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1. Introduction

A dangerous type of disease that causes by hepatitis virus as known as Hepatitis B. The said disease
is a major problem for health all over the world. Liver suffers from serious chronic disease and infection
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due to the aforesaid disease and thus the lives of the people become at high risk of death. The liver
cancer is also mainly caused by the mentioned disease, for detail see [1]. An individual suffers from
Hepatitis B infection when the virus is able to enter the blood stream and through which it reaches
the liver. Actually the virus of mentioned disease damages liver during its entrance into blood stream
(for detail see [2]). Actually the disease has two stages one has a duration of six months, called acute
stage which often is clarified by the immune system of human body, while the other stage is called
chronic phase which has duration more than six months. Usually adults and children catch such type
of infection. HBV is a serious disease and can be transmit from infected individual to healthy people
and suffered individuals are chronic carriers. Nearly 240 million people have chronic liver infections
around the globe. Due to this dangerous disease, approximately 0.6 million people die each year due
to the aforementioned disease.

In previous century, to understand and to predict for future planing , mathematical models were
introduced. In same line to understand biological process/phenomenon, mathematical models of
infectious disease were also introduced in 1927. The said area has got much attention as with the help
of mathematical models, we can properly understand the transmission of a disease in a community.
Also one can develop some strategy how to controls the disease in our society and to get information
about the cure usually used for the treatment of these disease. In this regard various kinds HBV
models were also developed in last few decades. The powerful tools to understand infectious disease
and their transmission dynamics are the mathematical modeling. By means of which we can
understand about the transmission of the said diseases. For understanding the transmission and
control of HBV has been investigated in many articles, see for detail [3–8]. Kamyad et al. [9] have
investigated the mathematical model for HBV as:

dS (t)
dt

= v − [vp1C − vp2R + p′(I + θC)S + vS + µ1S ] + λ4R,

dE(t)
dt

= p′(I + θC)S − (v + λ1)E,

dI(t)
dt

= λ1E − (v + λ2)I,

dC(t)
dt

= [vp1 − (v + λ3 − µ2)]C + p3λ2I,

dR(t)
dt

= (vp2 − v − λ4)R + (1 − p3)λ2I + (λ3 + µ2)C + µ1S .

(1.1)

This model has been very well studied in [10–12]. In the give model, S (t) stands for the density of
susceptible, E(t) exposed, I(t) for infection, C(t) for chronic HBV carriers and R(t) recovered
individuals respectively. in this model, v is used for per capita birth and death rate, while λ1, λ2 and λ3

are used for the exposed individuals rate, the rate of carrier individuals and rate for to move
individuals from carrier to recovered, respectively. Also, θ is the infectiousness rate of carriers relative
to acute infections, while p3 is a proportion value at which acute infected individuals are converted to
carriers. According to Law of mass action, the infection transmits horizontally at p′(1 + θC)S , such
that p′ is used as a contact rate. Also the same infection transmits vertically with rate p1 of newborns
individuals by the term vp1C, (p1 < 1). Also p2 of newborns from recovered class are immune and it
is expressed by vp2R, (p2 < 1) [13]. Recently, the researchers uses the tools of fractional calculus for
modeling of different dynamical phenomena in nearly in all discipline of applied sciences, because
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these describe the dynamical behaviors more precisely as compared to natural order derivatives. The
researchers initiated the verity of concepts for fractional derivatives. The famous among these
concepts are given by Riemann-Liouville, Caputo, Hadamard, etc (see [14, 15]). The aforementioned
derivatives are well studied from different aspects, such as existence, stability, approximate solutions,
solutions of different biological and physical models, (see [16–18]).

The aforementioned differential operators cannot describe the nonlocal dynamics, due to the
involvement of singular kernel. To overcome these complications a new class of fractional operator
has been introduced in 2016 as known as CFFD (see detail [19, 20]). The proposed derivative has
been newly established having non-local non-singular kernel. The concerned operator has the ability
to well describe all those phenomena that suffering from power or exponential decay. It has been
observed that the application of proposed derivative is excellently demonstrated in the study of
thermal and material sciences, (see for detail [21, 22]). In the concerned theory some time it has to
complicated to obtained the exact analytic solutions for each nonlinear problem. In this connection,
the researches take keen interest to obtained the approximate solution of proposed problem. There are
verities of techniques present in the existence literature, see [23–28]. Probably, an important analytic
approximate technique for the solution of non-linear problem is known as Adomain Decomposition
Method (ADM), which works more efficiently for both ordinary and fractional differential equations,
(see [29,30]). The aforementioned technique is rarely utilized for the analytic approximate solution of
FODEs with involvement of non-singular kernel, (we refer [31]). Inspired from the above mentioned
literature, we investigate the series solution for underlying model via CFFD. Under the CFFD, the
previous model (1.1) take the form

CFDδ
t S = v − [vp1C − vp2R + p′(I + θC)S + vS + µ1S ] + λ4R,

CFDδ
t E = p′I + p′θCS − vE − λ1E,

CFDδ
t I = λ1E − vI − λ2I,

CFDδ
t C = [vp1 − (v + λ3 − µ2)]C + p3λ2I,

CFDδ
t R = (vp2 − v − λ4)R + (1 − p3)λ2I + (λ3 + µ2)C + µ1S

(1.2)

with given initial conditions/data

S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,C(0) ≥ 0,R(0) ≥ 0.

First, we develop some results regarding existence theory by using Banach theorem, which guarantied
that the solution of proposed system exists and can be physically interpreted. Further, for the
concerned semi-analytical study we use Adomian decomposition method together with Laplace
integral transform which is a powerful and efficient technique to handle many nonlinear problems.
For graphical presentation, we use Matlab to simulate the results for some already used data available
in literature.

2. Preliminaries

Definition 2.1. [32] Let ψ ∈ H1(a, b), b > a, r ∈ (0, 1), then the CFFD may be expressed as:

CFDδ
t (ψ(t)) =

M(δ)
1 − δ

∫ t

a
ψ′(θ) exp

[
− δ

t − θ
1 − δ

]
dθ,
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where the normalizer function M(δ) with M(0) − 1 = M(1) − 1 = 0. In case of failure we use the
following derivativeH1(a, b), reformulated as:

CFDδ
t (ψ(t)) =

M(δ)
1 − δ

∫ t

a
(ψ(t) − ψ(θ)) exp

[
− δ

t − θ
1 − δ

]
dθ.

Definition 2.2. [32] Let δ ∈]0, 1[. An integral due to Caputo and Fabrizo with order δ for a function
ψ may be recalled as:

CFIδt [ψ(t)] =
(1 − δ)
M(δ)

ψ(t) +
δ

M(δ)

∫ t

0
ψ(θ)dθ, t ≥ 0.

Definition 2.3. [32] The Laplace transform of CFFD CFDδ
t x(t), δ ∈ (0, 1] may be described as:

L [CFDδ
t x(t)] =

sL [x(t)]
s + δ(1 − s)

−
x(0)

s + δ(1 − s)
.

3. Qualitative study of the proposed model (1.2)

It is natural to ask whether a model we obtain after formulating a physical phenomenon in
mathematical form exists or not in real sense. This thing is guaranteed by applying the concept of
fixed point theory. In this regard, the well known contraction theorem given by Banach in 1922 is
mainly easy and simple to use. Therefore for the concerned model (1.2), we utilize the mentioned
theory to prove existence of solution.

ψ1(t, S , E, I,C,R) = v + λ4R − [vp1C + vp2R + p′(I + θC)S + vS + µ1S ],
ψ2(t, S , E, I,C,R) = p′(I + θC)S − (v + λ1)E,
ψ3(t, S , E, I,C,R) = λ1E − (v + λ2)I, (3.1)
ψ4(t, S , E, I,C,R) = [vp1 − (v + λ3 − µ2)]C + p3λ2I,

ψ5(t, S , E, I,C,R) = (vp2 − v − λ4)R + (1 − p3)λ2I + (λ3 + µ2)C + µ1S .

In this regard applying the operator CFIδ to Model (1.2) on both sides yields

S (t) = S (0) +CF Iδ[ψ1(t, S , E, I,C,R)],
E(t) = E(0) +CF Iδ[ψ2(t, S , E, I,C,R)],
I(t) = I(0) +CF Iδ[ψ3(t, S , E, I,C,R)],
C(t) = C(0) +CF Iδ[ψ4(t, S , E, I,C,R)],
R(t) = R(0) +CF Iδ[ψ5(t, S , E, I,C,R)].

(3.2)

Evaluating the right hand side, we have

U(t) = U0(t) +

[
Ψ(t,U(t)) − Ψ0(t)

] 1 − δ
M(δ)

+
δ

M(δ)

∫ t

0
Ψ(θ,U(θ))dθ, (3.3)
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where

U(t) =



S (t)
E(t)
I(t)
C(t)
R(t)

, U0(t) =



S (0)
E(0)
I(0)
C(0)
R(0)

, Ψ(t,U(t)) =



ψ1(t, S , E, I,C,R)
ψ2(t, S , E, I,C,R)
ψ3(t, S , E, I,C,R)
ψ4(t, S , E, I,C,R)
ψ5(t, S , E, I,C,R).

(3.4)

Further, we set

Ai = sup
t∈[t−d,t+d]

‖ψ1(t, S , E, I,C,R)‖, for i = 1, 2, · · · , 5, (3.5)

such that
C[d, bi] = [t − d, t + d] × [u − ci, u + ci] = D × Di, for i = 1, 2, · · · , 5.

We defined the norm on C[d, di], for i = 1, 2, · · · , 5 with help of Banach fixed point theorem as:

‖U‖∞ = sup
t∈[t−d,t+b]

|φ(t)|. (3.6)

Where the Picard’s operator is defined as:

T : C(D,D1,D2,D3,D4,D5)→ C(D,D1,D2,D3,D4,D5). (3.7)

Thank to (3.3) and (3.4), in (3.7) the operator may be define as

TU(t) = U0(t) + Ψ(t,U(t))
1 − δ
M(δ)

+
δ

M(δ)

∫ t

0
Ψ(θ,U(θ))dθ. (3.8)

For convince, we write

ψ1(t, S , E, I,C,R) = U(t), ψ1(t, 0, 0, 0, 0, 0) = U0(t), for i = 1, 2, · · · , 5.

Consider that the proposed problem satisfies the given result

‖U‖∞ ≤ max{d1, d2, d3, d4, d5}. (3.9)

‖TU(t) − U0(t)‖ = sup
t∈D

∣∣∣∣∣Ψ(t,U(t))
1 − δ
M(δ)

+
δ

M(δ)

∫ t

0
Ψ(θ,U(θ))dθ

∣∣∣∣∣ (3.10)

≤ sup
t∈D

1 − δ
M(δ)

|Ψ(t,U(t))| + sup
t∈D

δ

M(δ)

∫ t

0
|Ψ(θ,U(θ))|dθ

≤
1 − δ
M(δ)

A + sup
t∈D

δ

M(δ)
At, A = max{Ai} for i = 1, 2, ..., 5, t0 = max{t ∈ D}

< dA ≤ max{d1, d2, d3, d4, d5} = d̄,

where define d = 1+t0δ
M(δ) which satisfies the relation as:

d <
d̄
A
.
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Further to evaluate the equality given by

‖TU1 − TU2‖∞ = sup
t∈D
|U1 − U2|. (3.11)

To compute (3.11), we proceed as:

‖TU1 − TU2‖ = sup
t∈D

∣∣∣∣∣ 1 − δ
M(δ)

(
Ψ(θ,U1(t)) − Ψ(θ,U2(t))

)
+

δ

M(δ)

∫ t

0

(
Ψ(θ,U1(θ)) − Ψ(θ,U2(θ))

)
dθ

∣∣∣∣∣
≤

1 − δ
M(δ)

k|U1(t) − U2(t)| +
δk
M(δ)

∫ t

0
|U1(t) − U2(t)|,with k < 1

≤

{ 1 − δ
M(δ)

k +
δt0

M(δ)
k
}
‖U1 − U2‖

≤ dk‖U1 − U2‖. (3.12)

As Ψ is contraction so we have kd < 1, hence operator T is contraction. Thus the proposed system
(1.2) has a unique solution.

4. General algorithm for semi-analytical results of model (1.2)

This section, is committed to series solution for the suggested system. In order to obtain desired
results, we applying “Laplace transform” to (1.2), as

L [S (t)] − S (0) =
s + δ(1 − s)

s
L [v + λ4R − [vp1C + vp2R + p′(I + θC)S + vS + µ1S ]]

L [E(t)] − E(0) =
s + δ(1 − s)

s
L [p′(I + θC)S − (v + λ1)E]

L [I(t)] − I(0) =
s + δ(1 − s)

s
L [λ1E − (v + λ2)I]

L [C(t)] −C(0) =
s + δ(1 − s)

s
L [[vp1 − (v + λ3 − µ2)]C + p3λ2I]

L [R(t)] − R(0) =
s + δ(1 − s)

s
L [(vp2 − v − λ4)R + (1 − p3)λ2I + (λ3 + µ2)C + µ1S ].

(4.1)

Consider the series solution in the form of:

S (t) =

∞∑
p=0

S p(t), E(t) =

∞∑
p=0

Ep(t), I(t) =

∞∑
p=0

Ip(t),

C(t) =

∞∑
p=0

Cp(t), R(t) =

∞∑
p=0

Rp(t).

(4.2)

Further, the nonlinear terms C(t)S (t) and I(t)S (t) are decomposed in form of polynomials as:

C(t)S (t) =

∞∑
p=0

Ap(C, S ), I(t)S (t) =

∞∑
p=0

Bp(I, S ). (4.3)
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where the “Adomian polynomial” Ap(C, S ) may be defined as:

Ap(C, S ) =
1
p!

dp

dλp

[ p∑
i=0

λiCi(t)
p∑

i=0

λiS i(t)
]∣∣∣∣∣
λ=0
.

In same way the polynomial Bp may also be defined. The system (4.1) becomes



L
[ ∞∑

p=0

S p(t)
]

= S (0) +
s + δ(1 − s)

s
L

[
v − vp1

∞∑
p=0

Cp(t) − vp2

∞∑
p=0

Rp(t) − p′
∞∑

p=0

Bp(I, S )

− p′θ
∞∑

p=0

Ap(C, S ) − v
∞∑

p=0

S p(t) − µ1

∞∑
p=0

S p(t) + λ4

∞∑
p=0

Rp(t)
]
,

kL
[ ∞∑

p=0

Ep(t)
]

= E(0) +
s + δ(1 − s)

s
L

[
p′

∞∑
p=0

Bp(I, S ) + p′θ
∞∑

p=0

Ap(C, S ) − (v + λ1)
∞∑

p=0

Ep(t)
]
,

L
[ ∞∑

p=0

Ip(t)
]

= I(0) +
s + δ(1 − s)

s
L

[
λ1

∞∑
p=0

Ep(t) − (v + λ2)
∞∑

p=0

Ip(t)
]

L
[ ∞∑

p=0

Cp(t)
]

= C(0) +
s + δ(1 − s)

s
L

[
vp1

∞∑
p=0

Cp(t) + p3λ2

∞∑
p=0

Ip(t)

− (v + λ3)
∞∑

p=0

Cp(t) − µ2

∞∑
p=0

Cp(t)
]

L
[ ∞∑

p=0

Rp(t)
]

= R(0) +
s + δ(1 − s)

s
L

[
vp2

∞∑
p=0

Rp(t) + (1 − p3)λ2

∞∑
p=0

Ip(t) + λ3

∞∑
p=0

Cp(t)

− v
∞∑

p=0

Rp(t) − λ4

∞∑
p=0

Rp(t) + µ1

∞∑
p=0

S p(t) + µ2

∞∑
p=0

Cp(t)
]
.

(4.4)
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Now comparing both sides of (4.4) term by term, we obtain

L [S 0(t)] = S 0, L [E0(t)] = E0, L [I0(t)] = I0,L [C0(t)] = C0,L [R0(t)] = R0,

L [S 1(t)] =
s + δ(1 − s)

s
L

[
v − vp1C0(t) − vp2R0(t) − p′B0(I, S ) − p′θA0(C, S ) − vS 0(t)

− µ1S 0(t) + λ4R0(t)
]
,

L [E1(t)] =
s + δ(1 − s)

s
L

[
p′B0(I, S ) + p′θA0(C, S ) − (v + λ1)E0(t)

]
,

L [I1(t)] =
s + δ(1 − s)

s
L

[
λ1E0(t) − (v + λ2)I0(t)

]
,

L [C1(t)] =
s + δ(1 − s)

s
L

[
vp1C0(t) + p3λ2I0(t) − (v + λ3)C0(t) − µ2C0(t)

]
,

L [R1(t)] =
s + δ(1 − s)

s
L

[
vp2R0(t) + (1 − p3)λ2I0(t) + λ3C0(t) − vR0(t) − λ4R0(t)

+ µ1S 0(t) + µ2C0(t)
]
,

L [S 2(t)] =
s + δ(1 − s)

s
L

[
v − vp1C1(t) − vp2R1(t) − p′B1(I, S ) − p′θA1(C, S ) − vS 1(t)

− µ1S 1(t) + λ4R1(t)
]
,

L [E2(t)] =
s + δ(1 − s)

s
L

[
p′B1(I, S ) + p′θA1(C, S ) − (v + λ1)E1(t)

]
,

L [I2(t)] =
s + δ(1 − s)

s
L

[
λ1E1(t) − (v + λ2)I1(t)

]
,

L [C2(t)] =
s + δ(1 − s)

s
L

[
vp1C1(t) + p3λ2I1(t) − (v + λ3)C1(t) − µ2C1(t)

]
,

L [R2(t)] =
s + δ(1 − s)

s
L

[
vp2R1(t) + (1 − p3)λ2I1(t) + λ3C1(t) − vR1(t) − λ4R1(t)

+ µ1S 1(t) + µ2C1(t)
]
,

...

L [S p+1(t)] =
s + δ(1 − s)

s
L

[
v − vp1Cp(t) − vp2Rp(t) − p′Bp(I, S ) − p′θAp(C, S ) − vS p(t)

− µ1S p(t) + λ4Rp(t)
]
,

L [Ep+1(t)] =
s + δ(1 − s)

s
L

[
p′Bp(I, S ) + p′θAp(C, S ) − (v + λ1)Ep(t)

]
,

L [Ip+1(t)] =
s + δ(1 − s)

s
L

[
λ1Ep(t) − (v + λ2)Ip(t)

]
,

L [Cp+1(t)] =
s + δ(1 − s)

s
L

[
vp1Cp(t) + p3λ2Ip(t) − (v + λ3)Cp(t) − µ2Cp(t)

]
,

L [Rp+1(t)] =
s + δ(1 − s)

s
L

[
vp2Rp(t) + (1 − p3)λ2Ip(t) + λ3Cp(t) − vRp(t) − λ4Rp(t)

+ µ1S p(t) + µ2Cp(t)
]
, p ≥ 0.

(4.5)
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Exercising the “Laplace transform” in (4.5), one has

S 0(t) = S 0, E0(t) = E0, I0(t) = I0, C0(t) = C0, R0(t) = R0,

S 1(t) =

[
v − vp1C0(t) − vp2R0(t) − p′I0(t)S 0(t) − p′θC0(t)S 0(t) − vS 0(t)

− µ1S 0(t) + λ4R0(t)
]
(1 + δ(t − 1)),

E1(t) =

[
p′I0(t)S 0(t) + p′θA0(C, S ) − (v + λ1)E0(t)

]
(1 + δ(t − 1)),

I1(t) =

[
λ1E0(t) − (v + λ2)I0(t)

]
(1 + δ(t − 1)),

C1(t) =

[
vp1C0(t) + p3λ2I0(t) − (v + λ3)C0(t) − µ2C0(t)

]
(1 + δ(t − 1)),

R1(t) =

[
vp2R0(t) + (1 − p3)λ2I0(t) + λ3C0(t) − vR0(t) − λ4R0(t)

+ µ1S 0(t) + µ2C0(t)
]
(1 + δ(t − 1)),

S 2(t) =

[
v − vp1C1(t) − vp2R1(t) − p′I1(t)S 1(t) − p′θA1(C, S ) − vS 1(t)

− µ1S 1(t) + λ4R1(t)
]
(1 + δ2(t − 1)),

E2(t) =

[
p′I1(t)S 1(t) + p′θA1(C, S ) − (v + λ1)E1(t)

]
(1 + δ2(t − 1)),

I2(t) =

[
λ1E1(t) − (v + λ2)I1(t)

]
(1 + δ2(t − 1)),

C2(t) =

[
vp1C1(t) + p3λ2I1(t) − (v + λ3)C1(t) − µ2C1(t)

]
(1 + δ2(t − 1)),

R2(t) =

[
vp2R1(t) + (1 − p3)λ2I1(t) + λ3C1(t) − vR1(t) − λ4R1(t)

+ µ1S 1(t) + µ2C1(t)
]
(1 + δ2(t − 1)),

(4.6)

and so on. Proceeding on the same way, we obtain the other terms. The intended solution may be
expressed as: 

S (t) =

∞∑
j=0

S j(t), E(t) =

∞∑
j=0

E j(t), I(t) =

∞∑
j=0

I j(t),

C(t) =

∞∑
j=0

C j(t), R(t) =

∞∑
j=0

R j(t),

(4.7)

5. Graphical presentation and discussion

Here, we provide approximate solution for the considered model. In view of the values given in [9]
as v = 0.0121, p′ = 0.820, θ = 0.1,, λ1 = 6 per year, λ2 = 4 per year, λ3 = 0.025 per year, λ4 = 0.06,
p1 = 0.11, p2 = 0.1, p3 = 0.059, µ1 = 0.45, µ2 = 0.9 in (4.6) under the given numerical value, we plot
the approximate solution up to first ten terms using Matlab in Figures 1–5.
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Figure 1. Graphical representation of susceptible individuals corresponding to different
fractional order of the proposed model (1.2).
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Figure 2. Graphical representation of exposed individuals corresponding to different
fractional order of the proposed model (1.2).
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Figure 3. Graphical representation of infected individuals corresponding to different
fractional order of the proposed model (1.2).
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Figure 4. Graphical representation of chronic carriers of HBV corresponding to different
fractional order of the proposed model (1.2).

0 5 10 15 20 25 30

time t (Months)

0.05

0.1

0.15

0.2

0.25

0.3

R
ec

ov
er

ed
 c

la
ss

0.75
0.85
0.95
1.0

Figure 5. Graphical representation of recovered individuals corresponding to different
fractional order of the proposed model (1.2).

From Figure 1, one may observe that the density of susceptible population is decreasing sharply
with different rate of corresponding to various fractional order. Upon using vaccination, the density of
exposed infected and chronic carriers of HBV are decreasing. The decline is faster at lower fractional
order as in Figures 2–4 respectively. As a results the density of recovered corresponding to different
fractional order of the proposed model (1.2) is raising up as in Figure 5. Further we compared the
obtained solution in (4.7) up to ten terms with the solution of RK4 method as used in [9] for the
proposed model corresponding to integer order one. We see from Figures 6–10 that the concerned
solution have close agreement with each other.
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Figure 6. Comparison between our proposed solution up to ten terms with that of RK4
method for susceptible individuals of the proposed model (1.2).
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Figure 7. Comparison between our proposed solution up to ten terms with that of RK4
method for exposed individuals of the proposed model (1.2).
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Figure 8. Comparison between our proposed solution up to ten terms with that of RK4
method for infected individuals of the proposed model (1.2).
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Figure 9. Comparison between our proposed solution up to ten terms with that of RK4
method for chronic carriers of HBV individuals of the proposed model (1.2).
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Figure 10. Comparison between our proposed solution up to ten terms with that of RK4
method for recovered individuals of the proposed model (1.2).

6. Conclusion

In this article, we have developed criteria to investigate HBV models from qualitative and analytical
aspects. With the help of Picard type contraction operator and using Banach theorem we have proved
that our proposed model has solution and physical existence. Further to study in more detail, the
transmission and vaticination process of HBV, we have developed an algorithm to investigate semi-
analytical solutions for the proposed model. We have presented graphically the approximate solutions
up to few terms which has explained the dynamics more comprehensively. In conclusion, we state that
CFFD can be also used as powerful tools to study biological models more comprehensively. Further the
used method is powerful tool which can give excellent solution closely related to that of RK4 method
results. Further the proposed method has been proved in literature a fastest convergent technique as
compared to other method.
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