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Abstract: In this article we consider certain linear time-varying control systems and investigate their
stability using structured singular values (u-values). We use the low rank ordinary differential equations
based methodology to compute the lower bounds for u-values. The inner-outer algorithm computes the
local extremizer of an admissible perturbation and adjusts the desired perturbation level. Further, we
present a comparison of our results via the well-known MATLAB routine mussv which is available in
MATLAB control toolbox.
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1. Introduction

A time-varying (TV) system is a system whose dynamics changes over time. Consider the example
of a rocket traveling through space. As a rocket burns a lot of fuel its mass reduces quickly over a short
periods of time. The dynamics of a linear time—varying (LTV) system is usually described by a system
of differential equation with variable coefficients. Other examples of such systems includes wireless
communication networks, amplitude modulation, aircrafts and human vocal tract. These systems are
also extensively used to model the dynamics of a large class of engineering and biological systems.
The linear time invariant (LTI) systems are a particular case of the TV system. Therefore TV systems
are studied as a generalization of time invariant systems [1, 2].

The most important characteristic of a dynamical system is its stability [3]. One has to ensure
the stability for a system to determine its accurate behavior. During the construction, testing and
simulation, it is essential to check whether the test object is stable and we need to define the settings
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for which this system is stable. The stability conditions are a quick and a reliable tool to ensure stability.
An important question is whether the state space approach of time invariant systems extends naturally
to TV systems. It has been observed [3] that state space transition matrices are almost impossible
to compute for most of the TV systems. The most important distinction here is that stability of LTI
systems mostly depend on system parameters but in the case of TV systems it does not. For example,
it is known that the stability of time invariant systems totally depends on the eigenvalues of its system
matrix. In the case of TV systems, however, there is no direct relation can be established between
stability and the location of eigenvalues of their system matrix.

Consider the following TV system x(f) = A(t)x(t), where t € [a, co) for some finite number a.
We take A(7) to be an n X n matrix of piece wise continuous functions over [a, c0). We will denote
by ®(¢,1), t, ty € [a, ), t > t, the state transition matrix for this system. The system is said to
be stable if for every € > 0 and for every #) € [a, 00), there exists a 6 > 0 (6 depends on 7y, and €
) such that [x(zy)| < ¢ implies |x(¢)] < €. It is well known [3] that the above system is sable if and
only if |®(t,1y)| < k(ty) for any 7y € [a, o) and for some k(¢y) > 0. It is worth mentioning here that
there are other notions of stability in literature such as uniform stability (6 does not depend on #y) and
exponential stability [4].

Structured Singular Value (SSV) (u-values) for complex matrices in terms of a family of block
diagonal matrices is introduced in [5]. In the u-theory [6], the number of structured uncertainty
embedded in a given system is rather large. We denote by A;(jw) an uncertain element. Each of
A;(jw) can be consider as LTI value. The uncertainties A;(jw) can either be real, complex or mixed
(both real and complex). If A; = 0 we say that the system is nominal and it is called perturbed if
A; #0.

Conceptually, SSV is a straight forward generalization of singular values. SSV provides a tool to
analyze and synthesize the robustness and performance of feedback systems in linear control theory.
These tools are helpful to study stability analysis of structured eigenvalue perturbation theory and that
of uncertain linear control systems. We put our attention to robust stability problem related to standard
feedback interconnection of stable matrices M(s) and A(s) for some s € C,. Next we write M(s) and
A(s) as M and A.

The instability of feedback system is directly related with the measure of quantity (I — M A) to be
singular where [ is the identity matrix with dimension similar to M and A. This restrict the choice of
A in the sense of ||Al|. which cause instability to closed loop system. For stability analysis of closed
loop system ||All < @, @ € R, a > 0.

The increase in @ up to @,,,, allows feedback system to be unstable. The quantity «,,,, gives robust
stability margin of feedback system. Since stability analysis of a feedback system depends upon the
fact that quantity (I — M A) remains non-singular for the values of M and A.

In [7], Zhou gives a detailed account of problems and progress on the stability of TV system. He
then gives some results on the asymptotic stability of LTV systems. He also considers a class of upper
triangular TV systems and establishes their stability. We consider LTV systems with the matrices A(¢)
given as follows [1, 7].

-1 edlzt

A(t)=( 0 -3 ) Yt € [0, ), (1.1)
where a1, is a constant scalar.
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A() = 01 ) vreqo,00. (1.2)
— -10

&5 0 5
A =| 0 1 0 ) (1.3)

3(e!-1)

2—1e" 0 =5

2 + cos(#?) te™! 0
A(t) = -1 1 — | sin(?)] | (1.4)
-1 0 arctan(t)e"2

The aim of this paper is to study stability analysis of linear time-varying systems in control.
Furthermore, we also discuss the pseudo-spectrum with the help of EigTool of coefficient matrices
A(t) describing such systems. Our approach is based on low-rank ordinary differential equations
which involves the computation of admissible perturbations and perturbation level to approximate the
bounds of p-values. The bounds of u-values describes the stability of linear time-varying systems.

2. Preliminaries

Definition 2.1. The spectrum of a square complex valued matrix M € C"" is defined as
AM)={1eC: |(U-M)|=0}
Definition 2.2. The pseudospectrum of a complex matrix M € C™" with a small positive real parameter
€ > 0 is defined as {
AM)={1eC: [AU-M)"|> -}
€

Definition 2.3. Unstructured uncertainty B or structured uncertainty B is stable transfer matrix or
structured stable transfer matrix having the form

B = {diag(élll,ézlz, ...,6SIS;A1,A2,...,AF) :0; €C, Aj S ij’mj,Vi =1: S,] =1: F}

Definition 2.4. For n-dimensional matrix M € C™" and a perturbation set B, the u-value is defined as

following:
1

pe(M) = — : —,
min{||All, : A € B,det(I — MA) = 0}
with no such A that cause the perturbed matrix (I — MA) to be singular such that ug(M) = 0.

Theorem 2.5. (Small Gain Theorem [8]). The control system is well-posed and stable for an admissible
perturbation A and bounded above by 1 iff

IMlleo = Sup(IM(w)l) < 1,

for some w € R*, the frequency.

Theorem 2.6. [9]. For two structured uncertainties B; C B,, then

e, (IM(w)l) < ps, (IMGw)ID).

The control system is well-posed and internally stable for a perturbation A € B with [|All, < 1 iff
Sup(M(jw)) < 1 for some w € R,
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3. Reformulation of y-values

This section is devoted to reformulation of u-values. The key idea for the reformulation of the
structured singular values is to shift the largest eigenvalue of I — MA(¢) such that for A,,,, = 1 the new
eigenvalue 7 = 0 as 7 = 1 — 4,4, and it achieve the maximum value to be 1 when A4,,,, = 0. On the basis
of this mathematical construction, the reformulation of structured singular values is given as below.

Definition 3.1. For M € C"" and an admissible perturbation level € > 0, structured spectral value set
is denoted by AZ(M) and is defined as follows:

AZ(M) = {1 € A(eMA),A € B,|All, < 1},

where A(eMA) denotes the spectrum of (e MA) and is simply a disk centered at origin 0.

Definition 3.2. The structured epsilon spectral value set for M € C*" and € > 0 is defined as

EM)={n:1-2:2eAX(M)).

Definition 3.3. For a given M € C™" and an underlying perturbation set B the u-value is defined as

4. Pseudo-spectra

(M) =

1

arg mineolmaxid| = 1,1 € AB(M)}

In this section we present the pseudospectra for matrices under consideration to whom the goal
is to approximate structured singular values. For this purpose we make use of the software package
EigTool [10]. EigTool is routinely used for plotting unstructured pseudospectra of the matrices under
consideration. In Figures 1 and 2, we show the computation of the pseudospectra of a different matrices
as taken in examples 1-4.

‘ EigTool: left button to zoom in, right button to zoom out ‘

| EigTool: left button to zoom in, right button to zoom out
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Figure 1. Matlab interface for computing pseudo-spectrum of Examples 1 and 2.
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Figure 2. Matlab interface for computing pseudo-spectrum of Examples 3 and 4.

S. Proposed methodology

For use low-rank ordinary differential equaton technique for solving optimization problem
discussed in Definition 7. The numerical technique is composed of two-level algorithm, that is,
inner-outer algorithm. In inner-algorithm the main goal is to first construct and then solve a gradient
system of ordinary differential equations. In Outer-algorithm we change the perturbation level € > 0
by using Newton’s method. The outer-algorithm approximate an exact derivative of extremizer A(e)
for A € B and € > 0. A complete detail of numerical method under consideration is given in [11].

6. Numerical experimentation

In this section we compute the structured singular values of the systems given in Eqs (1.1)—(1.4) for
increasing values of r. We also demonstrate the stability of given systems in graphs.

Example 1. First we take « = 1 and t = 1 in (1.1), to get

-1 2.7182
M = .

0 -3

We choose the perturbation set 8 = {diag(6;1;) : 6; € R,Vi =1 : 2}. The MATLAB function mussv
computes an admissible perturbation V Delta given as

—-0.0286  0.0296
VDelta = [ 0.1665 —0.1729 ]
norm(V Delta)= 0.2436.
The largest singular value (LSV) of matrix VDelta is 0.2436. The approximate lower and upper

bounds given by mussv are 4.1054 and 4.1054 respectively. Moreover by using the algorithm [11], the
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perturbation matrix E is obtained as

£ | 01172 0.1217
~| 0.6838 -0.7099 |’

The LSV of matrix E is computed as 1. The lower bound approximation is 4.1054. For t = 1.5 in
(1.1), we have

-1 4.4816
M = .
0 -3

The LSV of matrix VDelta is 0.1832. The approximate lower and upper bounds given by mussv are
5.4573 and 5.4573 respectively. Moreover by using the algorithm [11], the LSV corresponding to E is
computed as 1. The lower bound approximation is 5.4573. For t = 2.0 in (1.1), we have

-1 7.3890
M = .
0 -3

The LSV of matrix VDelta is 0.1246. The approximate lower and upper bounds given by mussv are
8.0286 and 8.0286 respectively. Moreover by using the algorithm [11], the LSV corresponding to E is
computed as 1. The lower bound approximation is 8.0286. For t = 2.5 in (1.1), we have

-1 12.1824
0o -3 |
The LSV of matrix VDelta is 0.0795. The approximate lower and upper bounds given by mussv are

12.5839 and 12.5839 respectively. Moreover by using the algorithm [11], the LSV of matrix E is
computed as 1. The lower bound approximation is 12.5839.

Example 2. First we take « = 1 and t = 1 in (1.2), to get

0 1
M‘[—o.s —10]'

We choose the perturbation set 8 = {diag(d;1;) : 6; € R,Vi =1 : 2}. The MATLAB function mussv
computes an admissible perturbation V Delta given as

0.0005 —0.0049
VDelta = [ 0.0099 —0.0988 ]

norm(V Delta)= 0.0994. The LSV of matrix VDelta is 0.0994. The approximate lower and upper
bounds given by mussv are 10.0622 and 10.0622 respectively. Moreover by using the algorithm [11],
the perturbation matrix E is obtained as

E= 0.0050 -0.0499
[ 0.0999 -0.9937 |
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The LSV of matrix E is 1. The lower bound approximation is 10.0622. For t = 1.5 in (1.2), we
have

0 1
M= [ -0.4 -10 ] '
The LSV of matrix VDelta is 0.0994. The approximate lower and upper bounds given by mussv are

10.0578 and 10.0578 respectively. Moreover by using the algorithm [11], the LSV corresponding to £
is computed as 1. The lower bound approximation is 10.0578. For t = 2.0 in (1.2), we have

15 o]
M = .
-1/3 -10

The LSV of matrix VDelta is 0.0994. The approximate lower and upper bounds given by mussv are
10.0553 and 10.0554 respectively. Moreover by using the algorithm [11], the LSV of matrix E is
computed as 1. The lower bound approximation is 10.0332. For ¢ = 2.5 in (1.2), we have

0 1
M =
-0.2857 -10

The LSV of matrix VDelta is 0.0995. The approximate lower and upper bounds given by mussv are
10.0539 and 10.0539 respectively. Moreover by using the algorithm [11], the LSV corresponding to E
is computed as 1. The lower bound approximation is 10.0539.

Example 3. First we take « = 1 and # = 1 in (1.3), to get

1.6126 0 0.1619
M = 0 1 0
0.6126 0 1.1619

We choose the perturbation set 8 = {diag(é;1;) : 6; € R,Vi = 1 : 3}. The MATLAB function mussv
computes an admissible perturbation VDelta given as

0.4020 0 0.2764
0.1899 0 0.1306

VDelta = [ 0 0 0

norm(V Delta)= 0.5395. The LSV of matrix VDelta is 0.5395. The approximate lower and upper
bounds given by mussv are 1.8535 and 1.8535 respectively. Moreover by using the algorithm [11], the
admissible perturbation E is obtained as

E = 0 0 0

0.3520 0 0.2420

0.7450 0O 0.5123}

The LSV of matrix E is computed as 1. The lower bound approximation is 1.8535. For# = 1.5 in
(1.3), we have

AIMS Mathematics Volume 6, Issue 1, 304-313.



311

1.5627 0 0.3116
M = 0 1 0
0.5627 0 1.3116
The LSV of matrix VDelta is 0.5335. The approximate lower and upper bounds given by mussv are
1.8743 and 1.8743 respectively. Moreover by using the algorithm [11], the LSV corresponding to E is
computed as 1. The lower bound approximation is 1.8743. For t = 2.0 in (1.3), we have
1.5362 0 0.3911
M = 0 1 0
0.5362 0 1.3911
The LSV of matrix VDelta is found as 0.5169. The approximate lower and upper bounds given by
mussv are 1.9347 and 1.9347 respectively. Moreover by using the algorithm [11], the LSV
corresponding to E is computed as 1. The lower bound approximation is 1.9347. For ¢t = 2.5 in (1.3),
we have
1.5213 0 0.4358
M = 0 1 0
0.5213 0 1.4358

The LSV of matrix VDelta is found as 0.5110. The approximate lower and upper bounds given by
mussv are 1.9571 and 1.9571 respectively. Moreover by using the algorithm given [11], the LSV
corresponding to E is computed as 1. The lower bound approximation is 1.9571.

Example 4. First we take « = 1 and t = 1 in (1.4), to get
2.5403 0.3678 0
M = -1 0.1585 1
-1 0 0.2889

We choose the perturbation set 8 = {diag(6;1;) : 6; € R,Vi = 1 : 3}. The MATLAB function mussv
computes an admissible perturbation V Delta given as

VDelta=| 0.0249 -0.0111 -0.0101

-0.0474 0.0212  0.0193

0.2844 -0.1274 —0.1159}

norm(VDelta)= 0.3383. The LSV of matrix VDelta is calculated as 0.3383. The approximate lower
and upper bounds given by mussv are 2.9556 and 2.9556 respectively. Moreover by using the algorithm
[11], the perturbation matrix E is obtained as

E=| 0.0735 -0.0329 -0.0299

-0.1401 0.0628  0.0571

0.8406 —0.3767 —0.3425}
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The LSV corresponding to perturbation matrix E is computed as 1. The lower bound approximation is
2.9556. Fort = 1.51in (1.4), we have
1.3718 0.3346 0
M = -1 0.0025 1
-1 0 0.1035

The LSV of matrix VDelta is 0.5906. The approximate lower and upper bounds given by mussv are
1.6932 and 1.6932 respectively. Moreover by using the algorithm [11], the LSV corresponding to
perturbation matrix E is computed as 1. The lower bound approximation is 1.6932. For t = 2.0 in
(1.4), we have

1.3463 0.2706 0
M = -1 0.0907
-1 0 0.0202

The LSV of matrix VDelta is 0.4838. The approximate lower and upper bounds given by mussv are
2.0672 and 2.0672 respectively. Moreover by using the algorithm [11], the LSV corresponding to
perturbation matrix E is computed as 1. The lower bound approximation is 2.0672. For ¢t = 2.5 in
(1.4), we have

2.9994 0.2052 0
M = -1 0.4015 1
-1 0 0.0022

The LSV of matrix VDelta is 0.3249. The approximate lower and upper bounds given by mussv are
3.0776 and 3.0776 respectively. Moreover by using the algorithm [11], the LSV corresponding to
admissible perturbation matrix E is computed as 1. The lower bound approximation is 3.0397.

7. Conclusion

In this article we have presented the numerical computations of lower and upper bounds of
structured singular values for the matrices arising in LTV systems. The lower bounds of structured
singular values discuss the instability of linear system in control. The upper bounds of structured
singular values gives stability analysis of control systems. The numerical experiments shows that the
obtained bounds (lower and upper) of structured singular values by making using of low rank odes
based technique matches with the results obtained by well-known MATLAB function mussv.
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