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1. Introduction and preliminaries

An analytic function s : U = {z : |z] < 1} — C is subordinate to an analytic functionz : U — C
and write s(z) < #(z), if there exists a complex value function w which maps U into itself with w(0) =
0 and |w(z)| < 1 (z € U) such that s(z) = #(w(z)) (z € U). Furthermore, if the function ¢ is univalent in
U, then we have the following equivalence (see [1]):

5(z) < H(z) & s(0) = 1(0) and s(U) c #«(U).

Let A define the class of functions f that are analytic in the open unit disc U of the form
f@ =2+ ) a
=2

The theory of (p, g)-calculus (or post quantum calculus [2]) operators are used in various areas of
science and also in geometric function theory. For 0 < ¢ < p < 1 and f € A, Chakrabarti and
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Jagannathan [2] defined the (p, g)-derivative operator D, , : A — A by

S(p2)—f(gz)
Dpgf(2) = li;fl_%m):f(q@ ! f " z g’ (1.1)
gop-  (pmaz P =49z ’
where
Dpgf@ =1+ Y [Klpgad”! (1.2)
k=2
and . . .
k], =2 —9 _ { Y PN p#g, (1.3)
M p-q kptt, p=gq.

From (1.1), we have
lim Dyf@ =1 and_lim Dy, f@) = D1.1f@) = '@

Next, we introduce the (p, g)-derivative operator in the class of meromorphic functions.
Suppose M be the class of functions f that are meromorphic analytic in the punctured disk U* =
U\ {0} ={z:0 < |z| < 1} of the form

f@=2+ > adt (1.4)
2 k=1

Now, we define the (p, ¢)-post quantum derivative operator d g i M — Mby

d,.£@) f(l();)—_éff(zqz)’ p#q,zeU, 0s)
qJ\2) = im LPD-fe2) - * .
P qlil}}’ (p—q)z s p - q’Z € U .
Using (1.4) and (1.5), we have
. 1 > )
dpgf(@) = —— + > [Klpgad™" (ke ), (1.6)
Pa

where 0 < g < p < 1 and [k],, is defined by (1.3).
Let1>0,0<g<p<1, meNy=NU{0}and f(z) € M, we introduce the generalized (p, g)-post

quantum calculus operator 5’1’,’,’; : M — M as follows,

D0 f(2) = f(2),

_ . - 20+1) =~
Dyaf (@ = (1 = Vpazad, f @) + Apqz(ad, f @) + D D! @), (1.7)
D1 f@) = Bp (D) f(2) (1.8)
and in general, N o
D f(2) = D) (D0 f(@) (m>1,2€UY). (1.9)
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After a simple calculation, we can obtain the following conclusion

+ i {(tk = DA+ 11pglk],g) " @i (1.10)

k=1

Oy f@) =

N =

where [k],, is defined by (1.3). For simple of notation, we let

wi(4, p,q) := [(k = DA+ 1]pglk],.,. (1.11)

Obviously, for A4 = 0, the operator 5}’,’2 fl2) = Ly, f(z) reduces to the (p, g)-Sdldgean operator [3].

A complex valued harmonic function f in a simply connected domain D C C has the canonical
representation f = h + g, where h and g are analytic in D and g(zyp) = O for some prescribed point
Zo € D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is
that |7'(2)| > |g’(z)| in D (see [4,5]).

Denote by My the class of meromorphic univalent and harmonic functions f that are sense
preserving in U* and have the following form

f@=h@+g@) ==+ ) @+ ) b bl <1, (1.12)

N | =

where h(z) and g(z) are analytic in U and U respectively. The class My was studied in [6-10].
Let1>0,0<g<p<1,meNjand f € My, we now define the operator D%l My — My as

D f(2) = Dh(z) + Dy g(2), (1.13)
where
~ 1 (o) . (o)
Ty = -+ D" ol ppad, Tpe@ = - A, p, i, (1.14)
k=1 k=1

with wi(4, p, g) defined by (1.11).
Assume that F' be fixed meromorphic harmonic function given by

1 [Se] [Se]
F@)=H@)+G) = — + DA+ B Bl < 1. (1.15)
k=1 k=1

For f given by (1.12) and F given by (1.15), we define the convolution (or Hadamard product) of F
and f by

1 00 o
(fx F)@) =~ + Y add + ) biBiet = (Fx @), (1.16)
k=1 k=1

Also, we denote by 7 (7~ € My) the class of meromorphic harmonic functions f of the following
form

(9]

1 >
@) =h@)+8@) = —+ ) lad = } Iz (). (1.17)
k=1

=1
Throughout this paper, we shall assume 1 > 0,0 <g<p<1,meNy and-1<B<A<I.
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Let
1 (o) (o) -
$(2) = E"'Zukzk"‘zvkzk (1.18)
=1 k=1
be harmonic in U* with u; > 0 and v, > 0.
Taking

Luf(2) =7 @) -28'@), Lpf@@)=Lu(Luf@), fe Mpy.

Now, using the operator @'" ' and subordination relationship, we define the following two classes.

Definition 1. Let the function f € My of the form (1.12). The function f € Mf; “(A,m, A, B) if and

only if .
:Dm,/l
_ L€ i,qf*rb)(z) _1+Az (1.19)
(D f * )2 1+ Bz
and also the function f € K;**(4,m, A, B) if and only if
‘L ( qu ¢)(Z) + Z’ (120)
LH(:D * )(2) aE Bz
where
1
D@ = Z W (s p e + Z“’k (A p, @vibidt (1.21)
k=1
with wi(4; p, q) given by (1.11).
We let .
MG (A,m, A, B) =T N MZ?(4,m,A, B)
and

KPU(A,m, A, B) = T NKJ(A,m, A, B).

The classes M‘;”’(/l, m, A, B) and 7(5”(/1, m, A, B) reduce to the well-known subclasses of My as
well as many new ones. For example, let ¢(z) = % + D (z* +7"), we have
H(z) -8’2
M'0,1,1-2y,-1) = MHS(y) = {f € My : Re [—Ml > y}
h(z) + g(2)

and

KN0,1,1 =2y, —1) = MCH(y) = {f € My : Re l—Zh @+ W@ +28"@) + ¢ (Z)} > y},
h(z) - g'(2)
where y € [0, 1).

The classes MHS *(y) and MCH(y) were studied by Jahangiri [9].

In particular, the classes MHS *(0) = MHS* (Meromorphically harmonic starlike functions) and
MCH(0) = MCH (Meromorphically harmonic convex functions) were studied by Jahangiri and
Silverman [10].

In this paper, the sufficient and necessary conditions of coefficients are discussed. As what we have
hoped, distortion estimates, extreme points and convolution properties for the above-defined classes
are also obtained.

AIMS Mathematics Volume 6, Issue 1, 223-234.



227

2. Basic properties

First of all, we provide the sufficient conditions of coeflicients for the classes defined in Definition
1.

Theorem 1. Let f = h + g be given by (1.12) and w(A; p, q) given by (1.11).
(i) The sufficient condition for f to be sense-preserving and meromorphic harmonic univalent in U*
and f € Mg’q(/l, m,A, B) is

2 (P @lan] + i (p. lbil] < 1. 2.1)
=1
where
k < En(p, q) 1= LBHIA MG (tpg)
—_ ,m bl . A—B " ) b 2'2)
k(1-B)~(1=A) v} (1:p.9) (
k < tem(p,q) = A—Bk pa)

(ii) The sufficient condition for f to be sense-preserving and meromorphic harmonic univalent in
U* and f € 7(5"’(/1, m, A, B) is

Dk [En(p lan] + sin(p, @lbil] < 1, (2.3)
k=1
where &,(p, q) and . .(p, q) are given by (2.2).

Proof. (i) For 0 < |z1] < |z2] < 1, we obtain

f(z1) = f(z2)

S 1 |8G) ~8)
h(z1) — h(z2)

- h(z1) = h(z2)

- 1122 ZZO:I bk(Z]f - Z’E)
(21 — 22) — 2122 Yoy k(@S = 25)
o1 ZZ":; Kl
I- Zk:1 kla|
| _ 2kt M. @I
T 1= G Pl
>0,

which proves univalence. Note that f is sense-preserving harmonic in U*. This is because

1

W) > —
Ih'(2)| =

= D Madld ™ > 1= En(p. Dlard = D in(p, @lbid > D Kbl = 18/
k=1 k=1 k=1 k=1

Next, we show that if the inequality (2.1) holds, then the required condition (1.19) is satisfied.
By means of Definition 1 and relationship of subordination, the function f € Mg’q(/l, m, A, B) iff
there exists an analytic function @w(z) satisfying @(0) = 0, |@(z)| < 1 (z € U) such that

Lu(Dpf # 9 _ 1+ Aw()
DAL 5 B(2) 1+ Bw(z)’
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or equivalently

‘ Ly(Opf# $)2) + D f + ¢(2) -

ADpo f % $2) + BLu(Dpq f * $)(2)
We only need to show that

JADY f# ¢(2) + BLu(D; [+ $) | = | Lu(Dy f 5 §)2) + Dyl [+ ()| >0 (z € U").  (24)

Letting
{ Orj= A+ (D kB p, ), j=1,2, 2.5)
b = (k + (=1)"Hw(A; p, q), j=1,2. :

Therefore, from (2.1) we get

JADYf o+ (2) + BLu(D f 5 )@ = | Lu(Dp [+ $)@) + D f # $(2)]
- Z O urarz” + Z 91(,2ka
k=1 k=1

1 [se] (o] [se] [ee]

k k k k

> (A= B+ D onmadid = ) oavilbill = ) Ok usdanlal = ) Ohavidbulle
4 = k=1 k=1 k=1

1 (o) ()
(A - B)— + Z O'k’lukakzk + Z O'k’gvkbkzk
2 k=1 k=1

o0

1 [ee)
= A= B 1= ) (P planled™! = ) (. q>|bk||z|’<“]
k=1 k=1
1 (o] [ee)
> A=B) =D (@l = D (P q)|bk|]
k=1 k=1
> 0.

Hence, we complete the proof of (i). Also, applying the same method as (i), we can obtain (ii).
The harmonic univalent function

(o)

1 A—-B X A-B —
=_ , (2.6
1O = 2% ) e k= BT =A™ e k=B == 29

where Y7, (Ix| + [y]) = 1, shows that the coefficient bound given by (2.1) is sharp. O

Theorem 2. Let f = h+ g be given by (1.17). Then
(i) f € M4, m, A, B) iff (2.1) holds true.
(ii) f € KA, m, A, B) iff (2.3) holds true.

Proof. (i) It appears from (1.17) that Mg’q(/l, m, A, B) ¢ My?(A,m, A, B). In view of Theorem 1, it is
straightforward to show that if f € Mg’q(/l, m, A, B), then (2.1) holds true. Next, we use the method

in[11]to prove.
Let f € Mg’q(/l, m, A, B), then it satisfies (1.19) or equivalently

St Oruilarl? + Y Ok avilbilzt
1 [} 0 —
(A= B); + 20 oamlarl? — 35, oravilbilz

<1 (z € U"). (2.7)
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From (2.7), we get

.0 ko 30 Gl bilz*
Re Zlk_l k,olouklaklz Zk_l k,zol’kl klZ Lo, (2.8)
(A= B)z + 22 oralarls® — 2021 o avil bilzr
Z
which holds for all z € U*. Setting z = r (0 < r < 1) in (2.8), we get
et O tlagl P+ X2 O ovid bl (2.9)
(A= B) + 202 ol — 352 oo vilbylr<+! ‘
Thus, from (2.9) we have
D [€en(p, Dl + on(p, QI <10 < 7 < 1), (2.10)
k=1

where & ,(p, q) and . ,(p, q) are given by (2.2).
Putting

Sn= D Enp: Dl + tin(p, DIbiD.
k=1

For the series Yo [£xm(Ps Qlar] + tiem(p, @Ibil], {S )} is the nondecreasing sequence of partial sums
of it. Moreover, by (2.10) it is bounded by 1. Therefore, it is convergent and

D P @ladd + pin(p, Dlbal) = lim S, < 1.
k=1
Thus, we get the inequality (2.1). Similarly, it is easy to prove (ii) of Theorem 2. O

Clearly, from Theorem 2, we have
KU(A,m, A, B) € MyU(4,m, A, B). 2.11)

Next, we give the extreme points of these classes.

Theorem 3. Let X; > 0,Y, > 0, X720 X + Yoy Y = 1, &P, @) and pun(p, q) be given by (2.2).
(i) If f € Mf;’q(/l, m, A, B). Then f € clcoMf;’q(/l, m, A, B) iff

f@ = X+ Y Yigi (U, (2.12)
%=0 k=1
where

]’l():%, hk:§+€k b)q)Zk, kZl,

it (2.13)
R TR =

(ii) If f € V?qf’q(ﬂ, m,A, B). Then f € clco(]?;’q(/l, m, A, B) iff the condition (2.12) holds and

hOZ%’ hk:%_i_mzk’ kZl,

1 R S k> 1 (2.14)
8k = T Qumpa© ==
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Proof. From (2.12) we get

o0

Q- (XO ' Z[Xk ’ Yk]) 2" Z &k, (p q) ) Z M, (p 9 TR

Since0<X; <1(k=0,1,2,---), we obtain

o 1 [Se]
;&,m(p,q)gk’m(p’ )Xk + Zﬂkm(p, QY = ZXk +Y=1-X <1

m(p q)

It follows, from (i) of Theorem 2, that f € Mz’q(/l, m,A, B).
Conversely, if f € MJ(4,m, A, B), then

1
] < ———— and |b,| < ————.
Eem(Ps Q) Him(Ps q)
Putting X; = &un(ps @lal, Yi = tem(p> @lbil and Xo = 1 = 302, Xi = 3,2, Y > 0, we obtain

1 [Se] [Se] _
f@ =+ ) lauld Z iz
k=1 k=1

(o) (o)

- 1 < 1 _
ZXk+ZYk]z kam< s ;uk,m(p,my"zk

k=0 k=1

i (D)X + Z (DY

k=0

—_

Thus f can be expressed in the form of (2.12). The remainder of the proof is analogous to (i) in
Theorem 3 and so we omit. |

Next, using Theorem 2, we proceed to discuss the distortion theorems for functions of these classes.

Theorem 4. Let [ = h + g be of the form (1.17), |z| = r € (0, 1), §&cwm(p, q) and pym(p, q) are defined by
(2.2), {&xm(p, @)} and { (P, q)} are non-decreasing sequences. If f € Mf;’q(/l, m, A, B), then

1 r 1 r

PR o rn Rl A e g e T

Proof. For f € Mg’q(/l, m, A, B), using Theorem 2 and (2.1), we have

1 (o8] (o8] _
@1 ==+ Dl = )bkt
k=1 k=1

1 1 -

< —+ — Eem(Ps Plar] + pm(p, Qlbil) r
r " mint.(p. @) tim(ps ) ;( k(P Dl] + pn(P: DIBA)
1 1

< —+4+ — r
r mln{gl,m(p’ Q), Ml,m(p’ C])}
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and

(o N ! !
= — = b = 1 .
F@l = r (kz ks ; | kl)r =7 mm{fl,m(p,q),m,m(p,q)}r

=1

The result is sharp and the extremal function is

1 1
f(Z) - g B min{gl,m(p’ C[),,Ul,m(p’ q)

}Z.

So, we complete the proof of Theorem 4. O
By virtue of Theorem 4, we obtain the following covering result.

Theorem 5. Let &.,,(p, q) and w;..(p, q) be given by (2.2). If f € Mg’q(/l, m, A, B), then

1
min{é (P, @), 1m(p, @)}

{w twl <1 - } c f(U").

Theorem 6. The classes Mg’q(ﬁ, m, A, B) and 7?5 (A, m, A, B) are closed under convex combinations.

Remark 1. By taking the special values of the parameters A, p,q,m,A, B and ¢ in Theorems 1-6, it
is easy to show the corresponding results for the classes MHS *(y) and MCH (y) which are defined in
Section 1.

Especially,let 1 =0,p=g=m=1,A=1-2y,B=-1,0<y<land¢(z) = 1 + 32,(z" + ") in
Theorem 2, we can obtain the results of Theorems 1 and 7 in [9].

Corollary 1. Let f = h+ g be given by (1.17). Then
(i) f € MHS"(y) iff

=k + k—
Yl + == Yib < 1.
k=1 I-y Iy

(ii) f € MCH*(y) iff

k(k +7) k(k — )
Dl +
-y -y

|by] < 1.
k=1

3. Convolution properties

__Next, in order to obtain the convolution properties of functions belonging to the classes
Mg’q(/l, m, A, B) and ‘Kg (A, m, A, B), we now introduce a new class of harmonic functions.

Definition 2. Let 6 > O, the function f = h + g of the form (1.17) belongs to the class ij’p (A, m,A, B)
if and only if

D Kbn(p.@lad + Y Kotin(p, 9lbid < 1, (3.1)
k=1 k=1

where &,(p, q) and p..(p, q) are defined by (2.2).
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Obviously, for any positive integer §, we have the following inclusion relation:

L7 m, A, B) € K “(A,m, A, B) € M m, A, B).

(3.2)

Let the harmonic functions f; (t = 1,2,--- ,p)and F; (I = 1,2,--- ,n) of the following form

(@) = h(2) + g(2) =

N | =

[e9) [e0)
k —k
# 3 a2 = b2 bl < 1
k=1

k=1
and

1 o0 [S] B
Fi2) = HiQ) + Gid) = — + ) Awle' = ) Bl 1Bl < 1.
=1 =1
We define the Hadamard product (or convolution) of f; and F, by
1 [e9) [ee) B
(i3 F)@ = —+ ) ladldul = 3 1bilIBulE' =: (Fi = f)(),
k=1 k=1

wheret =1,2,--- ,pand [ =1,2,--- 1.
Using Theorem 2, we obtain the following results.

(3.3)

(3.4)

(3.5)

Theorem 7. Let f; of the form (3.3) be in the class 7?5"1(/1, m,A,B)(t =1,2,---,p) and F, of the form

(3.4) be in the class Mg’q(/l, m,A,B)(l =1,2,---,n). Then the Hadamard product (f, * f> *
Fy % Fy -+ % F,)(z) belongs to the class Zﬁ;p’q(/l, m, A, B), where 6 = 2p +1— 1.

Proof. Using the method in [8] to prove the theorem. Putting

X@) = (frx o fox FrxFyx-oox Fp)(2).

From (3.6) we have

(o)

x=1+y {ﬁ[ [ ] |Ak,l|)z’< =

o0
k=1 =1 k=1

4 n
( b | | |Bk,,|]z".
t=1 =1

According to Definition 2, we only need to show that

o 14 n S P n
> ([ Thawed [ [ cd)+ 20 wep. ([ 1ol [ [ 1Bual)< 1.
k=1 t=1 =1 k=1 t=1 =1

where & (p, ¢) and py,(p, q) are defined by (2.2).
For f, € 7(5 (A, m, A, B), we obtain

D ken(p Dl + ) kten(p b < 1,
k=1 k=1

forevery t = 1,2,---, p. Therefore

kéem(p, @lar,l <1 and kg (p, @lbr,| < 1.

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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Further, by & ,(p,q) > k and . .,(p, q) > k, we have
lag | < k% and bl <k (t=1,2,---,p). (3.11)

Also, since F; € Mg’q(ﬂ,m,A, B), we have

ka,m(l?, DAL + Z/lk,m(P,Q)|Bk,z| <1 {=L.2---,7¢). (3.12)
k=1 k=1
Hence we obtain
Al <k7' and |By| <k (1=1,2,---,7). (3.13)

Using 3.11) fort=1,2,--- ,p,(3.13)for/ =1,2,--- ,n— 1 and (3.12) for [ = n, we obtain

[Se]

P n-1 ) P n-1
D K (@) [ﬂ jail | ] |Ak,z|) Al + D (P, @) (]_[ bl | | |Bk,z|] 1By
=1 =1 k=1 t=1 =1

k=1

KPP & (D kKT )AL + Z K2 e (p KK D) By
k=1

En(P, DA+ ) 1w DBl < 1,
1 k=1

<

NGRS

=~
l

and therefore y(z) € Z‘;’p “(A,m,A, B), 6 = 2p + 1 — 1. We note that the required estimate can also be
obtained by using (3.11) fortr =1,2,--- ,n—-1;(3.13) for/ = 1,2,--- ,nand (3.9) for t = p. |

Taking into account the Hadamard product of functions fi * f, x- - - f, only, in the proof of Theorem
3.3, and using (3.11) forr = 1,2, ..., p — 1; and relation (3.9) for t = p, we are led to

Corollary 2. Let the functions f; defined by (3.3) be in the class 7~(£’q(/l, m, A, B) for every
t = 1,2,...,p. Then the Hadamard product (f, * f, x --- % f,)(2) belongs to the class
L¥7"7(2,m, A, B).

Also, taking into account the Hadamard product of functions F'; * F, * - - - x F,, only, in the proof of
Theorem 3.3, and using (3.13) for / = 1,2,...,n — 1; and relation (3.12) for / = n, we are led to
Corollary 3. Let the functions F,,; defined by (3.4) be in the class Mg’q(/l, m, A, B) for every | =
1,2,...,n. Then the Hadamard product (F * Fy x - - - x F,)(z) belongs to the class Zg_l’p’q(/l, m,A, B).
Remark 2. For different choices of the parameters A, p,q, m, A, B and ¢ in Theorem 7, we can deduce

some new results for each of the following univalent harmonic function classes MHS *(7y) and MCH(y)
which are defined in Section 1.
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