cul + Cag(t)f(t)H’( . ,f(((’))))
< ﬁzf(t)E(((t))) (t fto.g(((?)) CCE W) + Ej(1) + cagt) + e3¢0 H’ (t ilto %) V1>
(3.76)
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Since ti—‘m —> 0 as t — oo, there exists #, > fy such that ti—lto < ry, whenever t > t,. Using this fact and

observing that H’ strictly increasing, and E and ¢ are non-decreasing, we get

H’( " @

) <H (@), Vt>t.
P, E(O)) (r1) >

Using (3.77), it follows from (3.76) that

E
L < pasp oot (o

E00) > E(O)) +c58(t), Yi> 1,

(3.77)

(3.78)

where I3 = (éL, + CE + CE;) and ¢s > 0 is a constant. Using the non-increasing property of £, we

have
E@) rn EQ® ,

~L() + n,Ve>t
Baé(t )E(O) (t— 0 E(O)) 3(0) +¢sg(), Vi > 1.
Using the fact that E is non-increasing and H” > 0 we conclude that the map

/ r E(t)

t E(tH —

— (t— o E((»)

is non-increasing. Therefore, integrating (3.79) over (t,, ¢) yields

B[ n E® N E@
Pro™ (r—ro E((»)ff(”dr ﬁsz( )E(O) (r—ro'E(m)dT

< —Ly(t) + Ls(t2) + c5 f g(mdr

15}

< Ls(t) + cs f g(rydr
0
= Z3(l2) +cs(b—1y), Yit>t.

Next, we multiply both sides of (3.80) by #, for t > t,, we get

(3.79)

(3.80)

(3.81)

B, E(t E(t Ls(t) + cs(b — 1
B2 . ()H r (1) ff()d 3(2) + ¢5( 0),Vt>t2.
(t—1) EQ) t—ty EQ0) t—t
Since H’ is strictly increasing, then H,(t) = TH’(7) is a strictly increasing function. It follows from
(3.81) that
-1 aj
E(t) < ay(t —t))H, - , Yit>t.

(t = 10) f £yt

for some positive constants a; and a,. This completes the proof.

O
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3.3. Examples

(1). Let g(f) = ae™, t >0, a, b > 0 are constants and a is chosen such that (G;) holds. Then
g'(f) = —abe™ = —bH(g(r)) with H(r) = 1.
Therefore, from (3.14), the energy function (2.11) satisfies
E() < ae™, Yt >0, where a = ba,. (3.82)

Also, for Hy(7) = 7, it follows from (3.55) that, there exists #, > 0 such that the energy function
(2.11) satisfies

E@) < , Yt>1, (3.83)

t—1tb
for some positive constant C.
(2). Let g() = ae™ ™, 1 >0, a>0, 0 <b < 1 are constants and a is chosen such that (G;) holds.
Then,

g (1) = —ab(1 + "' = —£()H(g(1)),
where &(f) = b(1 + £)*~! and H(¢) = t. Thus, we get from (3.14) that

E() < are™ ™+ £ > 0. (3.84)

Likewise, for H,(f) = ¢, then estimate (3.55) implies there exists #, > 0 such that the energy
function (2.11) satisfies

E(@) <

C
a0 Vi>t, (3.89)
for some positive constant C.

(3). Letg(r) = m, t>0, a>0, b>1 are constants and a is chosen in such a way that (G;) holds.

We have -
—ab a i
/t:—:— _ = — qt:—H t,
§0= 6((1”),,) £8°(1) = ~¢H(g(1)
where bl b
H() =19, g=2"— satisfying 1 <g <2 and £ = — > 0.
ab
Hence, we deduce from (3.41) that
C
Et)ys ——, Vt>0. (3.86)

(1+ 0P’
Furthermore, for H,(f) = gt?, estimate (3.55) implies there exists #, > 0 such that the energy
function (2.11) satisfies

E@®) < Vi>t, (3.87)

(1 + £)&=D/G+D’

for some positive constant C.
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4. Appendix

In this section, we prove the functionals L;,i = 1 - - - 8, used in the proof of our stability results.
Lemma 4.1. The functional I,(t) satisfies, along the solution of (1.6) — (1.8), for all t > ty > 0 and for
any €, € > 0, the estimate

ngO

1 1
L) < —Tll3sz —Uill3 + ell3s. = ulls + el = will; + CCa (1 + o + 6—2) (ho@Bsy =) (1),

(4.1)

) !
where gy = f g(ndr < f g(rydr.
0 0

Proof. Differentiating I,(¢), using (1.6), and integrating by part, we have
1 t
HOES _Ipﬁ (s — w,)fo gt =1 (Bs—y)®) — Bs —y)(1) drdx
1 t
+D(1) f (35— ¥) f 8t = 1) ((Bsx — Y )(1) — Bsx — Y)(1)) drdx
0 0

f 1
dx—1, (f g(T)dT) f 3s; — gl/,)zdx
0 0

1 t
-G f W —wy) f gt = 1) (Bs —y¥)(1) = Bs = Y)(1)) drdx, (4.2)
0 0

2

1 t
+ ‘f(; (L g(t - T) ((3sx - (y[’x)(t) - (3sx - wx)(T)) dT)

where D(r) = (D - fot g(T)dT) . Now, we estimate the terms on the right hand-side of (4.2). Exploiting
Young’s and Poincaré’s inequalities, Lemmas 2.1- 2.6 and performing similar computations as in (2.8),
we have for any € > 0,

1 !
D(@) fo (3sx —¥) fo 8t — 1) (Bsy —Y)(t) — 35y — Y)(7)) drdx

cc,
€1

2
< allGse = dull; +

(h o (Bsx =) (1) (4.3)

and
2

1 !
fo ( fo 8t =) (Bsx = Y1) = Bsx — Y)(7) dT) dx < Co(hoBsy =) (). (4.4)

Also, for 6; > 0, we have
-1, f01(3st =) j: gt —1)(Bs—¥)(®) - Bs —yY)(1)) drdx
=I, f01(3st — ) fot h(t — 1) (3s = )(1) = Bs — Y)(7)) drdx
— La f01(3st =) fot gt = 1) (Bs —y)(1) = Bs —yY)(7)) drdx

AIMS Mathematics Volume 6, Issue 1, 333-361.



355

2

1 t 2
<6135 - Wil + =~ fo ( fo Wt - 1) (<3s—w><t>—<3s—w><r>>dr) dx

26,
(ZZIZ 1 1 2
A f ( f ot =) (Bs = 0)(1) - Bs — ¥)(D) dr) dx
201 Jo \UJo
) L ¢ a’IC,
<6135, =yl + 55 ( f h(r)dr) (ho Gs~ ) () + 52 (ho Gs =) )
1 0 1
cCc,+1
<5135, — ilE + % (hoGs—v)) (0. 4.5)

For the last term, we have

2

1 t G Ca/
—Gf (W - Wx)f gt = 1) (Bs =)0 — Bs —Y)(0) drdx < &l — w5 + ) (ho(Bs—y)) @.
0 0

4e
(4.6)
Combination of (4.2)—(4.6) lead to
!
L) < - (Ipf g(nydr — 51) 13w, — il + €132 — Yill3 + el — will3
0
1 1 1
+ CC, (1 + =+ —+ —) (ho Bsy =) (2). 4.7
51 €1 €
Since g(0) > 0 and g is continuous. Thus for any # > #, > 0, we get
! 10
f g(mdr > f g(m)dr = go > 0. (4.8)
0 0
1,80
We select 0, = - to get (4.1). O

Lemma 4.2. The functional I,(t) satisfies, along the solution of (1.6) — (1.8) and for any 64 > O, the
estimate

, 1
I5(1) < =3DlIs.ll3 — 3ylIsll3 + Sallwill3 + C(l + 5—) lIs:|3 + Cll6.l13, Ve > 0. (4.9)
4

Proof. Differentiation of I,(¢), using (1.6); and (1.6); and integration by part, leads to

t 1 X
15(0) = 3L,||s:l3 = 3DlIs,ll3 — 4¥sll3 - 5f s6dx + 3,0f sz s{(y)dydx.
0 0 0

Applying Cauchy-Schwarz and Young’s inequalities and (2.5), we get for any 64 > 0,

, & 9% (' ’
L) < 3LIsl5 = 3DlIsllz = 4ylisl; + Yllsllz + = 116115 + allwill5 + if (f Sz(y)dy) dx
4y 464 Jo \Jo
1
< =3DlIsl3 = 3¥lsll; + Gallwills + C(l + 5—) lIsill3 + ClI6:l3.
4
This completes the proof. O
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Lemma 4.3. The functional I;(t) satisfies, along the solution of (1.6) — (1.8) and for any €5 > 0, the
estimate

ol,
L) < - _”51”2 + &llsill3 + eslly — wills + C(l + )IIH I3, Y220, (4.10)

Proof. Differentiation of I3, using (1.6);, (1.6), and integration by parts, yields

1 1
L) = 34, f 0,5:dx — 3L,0lls/|l5 = 3kD | 6s.dx + kd|lé|l;
0 0

1 X 1 t
+ 3kGf 9f W — wy)(y)dydx + 4ykf Hf s(y)dydx.
0 0 0 0

Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities together with Lemmas 2.1—- 2.6, we have

L) < Sllsdl; + Callbulls = 3L,6lsil3 + IIlelz + C(l + )I|9||2

o [0 ([ oo

< Gllsill; + Coll6lls = 31,6lls.115 + &lls.ll3 + elly = will; + C (1 + )||9 5.

51,6
We choose 6, = = to get (4.10). |

Lemma 4.4. The functional 1,(t) satisfies, along the solution of (1.6) — (1.8) and for any €, > 0, the
estimate
L(0) < = plwil3 + &ll3se = wll3 + Clissllz + Celly = will3, Ve 2 0. (4.11)

Proof. Using (1.6), and integration by parts, we have

1
L) = —plwil; -G f (Y — wow.dx.
0

We note that w, = —(¢ — w,) — (3s — ) + 3 to arrive at

L) = —plwll3 + Gl = wil; + G f()] W —woBs —¥)dx - 3G fol(lﬁ — wy)sdx.
It follows from Young’s and Poincaré’s inequalities that
150) < =l + Gl = il + els = Wi + 1 = wilB + S = will + sl
< = plwdl3 + Gl — wall3 + €ll3s, = ll; + Cllsill3 + C(l + )Ilelf will3.

This completes the proof. O

Lemma 4.5. The functional I5(t) satisfies, along the solution of (1.6) — (1.8) and for any 0 < a < 1,
the estimate

l
L) < _ZO||3SX = Ull; + LlBs: = ills + Clly = will3 + CCo (h 0 B, = ) (1) (4.12)
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Proof. Differentiating Is, using (1.6),, we arrive at
‘ 1
L@® = LlB3si =il - (D - f g(r)dr) 135, = ¥llz + G f (s =)W - wdx
0 0

1 t
+ f 35y — ) f gt =) (Bsy = ¥) (x,7) = B, — ) (x, 1)) drdx.
0 0

Applying Lemmas 2.1- 2.6, Cauchy-Schwarz, Young’s and Poincaré’s inequalities, we obtain any o3 >
0

G2
L) < LlBs, = yill; = bli3sy — vl + 651135, — vl + Elll/’ - will3
3

l 1
+ 21135, = Yll3 + 5-Co (h o B = 4.)) (0. (4.13)
2 21y
l
We select 05 = ZO and obtain the desired result. O

Lemma 4.6. The functional I4(t) satisfies, along the solution of (1.6) — (1.8) and for any for any €, the
estimate

, 1
() < =G?lly = will; + ell3s, = yill5 + C(l + E—) llsill3
1

1
+ ClIs, I3 + Cl6.lI5 + 3(1,G — pD) f wiSydx, Yt > 0. (4.14)
0
Proof. Differentiating I¢(¢), using (1.6),; and (1.6); and integration by parts, we obtain
1 1
150 = =360 = B~ 4G [ W= w)sdi=0G [ @ -woads
0 0
1 1
-31,G f 3s, —¥)s,dx + 9IpG||s,||§ +3(,G - pD)f WS dx. 4.15)
0 0
Young’s and Poincaré’s inequalities give
1
—47Gf (W = wy)sdx < G?l — wyll5 + 4y>Clls 5,
0

1 2
0
~6G f W = w)lsdx < GPllgr = willy + 101,
0

’ ., GLGP,
—3Ipr(3St —Y)sidx < ell3s, — yull; + - [ls:ll5- (4.16)
0 1
Substituting (4.16) into (4.15), we obtain (4.14). This completes the proof. O

Lemma 4.7. The functional I7(t) satisfies, along the solution of (1.6) — (1.8), the estimate
1
L(1) < 3(D = Ip)l13s. — ¥.ll3 — 5(8 o (3sy — Y ))®), Yt = 0. (4.17)
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Proof. Differentiate I7(f) and use the fact that J'(r) = —g(¢) to get

1
(1) = f f J'(t = )38y — ) (D)drdx + J(0)|135, — Yll3
0 Jo
== (g0 Bsy = YO + JOI3s: — ¥ll3
1 t
-2 fo (3sx—¢) fo gt — 1) ((Bsy — Y )(1) — Bsx — ¢)(0) dx.
Using Cauchy-Schwarz and (G1), we have
1 !
-2 j; (Bsx —¥x) fo gt — 1) ((Bsy = Y)(1) — By — Y)()
'g(r)dr
fo (g o Bsy —¢)@)

2D - Iy)
1
ng—mm%—%ﬁ+§@06&—MM0

<2(D — lp)|13s, — .13 +

Thus, we get

1
L) < 2(D = )35, = lls - 780 By =)0 + JD)[135: = Wil

Since J is decreasing (J'(t) = —g(t) < 0), so J(¢) < J(0) = D — . Hence, we arrive at

1
L) < 3(D = )35, = ¢ll; - (80 Bsx = h))®).

(4.18)

(4.19)

(4.20)

O

The next lemma is used only in the proof of the stability result for nonequal-wave-speed of

propagation.

Lemma 4.8. Let (w, 35—y, s, 0) be the strong solution of problem (1.6). Then, for any positive numbers

01,02, 03, the functional I3(t) satisfies

1
Ig(1) < = 3(1,G - pD) f wiSudx + o1 [will3 + oally — will3 + o3l13s, — w3
0
) 11 1 ,
+Cllsyll; + Cl{1+ —+ — + —|l6ull, V1> 1.
ag

1 02 O3

Proof. Differentiation of Ig, using integration by part and the boundary condition give
) 31 ! 31 !
(1) = ?(lpG - pD) O wdx + ?(IPG - pD) 0wy dx
0 0

32 ! 31 !
= ?(lpG - pD) [— f 0. widx| + ?(lpG —pD) f 0w, dx.
0 0

(4.21)

(4.22)
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We note that w, = —(¥ — w,) — (3s — ¢) + 3s and from (1.6),, A6, = k6, + ds,,. So, (4.22) becomes

3 1 1 91 1
(1) = - S(IPG - pD)kf Owdx —3(1,G — pD) f Sawidx + ?(IPG —pD) f 0, sdx
0 0 0

31 | 31 | (4.23)
- ?(lpG - pD) f O — wydx — ?(lpG - pD) f 0.4(3s — Y)dx
0 0
Using Young’s and Poincaré’s inequalities, we have for any positive numbers o, 0, 073,
3 ! 2 C 2
- S(IpG —pD) ; Owidx < oy[lwill; + 0_1”9’””2’
32 ! C
- ?(IpG —pD)f (W — wdx < ol = will; + —116.l13,
0 02
30 . c (4.24)
- ?(IpG —pD)f 0u(3s — Y)dx < 03135, = Yll3 + — 16,13,
0 03
91 : X s
F(lpG —pD) | Ousdx < Cllsill; + Cll6ull5.
0
Substituting (4.24) into (4.23), we obtain (4.21). O

5. Conclusions

In this paper, we have established a general and optimal stability estimates for a thermoelastic
Laminated system, where the heat conduction is given by Fourier’s Law and memory as the only
source of damping. Our results are established under weaker conditions on the memory and physical
parameters. From our results, we saw that the decay rate is faster provided the wave speeds of the
first two equations of the system are equal (see (1.3)). A similar result was established recently in [19]
when the heat conduction is given by Maxwell-Cattaneo’s Law. An interesting case is when the kernel
memory term is couple with the first or third equations in system (1.6). Our expectation is that the
stability in both cases will depend on the speed of wave propagation.
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