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Abstract: In this article, we investigate a one-dimensional thermoelastic laminated beam system with
viscoelastic dissipation on the effective rotation angle and through heat conduction in the interfacial
slip equations. Under general conditions on the relaxation function and the relationship between the
coefficients of the wave propagation speed of the first two equations, we show that the solution energy
has an explicit and general decay rate from which the exponential and polynomial stability are just
particular cases. Moreover, we establish a weaker decay result in the case of non-equal wave of speed
propagation and give some examples to illustrate our results. This new result improves substantially
many other results in the literature.
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1. Introduction

The fundamental work of Hansen and Spies [4] modeled a two-layer beam with a structural damping
due to the interfacial slip through the following system

ρϕtt + G (ψ − ϕx)x = 0,
Iρ (3w − ψ)tt − D (3w − ψ)xx −G (ψ − ϕx) = 0,
Iρwtt − Dwxx + 3G (ψ − ϕx) + 4γw + 4βwt = 0,

(1.1)

where ϕ = ϕ(x, t) is the transverse displacement, ψ = ψ(x, t) is the rotation angle, w = w(x, t) is
proportional to the amount of slip along the interface, 3w − ψ denotes the effective rotation angle. The

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021021


334

physical quantities ρ, Iρ,G,D, β and γ are respectively: the density, mass moment of inertia, shear
stiffness, flexural rigidity, adhesive damping and adhesive stiffness. Equation (1.1)3 describes the
dynamics of the slip. For β = 0, system (1.1) describes the coupled laminated beams without
structural damping at the interface. In the recent result [1], Apalara considered the
thermoelastic-laminated beam system without structural damping, namely

ρϕtt + G (ψ − ϕx)x = 0,
Iρ (3s − ψ)tt − D (3s − ψ)xx −G (ψ − ϕx) = 0,
Iρstt − Dsxx + 3G (ψ − ϕx) + 4γs + δθx = 0,
ρ3θt − λθxx + δstx = 0,

(1.2)

where (x, t) ∈ (0, 1)× (0,+∞), θ = θ(x, t) is the difference temperature. The positive quantities γ, β, k, λ
are adhesive stiffness, adhesive damping, heat capacity and the diffusivity respectively. The author
proved that (1.2) is exponential stable provided

G
ρ

=
D
Iρ
. (1.3)

When β > 0, the adhesion at the interface supplies a restoring force proportion to the interfacial slip.
But this is not enough to stabilize system (1.1), see for instance [2]. To achieve exponential or general
stabilization of system (1.1), many authors in literature have used additional damping. In this direction,
Gang et al. [9] studied the following memory-type laminated beam system

ρϕtt + G (ψ − ϕx)x = 0,

Iρ (3w − ψ)tt − D (3w − ψ)xx +

∫ t

0
g(t − s) (3w − ψ)xx (x, s)ds −G (ψ − ϕx) = 0

3Iρwtt − 3Dwxx + 3G (ψ − ϕx) + 4γw + 4βwt = 0

(1.4)

and established a general decay result for more regular solutions and G
ρ
, D

Iρ
. Mustafa [15] also

considered the structural damped laminated beam system (1.4) and established a general decay result
provided G

ρ
= D

Iρ
. Feng et al. [8] investigated the following laminated beam system

ρwtt + Gϕx + g1(wt) + f1(w, ξ, s) = h1,

Iρξtt −Gϕ − Dξxx + g2(ξt) + f2(w, ξ, s) = h2,

Iρstt + Gϕ − Dsxx + g3(st) + f2(w, ξ, s) = h3

(1.5)

and established the well-posedness, smooth global attractor of finite fractal dimension as well as
existence of generalized exponential attractors. See also, recent results by Enyi et al. [20]. We refer
the reader to [5–7, 11, 13, 14, 17, 18] and the references cited therein for more related results.

In this present paper, we consider a thermoelastic laminated beam problem with a viscoelastic
damping 

ρwtt + G (ψ − wx)x = 0,

Iρ (3s − ψ)tt − D (3s − ψ)xx +

∫ t

0
g(t − τ) (3s − ψ)xx (x, τ)dτ −G (ψ − wx) = 0

3Iρstt − 3Dsxx + 3G (ψ − wx) + 4γs + δθx = 0,
kθt − λθxx + δsxt = 0

(1.6)
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under initial conditionsw(x, 0) = w0(x), ψ(x, 0) = ψ0(x), s(x, 0) = s0(x), θ(x, 0) = θ0(x), x ∈ [0, 1],
wt(x, 0) = w1(x), ψt(x, 0) = ψ1(x), st(x, 0) = s1(x), x ∈ [0, 1]

(1.7)

and boundary conditionsw(0, t) = ψx(0, t) = sx(0, t) = θ(0, t) = 0, t ∈ [0,+∞),
wx(1, t) = ψ(1, t) = s(1, t) = θx(1, t) = 0, t ∈ [0,+∞).

(1.8)

In the system (1.6), the integral represents the viscoelastic damping, and g is the relaxation
function satisfying some suitable assumptions specified in the next section. According to the
Boltzmann Principle, the viscoelastic damping (see [21] for details) is represented by a memory term
in the form of convolution. It acts as a damper to reduce the internal/external forces like the beam’s
weight, heavy loads, wind, etc., that cause undesirable vibrations.

In most of the above works, the authors have established their decay result by including the
structural damping along with other dampings. So, the natural question that comes to mind.

Is it possible to obtain general/optimal decay result (decay rates that agrees with that of
g) to the thermoelastic laminated beam system (1.6)–(1.8), in the absence of the structural
damping.

The novelty of this article is to answer this question in a consenting way, by using the ideas
developed in [10] to establish general and optimal decay results for Problem 1.6. Moreover, we
establish a weaker decay result in the case of a non-equal wave of speed propagation. To the best of
our knowledge, there is no stability result for the latter in the literature.

The rest of work is organized as follows: In Section 2, we recall some preliminaries and assumptions
on the memory term. In Section 3, we state and prove the main stability result for the case equal-speed
and in the case of non-equal-speed of propagation. We also give some examples to illustrate our
findings. Finally, in Section 4, we give the proofs of the lemmas used our main results.

2. Preliminaries

In this section, we recall some useful materials and conditions. Through out this paper, C is a
positive constant that may change through lines, 〈., .〉 and ‖.‖2 denote respectively the inner product
and the norm in L2(0, 1). We assume the relaxation function g obeys the assumptions:

(G1). g : [0,+∞) −→ (0,+∞) is a non-inecreasing C1− function such that

g(0) > 0, D −
∫ ∞

0
g(τ)dτ = l0 > 0. (2.1)

(G2). There exist a C1 function H : [0,+∞)→ (0,+∞) which is linear or is strictly convex C2 function
on (0, ε0), ε0 ≤ g(0), with H(0) = H′(0) = 0 and a positive nonincreasing differentiable function
ξ : [0,+∞)→ (0,+∞), such that

g′(t) ≤ −ξ(t)H (g(t)) , t ≥ 0, (2.2)
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Remark 2.1. As in [10], we note here that, if H is a strictly increasing convex C2− function on (0, r],
with H(0) = H′(0) = 0, then H has an extension H̄, which is strictly increasing and strictly convex
C2-function on (0,+∞). For example, H̄ can be defined by

H̄(s) =
H′′(r)

2
s2 + (H′(r) − H′′(r)r)s + H(r) − H′(r)r +

H′′(r)
2

r2, s > r. (2.3)

Let
H1
∗ (0, 1) = {u ∈ H1(0, 1)/u(0) = 0}, H̄1

∗ (0, 1) = {u ∈ H1(0, 1)/u(1) = 0},

H2
∗ (0, 1) = {u ∈ H2(0, 1)/ux ∈ H1

∗ (0, 1)}, H̄2
∗ (0, 1) = {u ∈ H2(0, 1)/ux ∈ H̄1

∗ (0, 1)}.

The existence and regularity result of problem (1.6) is the following

Theorem 2.1. Let (w0, 3s0−ψ0, s0, θ0) ∈ H1
∗ (0, 1)×H̄1

∗ (0, 1)×H̄1
∗ (0, 1)×H1

∗ (0, 1) and (w1, 3s1−ψ1, s1) ∈
L2(0, 1) × L2(0, 1) × L2(0, 1) be given. Suppose (G1) and (G2) hold. Then problem (1.6) has a unique
global weak solution (w, 3s − ψ, s, θ) which satisfies

w ∈ C(R+,H1
∗ (0, 1)) ∩C1(R+, L2(0, 1)), (3s − ψ) ∈ C(R+, H̄1

∗ (0, 1)) ∩C1(R+, L2(0, 1)),

s ∈ C(R+, H̄1
∗ (0, 1)) ∩C1(R+, L2(0, 1)), θ ∈ C(R+, L2(0, 1)) ∩ L2(R+,H1(0, 1)).

Furthermore, if (w0, (3s0 − ψ0), s0, θ0) ∈ H2
∗ (0, 1) × H̄2

∗ (0, 1) × H̄2
∗ (0, 1) × H2(0, 1) ∩ H1

∗ (0, 1) and
(w1, (3s1 − ψ1), s1) ∈ H1

∗ (0, 1) × H̄1
∗ (0, 1) × H̄1

∗ (0, 1), then the solution of (1.6) satisfies

w ∈ C(R+,H2
∗ (0, 1)) ∩C1(R+,H1

∗ (0, 1)) ∩C2(R+, L2(0, 1)),

(3s − ψ) ∈ C(R+, H̄2
∗ (0, 1)) ∩C1(R+, H̄1

∗ (0, 1)) ∩C2(R+, L2(0, 1)),

s ∈ C(R+, H̄2
∗ (0, 1)) ∩C1(R+, H̄1

∗ (0, 1)) ∩C2(R+, L2(0, 1)),

θ ∈ C(R+,H2(0, 1) ∩ H2
∗ (0, 1)) ∩C1(R+,H1

∗ (0, 1)).

The proof of Theorem 2.1 can be established using the Galerkin approximation method as in [16].
Throughout this paper, we denote by � the binary operator, defined by

(g � ν) (t) =

∫ t

0
g(t − τ)‖ν(t) − ν(τ)‖22dτ, t ≥ 0.

We also define h(t) and Cα as follow

h(t) = αg(t) − g′(t) and Cα =

∫ +∞

0

g2(τ)
αg(τ) − g′(τ)

dτ.

The following lemmas will be applied repeatedly throughout this paper

Lemma 2.1. For any function f ∈ L2
loc([0,+∞), L2(0, 1)), we have∫ 1

0

(∫ t

0
g(t − s)( f (t) − f (s))ds

)2

dx ≤ (1 − l0)(g � f )(t), (2.4)

∫ 1

0

(∫ x

0
f (y, t)dy

)2

dx ≤ ‖ f (t)‖22. (2.5)
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Lemma 2.2. Let v ∈ H1
∗ (0, 1) or H̄1

∗ (0, 1), we have∫ 1

0

(∫ t

0
g(t − s)(v(t) − v(τ))dτ

)2

dx ≤ Cp(1 − l0)(g � v)(t), (2.6)

where Cp > 0 is the poincaré constant.

Lemma 2.3. Let (w, 3s − ψ, s, θ) be the solution of (1.6). Then, for any 0 < α < 1 we have∫ 1

0

(∫ t

0
g(t − τ)

(
(3s − ψ)x (τ) − (3s − ψ)x (t)

)
dτ

)2

dx ≤ Cα (h � (3s − ψ)x) (t). (2.7)

Proof. Using Cauchy-Schwarz inequality, we have∫ 1

0

(∫ t

0
g(t − τ)

(
(3s − ψ)x (τ) − (3s − ψ)x (t)

)
dτ

)2

dx

=

∫ 1

0

(∫ t

0

g(t − τ)
√

h(t − τ)

√
h(t − τ) ((3s − ψ)x(τ) − (3s − ψ)x(t)) dτ

)2

dx

≤

(∫ +∞

0

g2(τ)
h(τ)

ds
) ∫ 1

0

∫ t

0
h(t − τ) ((3s − ψ)x(τ) − (3s − ψ)x(t))2 dτdx

= Cα (h � (3s − ψ)x) (t).

(2.8)

�

Lemma 2.4. [12] Let F be a convex function on the close interval [a, b], f , j : Ω → [a, b] be
integrable functions on Ω, such that j(x) ≥ 0 and

∫
Ω

j(x)dx = α1 > 0. Then, we have the following
Jensen inequality

F
(

1
α1

∫
Ω

f (y) j(y)dy
)
≤

1
α1

∫
Ω

F( f (y)) j(y)dy. (2.9)

In particular if F(y) = y
1
p , y ≥ 0, p > 1, then(

1
α1

∫
Ω

f (y) j(y)dy
) 1

p

≤
1
α1

∫
Ω

( f (y))
1
p j(y)dy. (2.10)

Lemma 2.5. The energy functional E(t) of the system (1.6)-(1.8) defined by

E(t) =
1
2

[
ρ‖wt‖

2
2 + 3Iρ‖st‖

2
2 + Iρ‖3st − ψt‖

2
2 + 3D‖sx‖

2
2 + G‖ψ − wx‖

2
2

]
+

1
2

[(
D −

∫ t

0
g(τ)dτ

)
‖3sx − ψx‖

2
2 + (g � (3sx − ψx)) (t) + 4γ‖s‖22 + k‖θ‖22

]
,

(2.11)

satisfies

E′(t) =
1
2

(
g′ � (3sx − ψx)

)
(t) −

1
2

g(t)‖3sx − ψx‖
2
2 − λ‖θx‖

2
2

≤
1
2

(
g′ � (3sx − ψx)

)
(t) ≤ 0, ∀ t ≥ 0.

(2.12)
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Proof. Multiplying (1.6)1, (1.6)2, (1.6)3 and (1.6)4, respectively, by wt, (3st − ψt), st and θ, integrating
over (0, 1), and using integration by parts and the boundary conditions (1.7), we arrive at

1
2

d
dt

(
ρ‖wt‖

2
2 + G‖ψ − wx‖

2
2

)
= G〈(ψ − wx), ψt〉, (2.13)

1
2

d
dt

[
Iρ‖3st − ψt‖

2
2 +

(
D −

∫ t

0
g(τ)dτ

)
‖3sx − ψx‖

2
2 + (g � (3sx − ψx))(t)

]
= G〈(ψ − wx), (3s − ψ)t〉 +

1
2

(g′ � (3sx − ψx))(t) −
1
2

g(t)‖3sx − ψx‖
2
2,

(2.14)

1
2

d
dt

[
3Iρ‖st‖

2
2 + 3D‖sx‖

2
2 + 4γ‖s‖22

]
= −3G〈(ψ − wx), st〉 − δ〈θx, st〉, (2.15)

and
1
2

d
dt

(
k‖θ‖22

)
= −λ‖θx‖

2
2 + δ〈θx, st〉. (2.16)

Adding the equations (2.13)–(2.16), taking into account (G1) and (G2), we obtain (2.12) for regular
solutions. The result remains valid for weak solutions by a density argument. This implies the energy
functional is non-increasing and

E(t) ≤ E(0), ∀t ≥ 0.

�

3. Stability results

This section is subdivided into two. In the first subsection, we prove the stability result for equal-
wave-speed of propagation, whereas in the second subsection, we focus on the stability result for
non-equal-wave-speed of propagation.

3.1. Equal-wave-speed of propagation

Our aim, in this subsection, is to prove an explicit, general and optimal decay rate of solutions for
system (1.6)–(1.8). To achieve this, we define a Lyapunov functional

L(t) = NE(t) +

6∑
j=1

N jI j(t), (3.1)

where N, N j, j = 1, 2, 3, 4, 5, 6 are positive constants to be specified later and

I1(t) = −Iρ

∫ 1

0
(3s − ψ)t

∫ t

0
g(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτdx, t ≥ 0,

I2(t) = 3Iρ

∫ 1

0
sstdx + 3ρ

∫ 1

0
wt

∫ x

0
s(y)dydx, I3(t) = −3kIρ

∫ 1

0
θ

∫ x

0
st(y)dydx, t ≥ 0,

I4(t) = −ρ

∫ 1

0
wtwdx, I5(t) = Iρ

∫ 1

0
(3s − ψ)(3s − ψ)tdx, t ≥ 0,
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I6(t) = 3IρG
∫ 1

0
(ψ − wx)stdx − 3ρD

∫ 1

0
wtsxdx, I7(t) =

∫ 1

0

∫ t

0
J(t − τ)(3sx − ψx)2(τ)dτdx, t ≥ 0,

where

J(t) =

∫ +∞

t
g(τ)dτ.

The following lemma is very important in the proof of our stability result.

Lemma 3.1. Suppose G
ρ

= D
Iρ

. Under suitable choice of t0,N, N j, j = 1, 2, 3, 4, 5, 6, the Lyapunov
functional L satisfies, along the solution of (1.6) − (1.8), the estimate

L′(t) ≤ − β
(
‖wt‖

2
2 + ‖st‖

2
2 + ‖3st − ψt‖

2
2 + ‖sx‖

2
2 + ‖3wx − ψx‖

2
2 + ‖ψ − wx‖

2
2

)
− β

(
‖s‖22 + ‖θx‖

2
2

)
+

1
2

(g � (3sx − ψx)) (t),∀ t ≥ t0

(3.2)

and the equivalence relation
α1E(t) ≤ L(t) ≤ α2E(t) (3.3)

holds for some β > 0, α1, α2 > 0.

Proof. By virtue of assumption (3.1) and using h(t) = αg(t)−g′(t), it follows from Lemmas 2.5, 4.1-4.6
(see the Appendix for detailed derivations) that, for all t ≥ t0 > 0,

L′(t) ≤ −
[
N4ρ − N2δ4

]
‖wt‖

2
2 −

[
N3δIρ

2
− N2C

(
1 +

1
ε2

)
− N6C

(
1 +

1
ε1

)]
‖st‖

2
2 − 3N2γ‖s‖22

−
[
N1Iρg0 − N5Iρ − N6ε1

]
‖3st − ψt‖

2
2 − [3DN2 − N3ε3 − N4C − N6C] ‖sx‖

2
2

−

[
N6G2 − N1ε2 − N3ε3 − N4

C
ε4
− N5C

]
‖ψ − wx‖

2
2 −

[
N5l0

4
− N1ε1 − N4ε4

]
‖3sx − ψx‖

2
2

−

[
λN − N2C − N3C

(
1 +

1
ε3

)
− N6C

]
‖θx‖

2
2 +

Nα
2

(g � (3sx − ψx)) (t)

−

[
N
2
−CCα

(
N5 + N1

(
1 +

1
ε1

+
1
ε2

))]
(h � (3sx − ψx)) (t).

(3.4)

Now, we choose

N4 = N5 = 1, ε4 =
l0

8
(3.5)

and select N1 large enough such that

µ1 := N1Iρg0 − Iρ > 0. (3.6)

Next, we choose N6 large so that
µ2 := N6G2 −C > 0. (3.7)

Also, we select N2 large enough so that

µ3 := 3DN2 −C − N6C > 0. (3.8)

AIMS Mathematics Volume 6, Issue 1, 333–361.



340

After fixing N1,N2,N6, and letting ε3 =
µ1

2N3
, we then select ε1, ε2, and δ4 very small such that

ρ − N2δ4 > 0, µ1 − N6ε1 > 0, µ4 :=
µ2

2
− N1ε2 > 0 (3.9)

and select N3 large enough so that

N3δIρ
2
− N2C

(
1 +

1
ε2

)
− N6C

(
1 +

1
ε1

)
> 0. (3.10)

Now, we note that αg2(s)
h(s) =

αg2(s)
αg(s)−g′(s) < g(s); thus the dominated convergence theorem gives

αCα =

∫ +∞

0

αg2(s)
αg(s) − g′(s)

ds→ 0 as α→ 0. (3.11)

Therefore, we can choose some 0 < α0 < 1 such that for all 0 < α ≤ α0,

αCα <
1

4C
(
1 + N1

(
1 + 1

ε1
+ 1

ε2

)) . (3.12)

Finally, we select N so large enough and take α = 1
N So that

λN − N2C − N3C
(
1 +

1
ε3

)
− N6C > 0,

N
2
−CCα

(
1 + N1

(
1 +

1
ε1

+
1
ε2

))
> 0.

(3.13)

Combination of (3.6) - (3.13) yields the estimate (3.2). The equivalent relation (3.3) can be obtain
easily by using Young’s, Cauchy-Schwarz, and Poincaré’s inequalities. �

Now, we state and prove our stability result for this subsection.

Theorem 3.1. Assume G
ρ

= D
Iρ

and (G1) and (G2) hold. Then, there exist positive constants a1 and a2

such that the energy solution (2.11) satisfies

E(t) ≤ a2H−1
1

(
a1

∫ t

t0
ξ(τ)dτ

)
, where H1(t) =

∫ r

t

1
τH′(τ)

dτ (3.14)

and H1 is a strictly decreasing and strictly convex function on (0, r], with lim
t→0

H1(t) = +∞.

Proof. Using the fact that g and ξ are positive, non-increasing and continuous, and H is positive and
continuous, we have that for all t ∈ [0, t0]

0 < g(t0) ≤ g(t) ≤ g(0), 0 < ξ(t0) ≤ ξ(t) ≤ ξ(0).

Thus for some constants a, b > 0, we obtain

a ≤ ξ(t)H(g(t)) ≤ b.
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Therefore, for any t ∈ [0, t0], we get

g′(t) ≤ −ξ(t)H(g(t)) ≤ −
a

g(0)
g(0) ≤ −

a
g(0)

g(t) (3.15)

and

ξ(t)g(t) ≤ −
g(0)

a
g′(t). (3.16)

From (2.12) and (3.15), it follows that∫ t0

0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≤ −
g(0)

a

∫ t0

0
g′(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≤ −CE′(t), ∀t ≥ t0. (3.17)

From (3.2) and (3.17), we have

L′(t) ≤ −βE(t) +
1
2

(g � (3sx − ψx))(t)

= −βE(t) +
1
2

∫ t0

0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

+
1
2

∫ t

t0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≤ −βE(t) −CE′(t) +
1
2

∫ t

t0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ.

Thus, we get

L′1(t) ≤ −βE(t) +
1
2

∫ t

t0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ, ∀t ≥ t0, (3.18)

where L1 = L + CE ∼ E by virtue of (3.3). To finish our proof, we distinct two cases:
Case 1: H(t) is linear. In this case, we multiply (3.18) by ξ(t), keeping in mind (2.12) and (G2), to get

ξ(t)L′1(t) ≤ −βξ(t)E(t) +
1
2
ξ(t)

∫ t

t0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≤ −βξ(t)E(t) +
1
2

∫ t

t0
ξ(τ)g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≤ −βξ(t)E(t) −
1
2

∫ t

t0
g′(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≤ −βξ(t)E(t) −CE′(t), ∀ t ≥ t0. (3.19)

Therefore
(ξL1 + CE)′(t) ≤ −βξ(t)E(t), ∀ t ≥ t0. (3.20)
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Since ξ is non-increasing and L1 ∼ E, we have

L2 = ξL1 + CE ∼ E. (3.21)

Thus, from (3.20), we get for some positive constant α

L′2(t) ≤ −βξ(t)E(t) ≤ −αξ(t)L2(t), ∀ t ≥ t0. (3.22)

Integrating (3.22) over (t0, t) and recalling (3.21), we obtain

E(t) ≤ a1e
−a2

∫ t

t0
ξ(s)ds

= a1H−1
1

(
a2

∫ t

t0
ξ(s)ds

)
.

Case 2: H(t) is nonlinear. In this case, we consider the functional L(t) = L(t) + I7(t). From (3.2) and
Lemma 4.7 (see the Appendix), we obtain

L′(t) ≤ −dE(t), ∀t ≥ t0, (3.23)

where d > 0 is a positive constant. Therefore,

d
∫ t

t0
E(s)ds ≤ L(t0) − L(t) ≤ L(t0).

Hence, we get ∫ +∞

0
E(s)ds < ∞. (3.24)

Using (3.24), we define p(t) by

p(t) := η

∫ t

t0
‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ,

where 0 < η < 1 so that
p(t) < 1,∀t ≥ t0. (3.25)

Moreover, we can assume p(t) > 0 for all t ≥ t0; otherwise using (3.18), we obtain an exponential
decay rate. We also define q(t) by

q(t) = −

∫ t

t0
g′(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ.

Then q(t) ≤ −CE′(t), ∀t ≥ t0. Now, we have that H is strictly convex on (0, r] (where r = g(t0)) and
H(0) = 0. Thus,

H(στ) ≤ σH(τ), 0 ≤ σ ≤ 1 and τ ∈ (0, r]. (3.26)

Using (3.26), condition (G2), (3.25), and Jensen’s inequality, we get

q(t) =
1

ηp(t)

∫ t

t0
p(t)(−g′(τ))η‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ
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≥
1

ηp(t)

∫ t

t0
p(t)ξ(τ)H(g(τ))η‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≥
ξ(t)
ηp(t)

∫ t

t0
H(p(t)g(τ))η‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

≥
ξ(t)
η

H
(
η

∫ t

t0
g(τ)η‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

)
=
ξ(t)
η

H̄
(
η

∫ t

t0
g(τ)η‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

)
, (3.27)

where H̄ is the convex extention of H on (0,+∞) (see remark 2.1). From (3.27), we have∫ t

t0
g(τ)η‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ ≤

1
η

H̄−1
(
ηq(t)
ξ(t)

)
.

Therefore, (3.18) yields

L′1(t) ≤ −βE(t) + CH̄−1
(
ηq(t)
ξ(t)

)
, ∀ t ≥ t0. (3.28)

For r0 < r, we define L3(t) by

L3(t) := H̄′
(
r0

E(t)
E(0)

)
L1(t) + E(t) ∼ E(t)

since L1 ∼ E. From (3.28) and using the fact that

E′(t) ≤ 0, H̄′(t) > 0, H̄′′(t) > 0,

we obtain for all t ≥ t0

L′3(t) = r0
E′(t)
E(0)

H̄′′
(
r0

E(t)
E(0)

)
L1(t) + H̄′

(
r0

E(t)
E(0)

)
L′1(t) + E′(t)

≤ −βE(t)H̄′
(
r0

E(t)
E(0)

)
+ CH̄′

(
r0

E(t)
E(0)

)
H̄−1

(
η

q(t)
ξ(t)

)
+ E′(t). (3.29)

Let us consider the convex conjugate of H̄ denoted by H̄∗ in the sense of Young (see [3] page 61-64).
Thus,

H̄∗(τ) = τ(H̄′)−1(τ) − H̄
[
(H̄′)(τ)

]
(3.30)

and H̄∗ satisfies the generalized Young inequality

AB ≤ H̄∗(A) + H̄(B). (3.31)

Let A = H̄′
(
r0

E(t)
E(0)

)
and B = H̄−1

(
µ z(t)
ξ(t)

)
, It follows from (2.12) and (3.29)-(3.31) that

L′3(t) ≤ −βE(t)H̄′
(
r0

E(t)
E(0)

)
+ CH̄∗

(
H̄′

(
r0

E(t)
E(0)

))
+ Cη

q(t)
ξ(t)

+ E′(t)

≤ −βE(t)H̄′
(
r0

E(t)
E(0)

)
+ Cr0

E(t)
E(0)

H̄′
(
r0

E(t)
E(0)

)
+ Cη

q(t)
ξ(t)

+ E′(t). (3.32)
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Next, we multiply (3.32) by ξ(t) and recall that r0
E(t)
E(0) < r and

H̄′
(
r0

E(t)
E(0)

)
= H′

(
r0

E(t)
E(0)

)
,

we arrive at

ξ(t)L′3(t) ≤ −βξ(t)E(t)H′
(
r0

E(t)
E(0)

)
+ Cr0

E(t)
E(0)

ξ(t)H′
(
r0

E(t)
E(0)

)
+ Cηq(t) + ξ(t)E′(t)

≤ −βξ(t)E(t)H′
(
r0

E(t)
E(0)

)
+ Cr0

E(t)
E(0)

ξ(t)H′
(
r0

E(t)
E(0)

)
−CE′(t). (3.33)

Let L4(t) = ξ(t)L3(t) + CE(t). Since L3 ∼ E , it follows that

b0L4(t) ≤ E(t) ≤ b1L4(t), (3.34)

for some b0, b1 > 0. Thus (3.33) gives

L′4(t) ≤ −(βE(0) −Cr0)ξ(t)
E(t)
E(0)

ξ(t)H′
(
r0

E(t)
E(0)

)
, ∀t ≥ t0.

We select r0 < r small enough so that βE(0) −Cr0 > 0, we get

L′4(t) ≤ −mξ(t)
E(t)
E(0)

ξ(t)H′
(
r0

E(t)
E(0)

)
= −mξ(t)H2

(
E(t)
E(0)

)
, ∀t ≥ t0, (3.35)

for some constant m > 0 and H2(τ) = τH′(r0τ). We note here that

H′2(τ) = H′(r0τ) + r0tH′′(r0τ),

thus the strict convexity of H on (0, r], yields H2(τ) > 0,H′2(τ) > 0 on (0, r]. Let

F(t) = b0
L4(t)
E(0)

.

From (3.34) and (3.35), we obtain
F(t) ∼ E(t) (3.36)

and

F′(t) = a0
L′4(t)(t)

E(0)
≤ −m1ξ(t)H2(F(t)), ∀t ≥ t0. (3.37)

Integrating (3.37) over (t0, t), we arrive at

m1

∫ t

t0
ξ(τ)dτ ≤ −

∫ t

t0

F′(τ)
H2(F(τ))

dτ =
1
r0

∫ r0F(t0)

r0F(t)

1
τH′(τ)

dτ. (3.38)

This implies

F(t) ≤
1
r0

H−1
1

(
m̄1

∫ t

t0
ξ(τ)dτ

)
, where H1(t) =

∫ r

t

1
τH′(τ)

dτ. (3.39)

Using the properties of H, we see easily that H1 is strictly decreasing function on (0, r] and

lim
t−→0

H1(t) = +∞.

Hence, (3.14) follows from (3.36) and (3.39). This completes the proof. �
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Remark 3.1. The stability result in (3.1) is general and optimal in the sense that it agrees with the
decay rate of g, see [10], Remark 2.3.

Corollary 3.2. Suppose G
ρ

= D
Iρ

, and (G1), and (G2) hold. Let the function H in (G2) be defined by

H(τ) = τp, 1 ≤ p < 2, (3.40)

then the solution energy (2.11) satisfies

E(t) ≤ a2 exp
(
−a1

∫ t

0
ξ(τ)dτ

)
, for p = 1,

E(t) ≤
C(

1 +

∫ t

t0
ξ(τ)dτ

) 1
p−1

, for 1 < p < 2 (3.41)

for some positive constants a2, a1 and C.

3.2. Nonequal-wave-speed of propagation

In this subsection, we establish another stability result in the case non-equal speeds of wave
propagation. To achieve this, we consider a stronger solution of (1.6). Let (w, 3s − ψ, s, θ) be the
strong solution of problem (1.6)–(1.8), then differentiation of 1.6 with respect to t gives

ρwttt + G (ψ − wx)xt = 0,

Iρ (3s − ψ)ttt − D (3s − ψ)xxt +

∫ t

0
g(τ) (3s − ψ)xxt (x, t − τ)dτ + g(t)(3s0 − ψ0)xx −G (ψ − wx)t = 0

3Iρsttt − 3Dsxxt + 3G (ψ − wx)t + 4γst + δθxt = 0,
kθtt − λθxxt + δsxtt = 0,

(3.42)
where (x, t) ∈ (0, 1) × (0,+∞) and (3s − ψ)xx(x, 0) = (3s0 − ψ0)xx. The modified energy functional
associated to (3.42) is defined by

E1(t) =
1
2

[
ρ‖wtt‖

2
2 + 3Iρ‖stt‖

2
2 + Iρ‖3stt − ψtt‖

2
2 + 3D‖sxt‖

2
2 + G‖ψt − wxt‖

2
2

]
+

1
2

[
4γ‖st‖

2
2 + k‖θt‖

2
2 +

(
D −

∫ t

0
g(τ)dτ

)
‖3sxt − ψxt‖

2
2 + (g � (3sxt − ψxt)) (t)

]
.

(3.43)

Lemma 3.2. Let (w, 3s − ψ, s, θ) be the strong solution of problem (1.6)-(1.8). Then, the energy
functional (3.43) satisfies, for all t ≥ 0

E′1(t) =
1
2

(
g′ � (3sxt − ψxt)

)
(t) −

1
2

g(t)‖3sxt − ψxt‖
2
2 − g(t)〈(3stt − ψtt), (3s0 − ψ0)xx〉 − λ‖θxt‖

2
2 (3.44)

and
E1(t) ≤ C

(
E1(0) + ‖(3s0 − ψ0)xx‖

2
2

)
. (3.45)
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Proof. The proof of (3.44) follows the same steps as in the proof of Lemma 2.5. From (3.44), it is
obvious that

E′1(t) ≤ −g(t)〈(3stt − ψtt), (3s0 − ψ0)xx〉.

So, using Cauchy-Schwarz inequality, we obtain

E′1(t) ≤
Iρg(t)

2
‖3stt − ψtt‖

2
2 +

g(t)
2Iρ
‖(3s0 − ψ0)xx‖

2
2

≤ g(t)E1(t) +
g(t)
2Iρ
‖(3s0 − ψ0)xx‖

2
2. (3.46)

This implies

d
dt

E1(t)e
−

∫ t

0
g(τ)dτ

 ≤ e
−

∫ t

0
g(τ)dτg(t)

2Iρ
‖(3s0 − ψ0)xx‖

2
2 ≤

g(t)
2Iρ
‖(3s0 − ψ0)xx‖

2
2 (3.47)

Integrating (3.47) over (0, t) yields

E1(t)e
−

∫ +∞

0
g(τ)dτ

≤ E1(t)e
−

∫ t

0
g(τ)dτ

≤ E1(0) +
1

2Iρ

(∫ t

0
g(τ)dτ

)
‖(3s0 − ψ0)xx‖

2
2

≤ E1(0) +
1

2Iρ

(∫ +∞

0
g(τ)dτ

)
‖(3s0 − ψ0)xx‖

2
2.

(3.48)

Hence, (3.45) follows. �

Remark 3.2. Using Young’s inequality, we observe from (3.44) and (3.45) that

λ‖θxt‖
2
2 = −E′1(t) +

1
2

(
g′ � (3sxt − ψxt)

)
(t) −

1
2

g(t)‖3sxt − ψxt‖
2
2 − g(t)〈(3stt − ψtt), (3s0 − ψ0)xx〉

≤ −E′1(t) − g(t)〈(3stt − ψtt), (3s0 − ψ0)xx〉

≤ −E′1(t) + g(t)
(
‖3stt − ψtt‖

2
2 + ‖(3s0 − ψ0)xx‖

2
2

)
≤ −E′1(t) + g(t)

(
2
Iρ

E1(t) + ‖(3s0 − ψ0)xx‖
2
2

)
≤ C

(
−E′1(t) + c1g(t)

)
(3.49)

for some fixed positive constant c1. Similarly, we obtain

0 ≤ −
(
g′ � (3sxt − ψxt)

)
(t) ≤ C

(
−E′1(t) + c1g(t)

)
. (3.50)

As in the case of equal-wave-speed of propagation, we define a Lyapunov functional

L̃(t) = ÑE(t) +

6∑
j=1

Ñ jI j(t) + Ñ6I8(t), (3.51)
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where Ñ, Ñ j, j = 1, 2, 3, 4, 5, 6, are positive constants to be specified later and

I8(t) =
3λ
δ

(IρG − ρD)
∫ 1

0
θxwxdx.

Lemma 3.3. Suppose G
ρ
, D

Iρ
. Then, under suitable choice of Ñ, Ñ j, j = 1, 2, 3, 4, 5, 6, the Lyapunov

functional L̃ satisfies, along the solution of (1.6), the estimate

L̃′(t) ≤ − β̃E(t) +
1
2

(g � (3sx − ψx)) (t) + C
(
−E′1(t) + c1g(t)

)
,∀ t ≥ t0, (3.52)

for some positive constants β̃ and c1.

Proof. Following the proof of Lemma 3.1, we end up with (3.52). �

Lemma 3.4. Suppose assumptions (G1) and (G2) hold and the function H in (G2) is linear. Let
(w, 3s − ψ, s, θ) be the strong solution of problem (1.6)−(1.8). Then,

ξ(t)(g � (3sxt − ψxt))(t) ≤ C
(
−E′1(t) + c1g(t)

)
, ∀ t ≥ 0, (3.53)

where c1 is a fixed positive constant.

Proof. Using (3.50) and the fact that ξ is decreasing, we have

ξ(t)(g � (3sxt − ψxt))(t)

= ξ(t)
∫ t

0
g(t − τ)

(
‖(3sxt − ψxt)(t) − (3sxt − ψxt)(τ)‖22

)
dτ

≤

∫ t

0
ξ(t − τ)g(t − τ)

(
‖(3sxt − ψxt)(t) − (3sxt − ψxt)(τ)‖22

)
dτ

≤ −

∫ t

0
g′(t − τ)

(
‖(3sxt − ψxt)(t) − (3sxt − ψxt)(τ)‖22

)
dτ

= −
(
g′ � (3sxt − ψxt)

)
(t)

≤ C
(
−E′1(t) + c1g(t)

)
.

(3.54)

�

Our stability result of this subsection is

Theorem 3.3. Assume (G1) and (G2) hold and G
ρ
, D

Iρ
. Then, there exist positive constants a1, a2 and

t2 > t0 such that the energy solution (2.11) satisfies

E(t) ≤ a2(t − t0)H−1
2


a1

(t − t0)
∫ t

t2
ξ(τ)dτ

 ,∀t > t2, where H2(τ) = τH′(τ). (3.55)
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Proof. Case 1: H is linear. Multiplying (3.52) by ξ(t) and using (G1), we get

ξ(t)L̃′(t) ≤ − β̃ξ(t)E(t) +
1
2
ξ(t) (g � (3sx − ψx)) (t) + Cξ(t)

(
−E′1(t) + c1g(t)

)
≤ − β̃ξ(t)E(t) −CE′(t) −Cξ(0)E′1(t) + ξ(0)c1g(t), ∀ t ≥ t0

Using the fact that ξ non-increasing, we obtain(
ξL̃ + CE + E1

)′
(t) ≤ −β̃ξ(t)E(t) + c2g(t), ∀ t ≥ t0.

for some fixed positive constant c2. This implies

β̃ξ(t)E(t) ≤ −
(
ξL̃ + CE + E1

)′
(t) + c2g(t), ∀ t ≥ t0. (3.56)

Integrating (3.56) over (t0, t), using the fact that E is non-increasing and the inequality (3.45), we arrive
at

β̃E(t)
∫ t

t0
ξ(τ)dτ ≤ β̃

∫ t

t0
ξ(τ)E(τ)dτ

≤ −
(
ξL̃ + CE + E1

)
(t) +

(
ξL̃ + CE + E1

)
(t0) + c2

∫ t

t0
g(τ)dτ

≤
(
ξL̃ + CE + E1

)
(0) + C‖(3s0 − ψ0)xx‖

2
2 + c2

∫ ∞

0
g(τ)dτ

=
(
ξL̃ + CE + E1

)
(0) + C‖(3s0 − ψ0)xx‖

2
2 + c2(D − l0).

(3.57)

Thus, we have

E(t) ≤
C∫ t

t0
ξ(τ)dτ

, ∀ t ≥ t0. (3.58)

Case II: H is nonlinear. First, we observe from (3.52) that

L̃′(t) ≤ − β̃E(t) +
1
2

(g � (3sx − ψx)) (t) + C
(
−E′1(t) + c1g(t)

)
≤ − β̃E(t) + C ((g � (3sx − ψx)) (t) + (g � (3sxt − ψxt)) (t)) + C

(
−E′1(t) + c1g(t)

)
, ∀ t ≥ t0.

(3.59)

From (2.12), (3.16) and (3.50), we have for any t ≥ t0∫ t0

0
g(τ)‖(3sx−ψx)(t) − (3sx − ψx)(t − τ)‖22dτ +

∫ t0

0
g(τ)‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≤
1

ξ(t0)

∫ t0

0
ξ(τ)g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

+
1

ξ(t0)

∫ t0

0
ξ(τ)g(τ)‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≤ −
g(0)

aξ(t0)

∫ t0

0
g′(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

−
g(0)

aξ(t0)

∫ t0

0
g′(τ)‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≤ −C
(
E′(t) + E′1(t)

)
+ c2g(t),

(3.60)
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where c2 is a fixed positive constant. Substituting (3.60) into (3.59), we obtain for any t ≥ t0

L̃′(t) ≤ − β̃E(t) −C
(
E′(t) + E′1(t)

)
+ c3g(t) + C

∫ t

t0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

+ C
∫ t

t0
g(τ)‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ,

(3.61)

where c3 is a fixed positive constant. Now, we define the functional Φ by

Φ(t) =
σ

t − t0

∫ t

t0
‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

+
σ

t − t0

∫ t

t0
‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ, ∀ t > t0.

(3.62)

Using (2.11), (2.12), (3.43) and (3.45), we easily get

1
t − t0

∫ t

t0
‖(3sx − ψx)(t)−(3sx − ψx)(t − τ)‖22dτ +

1
t − t0

∫ t

t0
‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≤
2

t − t0

∫ t

t0

(
‖(3sx − ψx)(t)‖22 + ‖(3sx − ψx)(t − τ)‖22

)
dτ

+
2

t − t0

∫ t

t0

(
‖(3sxt − ψxt)(t)‖22 + ‖(3sxt − ψxt)(t − τ)‖22

)
dτ

≤
4

l0(t − t0)

∫ t

t0
(E(t) + E(t − τ) + E1(t) + E1(t − τ)) dτ

≤
8

l0(t − t0)

∫ t

t0

(
E(0) + C

(
E1(0) + ‖(3s0 − ψ0)xx‖

2
2

))
dτ

≤
8
l0

(
E(0) + C

(
E1(0) + ‖(3s0 − ψ0)xx‖

2
2

))
< ∞, ∀ t > t0.

(3.63)
This last inequality allows us to choose 0 < σ < 1 such that

Φ(t) < 1, ∀ t > t0. (3.64)

Hence forth, we assume Φ(t) > 0, otherwise, we get immediately from (3.61)

E(t) ≤
C

t − t0
, ∀ t > t0.

Next, we define the functional µ by

µ(t) = −

∫ t

t0
g′(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

−

∫ t

t0
g′(τ)‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

(3.65)

and observe that
µ(t) ≤ −C

(
E′(t) + E′1(t)

)
+ c4g(t), ∀ t > t0, (3.66)
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where c4 is a fixed positive constant. The fact that H is strictly convex and H(0) = 0 implies

H(ντ) ≤ νH(τ), 0 ≤ ν ≤ 1 and τ ∈ (0, r]. (3.67)

Using assumption (G1), (3.67), Jensen’s inequality and (3.64), we get for any t > t0

µ(t) = −
1

Φ(t)

∫ t

t0
Φ(t)g′(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

−
1

Φ(t)

∫ t

t0
Φ(t)g′(τ)‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≥
1

Φ(t)

∫ t

t0
Φ(t)ξ(τ)H(g(τ))‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

+
1

Φ(t)

∫ t

t0
Φ(t)ξ(τ)H(g(τ))‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≥
ξ(t)
Φ(t)

∫ t

t0
H(Φ(t)g(τ))‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ

+
ξ(t)
Φ(t)

∫ t

t0
H(Φ(t)g(τ))‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≥
ξ(t)(t − t0)

σ
H

(
σ

t − t0

∫ t

t0
g(τ)(Ω1(t − τ) + Ω2(t − τ))dτ

)
=
ξ(t)(t − t0)

σ
H̄

(
σ

t − t0

∫ t

t0
(Ω1(t − τ) + Ω2(t − τ)) dτ

)
,

(3.68)

where
Ω1(t − τ) = ‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22,
Ω2(t − τ) = ‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22

and H̄ is the C2− strictly increasing and convex extension of H on (0,+∞). This implies∫ t

t0
g(τ)‖(3sx − ψx)(t) − (3sx − ψx)(t − τ)‖22dτ +

∫ t

t0
g(τ)‖(3sxt − ψxt)(t) − (3sxt − ψxt)(t − τ)‖22dτ

≤
(t − t0)
σ

H̄−1
(

σµ(t)
ξ(t)(t − t0)

)
, ∀ t > t0.

(3.69)
Thus, the inequality (3.61) becomes

L̃′(t) ≤ − β̃E(t) −C
(
E′(t) + E′1(t)

)
+ c3g(t) +

C(t − t0)
σ

H̄−1
(

σµ(t)
ξ(t)(t − t0)

)
, ∀ t > t0. (3.70)

Let L̃1(t) := L̃(t) + C (E(t) + E1(t)) . Then (3.70) becomes

L̃′1(t) ≤ −β̃E(t) +
C(t − t0)

σ
H̄−1

(
σµ(t)

ξ(t)(t − t0)

)
+ c3g(t), ∀ t > t0. (3.71)

For 0 < r1 < r, we define the functional L̃2 by
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L̃2(t) := H̄′
(

r1

t − t0
.
E(t)
E(0)

)
L̃1(t), , ∀ t > t0. (3.72)

From (3.71) and the fact that
E′(t) ≤ 0, H̄′(t) > 0, H̄′′(t) > 0,

we obtain, for all t > t0,

L̃′2(t) =

(
−

r1

(t − t0)2 .
E(t)
E(0)

+
r1

t − t0
.
E′(t)
E(0)

)
H̄′′

(
r1

t − t0
.
E(t)
E(0)

)
L̃1(t) + H̄′

(
r1

t − t0
.
E(t)
E(0)

)
L̃′1(t)

≤ − β̃E(t)H̄′
(

r1

t − t0
.
E(t)
E(0)

)
+ c3g(t)H̄′

(
r1

t − t0
.
E(t)
E(0)

)
+

C(t − t0)
σ

H̄′
(

r1

t − t0
.
E(t)
E(0)

)
H̄−1

(
σµ(t)

ξ(t)(t − t0)

)
.

(3.73)

Let H̄∗ be the convex conjugate of H̄ as in (3.30) and let

A = H̄′
(

r1

t − t0
.
E(t)
E(0)

)
and B = H̄−1

(
σµ(t)

ξ(t)(t − t0)

)
.

Then, (3.30), (3.31) and (3.73) yield, for all t > t0,

L̃′2(t) ≤ − β̃E(t)H̄′
(

r1

t − t0
.
E(t)
E(0)

)
+ c3g(t)H̄′

(
r1

t − t0
.
E(t)
E(0)

)
+

C(t − t0)
σ

H̄∗
(
H̄′

(
r1

t − t0
.
E(t)
E(0)

))
+

C(t − t0)
σ

.
σµ(t)

ξ(t)(t − t0)

≤ − β̃E(t)H̄′
(

r1

t − t0
.
E(t)
E(0)

)
+ c3g(t)H̄′

(
r1

t − t0
.
E(t)
E(0)

)
+ Cr1

E(t)
E(0)

H̄′
(

r1

t − t0
.
E(t)
E(0)

)
+ C

µ(t)
ξ(t)

≤ − (β̃E(0) −Cr1)
E(t)
E(0)

H̄′
(

r1

t − t0
.
E(t)
E(0)

)
+ C

µ(t)
ξ(t)

+ c3g(t)H̄′
(

r1

t − t0
.
E(t)
E(0)

)
(3.74)

By selecting r1 small enough so that (β̃E(0) −Cr1) > 0, we arrive at

L̃′2(t) ≤ − β̃2
E(t)
E(0)

H̄′
(

r1

t − t0
.
E(t)
E(0)

)
+ C

µ(t)
ξ(t)

+ c3g(t)H̄′
(

r1

t − t0
.
E(t)
E(0)

)
, ∀ t > t0, (3.75)

for some positive constant β̃2.

Now, multiplying (3.75) by ξ(t) and recalling that r1
E(t)
E(0) < r, we arrive at

ξ(t)L̃′2(t) ≤ −β̃2ξ(t)
E(t)
E(0)

H̄′
(

r1

t − t0
.
E(t)
E(0)

)
+ Cµ(t) + c3g(t)ξ(t)H′

(
r1

t − t0
.
E(t)
E(0)

)
≤ −β̃2ξ(t)

E(t)
E(0)

H′
(

r1

t − t0
.
E(t)
E(0)

)
−C(E′(t) + E′1(t)) + c4g(t) + c3g(t)H′

(
r1

t − t0
.
E(t)
E(0)

)
, ∀ t > t0.

(3.76)
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Since r1
t−t0
−→ 0 as t −→ ∞, there exists t2 > t0 such that r1

t−t0
< r1, whenever t > t2. Using this fact and

observing that H′ strictly increasing, and E and ξ are non-decreasing, we get

H′
(

r1

t − t0
.
E(t)
E(0)

)
≤ H′(r1), ∀ t > t2. (3.77)

Using (3.77), it follows from (3.76) that

L̃′3(t) ≤ −β̃2ξ(t)
E(t)
E(0)

H′
(

r1

t − t0
.
E(t)
E(0)

)
+ c5g(t), ∀ t > t2, (3.78)

where L̃3 = (ξL̃2 + CE + CE1) and c5 > 0 is a constant. Using the non-increasing property of ξ, we
have

β̃2ξ(t)
E(t)
E(0)

H′
(

r1

t − t0
.
E(t)
E(0)

)
≤ −L̃′3(t) + c5g(t), ∀ t > t2. (3.79)

Using the fact that E is non-increasing and H′′ > 0 we conclude that the map

t 7−→ E(t)H′
(

r1

t − t0
.
E(t)
E(0)

)
is non-increasing. Therefore, integrating (3.79) over (t2, t) yields

β̃2
E(t)
E(0)

H′
(

r1

t − t0
.
E(t)
E(0)

) ∫ t

t2
ξ(τ)dτ ≤ β̃2

∫ t

t2
ξ(τ)

E(τ)
E(0)

H′
(

r1

τ − t0
.
E(τ)
E(0)

)
dτ

≤ −L̃3(t) + L̃3(t2) + c5

∫ t

t2
g(τ)dτ

≤ L̃3(t2) + c5

∫ ∞

0
g(τ)dτ

= L̃3(t2) + c5(b − l0), ∀ t > t2.

(3.80)

Next, we multiply both sides of (3.80) by 1
t−t0

, for t > t2, we get

β̃2

(t − t0)
.
E(t)
E(0)

H′
(

r1

t − t0
.
E(t)
E(0)

) ∫ t

t2
ξ(τ)dτ ≤

L̃3(t2) + c5(b − l0)
t − t0

, ∀ t > t2. (3.81)

Since H′ is strictly increasing, then H2(τ) = τH′(τ) is a strictly increasing function. It follows from
(3.81) that

E(t) ≤ a2(t − t0)H−1
2


a1

(t − t0)
∫ t

t2
ξ(τ)dτ

 , ∀ t > t2.

for some positive constants a1 and a2. This completes the proof. �
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3.3. Examples

(1). Let g(t) = ae−bt, t ≥ 0, a, b > 0 are constants and a is chosen such that (G1) holds. Then

g′(t) = −abe−bt = −bH(g(t)) with H(t) = t.

Therefore, from (3.14), the energy function (2.11) satisfies

E(t) ≤ a2e−αt, ∀ t ≥ 0, where α = ba1. (3.82)

Also, for H2(τ) = τ, it follows from (3.55) that, there exists t2 > 0 such that the energy function
(2.11) satisfies

E(t) ≤
C

t − t2
, ∀ t > t2, (3.83)

for some positive constant C.
(2). Let g(t) = ae−(1+t)b

, t ≥ 0, a > 0, 0 < b < 1 are constants and a is chosen such that (G1) holds.
Then,

g′(t) = −ab(1 + t)b−1e−(1+t)b
= −ξ(t)H(g(t)),

where ξ(t) = b(1 + t)b−1 and H(t) = t. Thus, we get from (3.14) that

E(t) ≤ a2e−a1(1+t)b
, ∀ t ≥ 0. (3.84)

Likewise, for H2(t) = t, then estimate (3.55) implies there exists t2 > 0 such that the energy
function (2.11) satisfies

E(t) ≤
C

(1 + t)b , ∀ t > t2, (3.85)

for some positive constant C.
(3). Let g(t) = a

(1+t)b , t ≥ 0, a > 0, b > 1 are constants and a is chosen in such a way that (G1) holds.
We have

g′(t) =
−ab

(1 + t)b+1 = −ξ

(
a

(1 + t)b

) b+1
b

= −ξgq(t) = −ξH(g(t)),

where
H(t) = tq, q =

b + 1
b

satisfying 1 < q < 2 and ξ =
b

a
1
b

> 0.

Hence, we deduce from (3.41) that

E(t) ≤
C

(1 + t)b , ∀ t ≥ 0. (3.86)

Furthermore, for H2(t) = qtq, estimate (3.55) implies there exists t2 > 0 such that the energy
function (2.11) satisfies

E(t) ≤
C

(1 + t)(b−1)/(b+1) , ∀ t > t2, (3.87)

for some positive constant C.
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4. Appendix

In this section, we prove the functionals Li, i = 1 · · · 8, used in the proof of our stability results.
Lemma 4.1. The functional I1(t) satisfies, along the solution of (1.6) − (1.8), for all t ≥ t0 > 0 and for
any ε1, ε2 > 0, the estimate

I′1(t) ≤ −
Iρg0

2
‖3st − ψt‖

2
2 + ε1‖3sx − ψx‖

2
2 + ε2‖ψ − wx‖

2
2 + CCα

(
1 +

1
ε1

+
1
ε2

)
(h � (3sx − ψx)) (t),

(4.1)

where g0 =

∫ t0

0
g(τ)dτ ≤

∫ t

0
g(τ)dτ.

Proof. Differentiating I1(t), using (1.6)2 and integrating by part, we have

I′1(t) = −Iρ

∫ 1

0
(3st − ψt)

∫ t

0
g′(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτdx

+ D(t)
∫ 1

0
(3sx − ψx)

∫ t

0
g(t − τ) ((3sx − ψx)(t) − (3sx − ψx)(τ)) dτdx

+

∫ 1

0

(∫ t

0
g(t − τ) ((3sx − ψx)(t) − (3sx − ψx)(τ)) dτ

)2

dx − Iρ

(∫ t

0
g(τ)dτ

) ∫ 1

0
(3st − ψt)2dx

−G
∫ 1

0
(ψ − wx)

∫ t

0
g(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτdx, (4.2)

where D(t) =
(
D −

∫ t

0
g(τ)dτ

)
. Now, we estimate the terms on the right hand-side of (4.2). Exploiting

Young’s and Poincaré’s inequalities, Lemmas 2.1- 2.6 and performing similar computations as in (2.8),
we have for any ε1 > 0,

D(t)
∫ 1

0
(3sx − ψx)

∫ t

0
g(t − τ) ((3sx − ψx)(t) − (3sx − ψx)(τ)) dτdx

≤ ε1‖(3sx − ψx‖
2
2 +

CCα

ε1
(h � (3sx − ψx)) (t) (4.3)

and ∫ 1

0

(∫ t

0
g(t − τ) ((3sx − ψx)(t) − (3sx − ψx)(τ)) dτ

)2

dx ≤ Cα (h � (3sx − ψx)) (t). (4.4)

Also, for δ1 > 0, we have

−Iρ

∫ 1

0
(3st − ψt)

∫ t

0
g′(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτdx

=Iρ

∫ 1

0
(3st − ψt)

∫ t

0
h(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτdx

− Iρα
∫ 1

0
(3st − ψt)

∫ t

0
g(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτdx

AIMS Mathematics Volume 6, Issue 1, 333–361.



355

≤δ1‖3st − ψt‖
2
2 +

I2
ρ

2δ1

∫ 1

0

(∫ t

0
h(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτ

)2

dx

+
α2I2

ρ

2δ1

∫ 1

0

(∫ t

0
g(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτ

)2

dx

≤δ1‖3st − ψt‖
2
2 +

I2
ρ

2δ1

(∫ t

0
h(τ)dτ

)
(h � (3s − ψ)) (t) +

α2I2
ρCα

2δ1
(h � (3s − ψ)) (t)

≤δ1‖3st − ψt‖
2
2 +

C(Cα + 1)
δ1

(h � (3s − ψ)x) (t). (4.5)

For the last term, we have

−G
∫ 1

0
(ψ − wx)

∫ t

0
g(t − τ) ((3s − ψ)(t) − (3s − ψ)(τ)) dτdx ≤ ε2‖ψ − wx‖

2
2 +

G2Cα

4ε2
(h � (3s − ψ)x) (t).

(4.6)

Combination of (4.2)−(4.6) lead to

I′1(t) ≤ −
(
Iρ

∫ t

0
g(τ)dτ − δ1

)
‖3wt − ψt‖

2
2 + ε1‖3sx − ψx‖

2
2 + ε2‖ψ − wx‖

2
2

+ CCα

(
1 +

1
δ1

+
1
ε1

+
1
ε2

)
(h � (3sx − ψx)) (t). (4.7)

Since g(0) > 0 and g is continuous. Thus for any t ≥ t0 > 0, we get∫ t

0
g(τ)dτ ≥

∫ t0

0
g(τ)dτ = g0 > 0. (4.8)

We select δ1 =
Iρg0

2
to get (4.1). �

Lemma 4.2. The functional I2(t) satisfies, along the solution of (1.6) − (1.8) and for any δ4 > 0, the
estimate

I′2(t) ≤ −3D‖sx‖
2
2 − 3γ‖s‖22 + δ4‖wt‖

2
2 + C

(
1 +

1
δ4

)
‖st‖

2
2 + C‖θx‖

2
2, ∀t ≥ 0. (4.9)

Proof. Differentiation of I2(t), using (1.6)1 and (1.6)3 and integration by part, leads to

I′2(t) = 3Iρ‖st‖
2
2 − 3D‖sx‖

2
2 − 4γ‖s‖22 − δ

∫ t

0
sθxdx + 3ρ

∫ 1

0
wt

∫ x

0
st(y)dydx.

Applying Cauchy-Schwarz and Young’s inequalities and (2.5), we get for any δ4 > 0,

I′2(t) ≤ 3Iρ‖st‖
2
2 − 3D‖sx‖

2
2 − 4γ‖s‖22 + γ‖s‖22 +

δ2

4γ
‖θx‖

2
2 + δ4‖wt‖

2
2 +

9ρ2

4δ4

∫ 1

0

(∫ x

0
st(y)dy

)2

dx

≤ −3D‖sx‖
2
2 − 3γ‖s‖22 + δ4‖wt‖

2
2 + C

(
1 +

1
δ4

)
‖st‖

2
2 + C‖θx‖

2
2.

This completes the proof. �
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Lemma 4.3. The functional I3(t) satisfies, along the solution of (1.6) − (1.8) and for any ε3 > 0, the
estimate

I′3(t) ≤ −
δIρ
2
‖st‖

2
2 + ε3‖sx‖

2
2 + ε3‖ψ − wx‖

2
2 + C

(
1 +

1
ε3

)
‖θx‖

2
2, ∀t ≥ 0. (4.10)

Proof. Differentiation of I3, using (1.6)3, (1.6)4 and integration by parts, yields

I′3(t) = 3λIρ

∫ 1

0
θxstdx − 3Iρδ‖st‖

2
2 − 3kD

∫ 1

0
θsxdx + kδ‖θ‖22

+ 3kG
∫ 1

0
θ

∫ x

0
(ψ − wy)(y)dydx + 4γk

∫ 1

0
θ

∫ t

0
s(y)dydx.

Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities together with Lemmas 2.1− 2.6, we have

I′3(t) ≤ δ2‖st‖
2
2 + Cδ2‖θx‖

2
2 − 3Iρδ‖st‖

2
2 +

ε3

2
‖sx‖

2
2 + C

(
1 +

1
ε3

)
‖θ‖22

+ε3

∫ 1

0

(∫ x

0
(ψ − wy)(y)dy

)2

dx +
ε3

2

∫ 1

0

(∫ x

0
s(y)dy

)2

dx

≤ δ2‖st‖
2
2 + Cδ2‖θx‖

2
2 − 3Iρδ‖st‖

2
2 + ε3‖sx‖

2
2 + ε3‖ψ − wx‖

2
2 + C

(
1 +

1
ε3

)
‖θx‖

2
2.

We choose δ2 =
5Iρδ

2
to get (4.10). �

Lemma 4.4. The functional I4(t) satisfies, along the solution of (1.6) − (1.8) and for any ε4 > 0, the
estimate

I′4(t) ≤ − ρ‖wt‖
2
2 + ε4‖3sx − ψx‖

2
2 + C‖sx‖

2
2 + Cε4‖ψ − wx‖

2
2, ∀t ≥ 0. (4.11)

Proof. Using (1.6)1 and integration by parts, we have

I′4(t) = −ρ‖wt‖
2
2 −G

∫ 1

0
(ψ − wx)wxdx.

We note that wx = −(ψ − wx) − (3s − ψ) + 3s to arrive at

I′4(t) = −ρ‖wt‖
2
2 + G‖ψ − wx‖

2
2 + G

∫ 1

0
(ψ − wx)(3s − ψ)dx − 3G

∫ 1

0
(ψ − wx)sdx.

It follows from Young’s and Poincaré’s inequalities that

I′4(t) ≤ −ρ‖wt‖
2
2 + G‖ψ − wx‖

2
2 + ε4‖3s − ψ‖22 +

C
ε4
‖ψ − wx‖

2
2 +

3G
2
‖ψ − wx‖

2
2 +

3G
2
‖s‖22

≤ − ρ‖wt‖
2
2 + G‖ψ − wx‖

2
2 + ε4‖3sx − ψx‖

2
2 + C‖sx‖

2
2 + C

(
1 +

1
ε4

)
‖ψ − wx‖

2
2.

This completes the proof. �

Lemma 4.5. The functional I5(t) satisfies, along the solution of (1.6) − (1.8) and for any 0 < α < 1,
the estimate

I′5(t) ≤ −
l0

4
‖3sx − ψx‖

2
2 + Iρ‖3st − ψt‖

2
2 + C‖ψ − wx‖

2
2 + CCα (h � (3sx − ψx)) (t). (4.12)
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Proof. Differentiating I5, using (1.6)2, we arrive at

I′5(t) = Iρ‖3st − ψt‖
2
2 −

(
D −

∫ t

0
g(τ)dτ

)
‖3sx − ψx‖

2
2 + G

∫ 1

0
(3s − ψ)(ψ − wx)dx

+

∫ 1

0
(3sx − ψx)

∫ t

0
g(t − τ) ((3sx − ψx) (x, τ) − (3sx − ψx) (x, t)) dτdx.

Applying Lemmas 2.1- 2.6, Cauchy-Schwarz, Young’s and Poincaré’s inequalities, we obtain any δ3 >

0

I′5(t) ≤ Iρ‖3st − ψt‖
2
2 − l0‖3sx − ψx‖

2
2 + δ3‖3sx − ψx‖

2
2 +

G2

4δ3
‖ψ − wx‖

2
2

+
l0

2
‖3sx − ψx‖

2
2 +

1
2l0

Cα (h � (3sx − ψx)) (t). (4.13)

We select δ3 =
l0

4
and obtain the desired result. �

Lemma 4.6. The functional I6(t) satisfies, along the solution of (1.6)− (1.8) and for any for any ε1, the
estimate

I′6(t) ≤ −G2‖ψ − wx‖
2
2 + ε1‖3st − ψt‖

2
2 + C

(
1 +

1
ε1

)
‖st‖

2
2

+ C‖sx‖
2
2 + C‖θx‖

2
2 + 3(IρG − ρD)

∫ 1

0
wtsxtdx, ∀t ≥ 0. (4.14)

Proof. Differentiating I6(t), using (1.6)1 and (1.6)3 and integration by parts, we obtain

I′6(t) = −3G2‖ψ − wx‖
2
2 − 4γG

∫ 1

0
(ψ − wx)sdx − δG

∫ 1

0
(ψ − wx)θxdx

− 3IρG
∫ t

0
(3st − ψt)stdx + 9IρG‖st‖

2
2 + 3(IρG − ρD)

∫ 1

0
wtsxtdx. (4.15)

Young’s and Poincaré’s inequalities give

−4γG
∫ 1

0
(ψ − wx)sdx ≤ G2‖ψ − wx‖

2
2 + 4γ2Cp‖sx‖

2
2,

−δG
∫ 1

0
(ψ − wx)θxdx ≤ G2‖ψ − wx‖

2
2 +

δ2

4
‖θx‖

2
2,

−3IρG
∫ t

0
(3st − ψt)stdx ≤ ε1‖3st − ψt‖

2
2 +

(3IρG)2

ε1
‖st‖

2
2. (4.16)

Substituting (4.16) into (4.15), we obtain (4.14). This completes the proof. �

Lemma 4.7. The functional I7(t) satisfies, along the solution of (1.6) − (1.8), the estimate

I′7(t) ≤ 3(D − l0)‖3sx − ψx‖
2
2 −

1
2

(g � (3sx − ψx))(t), ∀t ≥ 0. (4.17)
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Proof. Differentiate I7(t) and use the fact that J′(t) = −g(t) to get

I′7(t) =

∫ 1

0

∫ t

0
J′(t − τ)(3sx − ψx)2(τ)dτdx + J(0)‖3sx − ψx‖

2
2

= − (g � (3sx − ψx))(t) + J(t)‖3sx − ψx‖
2
2

− 2
∫ 1

0
(3sx − ψx)

∫ t

0
g(t − τ) ((3sx − ψx)(τ) − (3sx − ψx)(t)) dx.

(4.18)

Using Cauchy-Schwarz and (G1), we have

−2
∫ 1

0
(3sx − ψx)

∫ t

0
g(t − τ) ((3sx − ψx)(τ) − (3sx − ψx)(t))

≤2(D − l0)‖3sx − ψx‖
2
2 +

∫ t

0
g(τ)dτ

2(D − l0)
(g � (3sx − ψx))(t)

≤2(D − l0)‖3sx − ψx‖
2
2 +

1
2

(g � (3sx − ψx))(t)

(4.19)

Thus, we get

I′7(t) ≤ 2(D − l0)‖3sx − ψx‖
2
2 −

1
2

(g � (3sx − ψx))(t) + J(t)‖3sx − ψx‖
2
2. (4.20)

Since J is decreasing (J′(t) = −g(t) ≤ 0), so J(t) ≤ J(0) = D − l0. Hence, we arrive at

I′7(t) ≤ 3(D − l0)‖3sx − ψx‖
2
2 −

1
2

(g � (3sx − ψx))(t).

�

The next lemma is used only in the proof of the stability result for nonequal-wave-speed of
propagation.

Lemma 4.8. Let (w, 3s−ψ, s, θ) be the strong solution of problem (1.6). Then, for any positive numbers
σ1, σ2, σ3, the functional I8(t) satisfies

I′8(t) ≤ − 3(IρG − ρD)
∫ 1

0
wtsxtdx + σ1‖wt‖

2
2 + σ2‖ψ − wx‖

2
2 + σ3‖3sx − ψx‖

2
2

+ C‖sx‖
2
2 + C

(
1 +

1
σ1

+
1
σ2

+
1
σ3

)
‖θxt‖

2
2, ∀ t ≥ t0.

(4.21)

Proof. Differentiation of I8, using integration by part and the boundary condition give

I′8(t) =
3λ
δ

(IρG − ρD)
∫ 1

0
θxwxtdx +

3λ
δ

(IρG − ρD)
∫ 1

0
θxtwxdx

=
3λ
δ

(IρG − ρD)
[
−

∫ 1

0
θxxwtdx

]
+

3λ
δ

(IρG − ρD)
∫ 1

0
θxtwxdx.

(4.22)
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We note that wx = −(ψ − wx) − (3s − ψ) + 3s and from (1.6)4, λθxx = kθt + δsxt. So, (4.22) becomes

I′8(t) = −
3
δ

(IρG − ρD)k
∫ 1

0
θtwtdx − 3(IρG − ρD)

∫ 1

0
sxtwtdx +

9λ
δ

(IρG − ρD)
∫ 1

0
θxtsdx

−
3λ
δ

(IρG − ρD)
∫ 1

0
θxt(ψ − wx)dx −

3λ
δ

(IρG − ρD)
∫ 1

0
θxt(3s − ψ)dx

(4.23)

Using Young’s and Poincaré’s inequalities, we have for any positive numbers σ1, σ2, σ3,

−
3
δ

(IρG − ρD)
∫ 1

0
θtwtdx ≤ σ1‖wt‖

2
2 +

C
σ1
‖θxt‖

2
2,

−
3λ
δ

(IρG − ρD)
∫ 1

0
θxt(ψ − wx)dx ≤ σ2‖ψ − wx‖

2
2 +

C
σ2
‖θxt‖

2
2,

−
3λ
δ

(IρG − ρD)
∫ 1

0
θxt(3s − ψ)dx ≤ σ3‖3sx − ψx‖

2
2 +

C
σ3
‖θxt‖

2
2,

9λ
δ

(IρG − ρD)
∫ 1

0
θxtsdx ≤ C‖sx‖

2
2 + C‖θxt‖

2
2.

(4.24)

Substituting (4.24) into (4.23), we obtain (4.21). �

5. Conclusions

In this paper, we have established a general and optimal stability estimates for a thermoelastic
Laminated system, where the heat conduction is given by Fourier’s Law and memory as the only
source of damping. Our results are established under weaker conditions on the memory and physical
parameters. From our results, we saw that the decay rate is faster provided the wave speeds of the
first two equations of the system are equal (see (1.3)). A similar result was established recently in [19]
when the heat conduction is given by Maxwell-Cattaneo’s Law. An interesting case is when the kernel
memory term is couple with the first or third equations in system (1.6). Our expectation is that the
stability in both cases will depend on the speed of wave propagation.

Acknowledgments

The authors appreciate the continuous support of University of Hafr Al Batin, KFUPM and
University of Sharjah. The first and second authors are supported by University of Hafr Al Batin
under project #G − 106 − 2020. The third author is sponsored by KFUPM under project #S B181018.

Conflict of interest

The authors declare no conflict of interest

AIMS Mathematics Volume 6, Issue 1, 333–361.



360

References

1. T. A. Apalara, On the stability of a thermoelastic laminated beam, Acta Mathematica Scientia, 39
(2019), 1–8.

2. J. M. Wang, G. Q. Xu, S. P. Yung, Exponential stabilization of laminated beams with structural
damping and boundary feedback controls, SIAM J. Control Optim., 44 (2005), 1575–1597.

3. V. I. Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1989.

4. R. Spies, Structural damping in a laminated beams due to interfacial slip, J. Sound Vib., 204 (1997),
183–202.

5. X. Cao, D. Liu, G. Xu, Easy test for stability of laminated beams with structural damping and
boundary feedback controls, J. Dyn. Control Syst., 13 (2007), 313–336.

6. S. W. Hansen, A model for a two-layered plate with interfacial slip. In: Control and Estimation of
Distributed Parameter Systems, Int. Series Numer. Math., 118 (1993), 143–170.

7. J. M. Wang, G. Q Xu, S. P. Yung, Exponential stabilization of laminated beams with structural
damping and boundary feedback controls, SIAM J. Control Optim., 44 (2005), 1575–1597.

8. B. Feng, T. F. Ma, R. N. Monteiro, C. A. Raposo, Dynamics of Laminated Timoshenko Beams, J.
Dyn. Diff Equat., 30 (2018), 1489–1507.

9. G. Li, X. Kong, W. Liu, General decay for a laminated beam with structural damping and memory,
the case of non-equal-wave, J. Integral. Equations Appl., 30 (2018), 95–116.

10. M. I. Mustafa, General decay result for nonlinear viscoelastic equations J. Math. Anal. Appl., 457
(2018), 134–152.

11. A. Guesmia, S. A. Messaoudi, On the stabilization of Timoshenko systems with memory and
different speeds of wave propagation, Appl. Math. Comput., 219 (2013), 9424–9437.

12. J. L. Jensen, Sur les fonctions convexes et les inégualités entre les valeurs moyennes, Acta Math.,
30 (1906), 175–193.

13. S. E. Mukiawa, T. A. Apalara, S. A. Messaoudi, A general and optimal stability result for a
laminated beam, J. Integral Equations Appl., 32 (2020), 341–359.

14. T. A. Apalara, S. A. Messaoudi, An exponential stability result of a Timoshenko system with
thermoelasticity with second sound and in the presence of delay, Appl. Math. Optim., 71 (2015),
449–472.

15. M. I. Mustafa, Laminated Timoshenko beams with viscoelastic damping, J. Math. Anal. Appl., 466
(2018), 619–641.

16. J. H. Hassan, S. A. Messaoudi, M. Zahri, Existence and new general decay result for a viscoleastic-
type Timoshenko system, J. Anal. Appl., 39 (2020), 185-222.

17. T. A. Apalara, S. A. Messaoudi, A. A. Keddi, On the decay rates of Timoshenko system with
second sound, Math. Methods Appl. Sci., 39 (2016), 2671–2684.

18. M. M. Cavalcanti, A. Guesmia, General decay rates of solutions to a nonlinear wave equation with
boundary condition of memory type, Differ. Integral Equ., 18 (2005), 583–600.

AIMS Mathematics Volume 6, Issue 1, 333–361.



361

19. S. E. Mukiawa, T. A. Apalara, S. A. Messaoudi, A stability result for a memory-type Laminated-
thermoelastic system with Maxwell-Cattaneo heat conduction, J. Thermal Stresses, 43 (2020),
1437–1466,

20. C. D. Enyi, S. E. Mukiawa, Dynamics of a thermoelastic-laminated beam problem, AIMS
Mathematics, 5 (2020), 5261–5286.

21. E. H. Dill, Continuum mechanics: elasticity, plasticity, viscoelasticity, CRC Press, Taylor and
Francis Group, New York, (2006).

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 1, 333–361.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Stability results
	Equal-wave-speed of propagation
	Nonequal-wave-speed of propagation
	Examples

	Appendix
	Conclusions

