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Abstract: This paper aims to present the existence, uniqueness, and Hyers-Ulam stability of the
coupled system of nonlinear fractional differential equations (FDEs) with multipoint and nonlocal
integral boundary conditions. The fractional derivative of the Caputo-Hadamard type is used to
formulate the FDEs, and the fractional integrals described in the boundary conditions are due to
Hadamard. The consequence of existence is obtained employing the alternative of Leray-Schauder,
and Krasnoselskii’s, whereas the uniqueness result, is based on the principle of Banach contraction
mapping. We examine the stability of the solutions involved in the Hyers-Ulam type. A few examples
are presented as an application to illustrate the main results. Finally, it addresses some variants of the
problem.
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1. Introduction

Recently fractional differential equations (FDEs) have been used in various fields of physics,
bioengineering, biology, aerodynamics, chemistry, applied sciences etc. We refer the reader to the
articles and books of [2,6,11-17,19, 20, 23,24, 28] for certain foundational concepts in the theory of
fractional calculus and FDEs, and the references cited therein. The majority of the works on the FDEs
are based on fractional derivatives in the types of Riemann-Liouville, Caputo, and Hadamard.
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In 2012, Jarad et al. modified the fractional derivative of Hadamard type into a more suitable one with
physically interpretable initial conditions comparable to the singles in the Caputo setting and named it
fractional derivative Caputo-Hadamard type. Refer to [8] for defining the properties of the modified
derivative. Coupled systems of differential equations of fractional order with different boundary
conditions have received considerable attention. These structures were used in many real-world
experiments, such as modeling of infections [7], controlling chaotic systems [30], etc. A series of
papers [5, 9, 10, 22, 27] and references cited therein include some recent studies on coupled
fractional-order BVPs. A coupled fractional BVPs have recently begun to be studied by a few
authors. The existence of solutions of the following BVP of Hadamard type FDEs with integral
boundary conditions was studied by Muthaiah et al. [18]:

1Dy(r) = 8(7, y(7)).
y(1) =0, y(1)=0,7D)(T) = 0" I"y(¢),
l<1t<T, 2<p<3

Hqy? H) denote the Hadamard fractional derivatives (HFDs) of order 0,6, ¢ [1,T]XR — Risagiven
continuous function, and w is a positive real constant. The results are obtained through the applying of
various fixed-point theorems. The nonlinear coupled system of Hadamard FDEs

Du(r) = f(t, u(r), (1)),

DPv(t) = g(t, u(r), v(1)),

u(1) =0, u(e) = 1"u(oy), o1 €(1,e),
v(1) =0, vie) = I"(0o,), 0, € (1,e),
I<t<e, l<apB<L2, y>0,

has been discussed in [4], where D?,2# denote the HFDs of order a, 3, f,g: [1,e] X R x R — R. The
existence and uniqueness of solutions are proved by Leray-Schauder alternative and contraction
mapping principle. Agarwal et al. [1] addressed the consequences of the existence of coupled
fractional-order systems with discrete and integral boundary conditions. Subramanian et al. [25]
studied coupled non-local slit-strip conditions in fractional BVP involving the Caputo derivatives.
Similarly, Ahmad et al. [3] analyzed the coupled system of sequential fractional BVP, under
periodic/antiperiodic boundary conditions. Recently, Subramanian et al. [26] investigated the
existence of solutions involving Caputo derivative with integral sub-strips and multi-point BVP for
coupled FDE:s.
We are investigating a new BVP of Caputo Hadamard type FDE:s in this article:

{ DY) = f(r,y(1),2(1), T€[l,T]:=%K,

D) = g(r. y(0)2(), T [LT] =K. (1.1

enhanced with boundary conditions defined by:

>~
(38

y1)=0, y(1)=0, ¥(T)=a

[

Ei2(L) + BT (),
-1

, 2 1 (1.2)
2D=0, Z(H=0, «T)=ar ) vy(w)) + B "I y(p),

]:
l<d<eo<@i<w <OL<wy < <G <wpa <T,

’T&.

—
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where D" denote the Caputo-Hadamard fractional derivatives (CHFDs) of order (-), 2 < o,¢ < 3,
H7" denote the Hadamard fractional integrals (HFIs) of order (1), 0 < 01,61 < 1, f,g : K xR?> - R
are continuous functions, «, a», B and B, are real constants and &;,v;, j = 1,2,...,k — 2 are positive
real constants. Additionally, we are studying the system (1.1) under the condition:

k=2

Y1) =0, (1) =0, YT) = Y (L) +B1T (),
=1

, -2 - (1.3)
z(1)=0, z(1) =0, z«T) = o, Z uy(¢) + BT y(®),
=1
1<19<§1<§2<"'<§k—2<]{~

Remember that the conditions (1.2) contain the strips of the different lengths, while the one found
in (1.3) is of the same length (1,7). On the other side, as opposed to the multi-point boundary
conditions in (1.3), the multi-point boundary conditions in (1.2) contain different multi-points. The
rest of the article is formed as follows: Section 2 focuses primarily on certain basic concepts of
fractional calculus with the related basic lemmas. The consequences of existence and uniqueness can
be addressed using the Leray-Schauder, Krasnoselskii’s, and Banach fixed-point theorems in
Section 3. Examples are given in Section 4 for verification of the results. Section 5 discusses the
stability of the Hyers-Ulam solutions and establishes sufficient conditions of stability. In Section 6,
the stability result is well illustrated with the aid of an example. The existence, uniqueness, and
stability results for the problem (1.1)—(1.3) are presented in Section 7.

2. Preliminaries

Here we remember some preliminary ideas of the fractional calculus of Hadamard and Caputo-
Hadamard relevant to our research. We are also proving lemmas, which plays a vital role in turning the
given problem into a fixed point problem [8,11,19].

Definition 2.1. Let 0 < b < ¢ < o be finite or infinite interval of the half-axis R*. The HF1Is of order
o € C are defined by

(T do
—f (logzg W2, b<t<ec, and
L'l Jp 0

Q

%Q)f:(log— h(@)d , b<t<c

Definition 2.2. The left and right-sided Hadamard fractional derivatives of order o € C with R(o) > 0
on (b,c) and b < T < c are defined by

n—@—l do
(dT r(n Q)f 10 - hO)—. and

( ) I'(n - Q)f log ” N lh(g)

(L3, m)(1)

(I)(7)

(D}, (1)

(DZ_h)(7)
where n = [R(0)] + 1
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Lemma 2.3. IfR(0) > 0, R(¢) > 0and 0 < b < ¢ < oo, then we have
0 \s-1 I'(s) Ty\s+o-1
0 _
(fb+(log E) )('r) " Tex Q)(log E> ,

F() s+o-1
(If (log ) )( )_r(gig)(logg) ) )

Definition 2.4. Let 0 < b < ¢ < 00, R(p) > 0, n = [R(0) + 1]. The left and right CHFDs of order o are
respectively defined by

n—1 kl’l(b)
k!

=

9
D, (@) = [h(G) 10g ](T)

k=0

and

(- l)kékh(c) C\k
CDLh)T) = c_[h<9) Z log ) ]m.

Lemma 2.5. Let R(o) > 0, n = [R(0)] + 1 and h € C[b,c]. IfR(p) # 0 or o € N, then
CO5 (T8 h)(T) = h(r), “D{_(Th)(7) = h(1).

Lemma 2.6. Let h € AC;[b, c] or Ci[b,c] and o € C, then

12, D (@) = h(r) -

T (CDL_h)(1) = h(r) - )

Lemma 2.7. Let f,3 € AC[1, T). Then, the linear system solution of FDEs

D) = f(r),
{ D) = 4(1), @1

enhanced with the boundary conditions:

k=2
YD) =0, Y1) =0, T)=ar Y (L) +Bi1"T" (),

"J‘:; 2.2)
d)=0, Z(1) =0, «T) = ) vjy(@) +B"T")(¢),

j=1
l<d<ep<{; <w <§2<w2]<~-<§k_2<wk_2<T,
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is given by

R log 7)? S < .
¥ = 17 ) + 1087 [vl{al DR + BT () - Hﬁf(T)}

% =
k-2
+ V3{az DI fw) + BT flg) - HIi@(T)}] (2.3)
j=1
and
(log 7)? S
N 7 0+01 2, A
(r) = ") + — [vl{az D fw) + BT flg) - Hfg(T)}
J=1
k=2
N +C1 A 7
+ vz{al D ETT ) + BT ) - Hﬁf(T)}] (2.4)
j=1
where
2 O »  2Bx(log 90)2+Q'
= (loeT = (1 . Ty o/ 2.
vi = (ogT), v, aZ;vJ(ogwp e 2.5)
k-2
2B (log #)**! )
- (1 )2 _— = — . 2.
V3 alggj(oggj) + TGty V=Vvi—"r; (2.6)
Proof. Solving the FDEs (2.1) in a standard manner, we get
yr) = HI°f(1) + ap + a1 log T + ar(log 7)°, (2.7)
2t) = H"I°3(t) + by + by log T + by(log 7)%, (2.8)

where a;,b; € R, i = 0,1,2, are arbitrary constants. Using the boundary conditions (2.2) in (2.7)
and (2.8), we obtain agp = a; = 0, by = b; = 0, and

a, Y ERT3) + BT (9 - HI° f(T), (2.9)

>~
(3]

avy — byvs

~.

byvi—ayvs = ay y v I f(w) +B." T flo) - " I°(T). (2.10)

Jj=

=~
N =

—

Solving the system (2.9)—(2.10) for a,, b,, we get
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;\\
[\

M

a = ( (03]
+V3( @

+vZ(m Z EMTR) + BT R - Hﬁf(T)) (2.12)

j=1

ENTUL) + BT o) - Hf’ﬂT))

T
R‘._.
[3S)

TM

vl T f(w)) + BT f() - HI%(T)), (2.11)

T
[\S)

M

S

N
Il

=

v I flw)) + BT flp) - Hfi@(T))

m.
?V"»—‘

where vy, v,,v3, v are given by (2.5) and (2.6) respectively. Substituting the values of a, b, in (2.7)
and (2.8), we obtain the solutions (2.3) and (2.4). O

3. Existence results for the problem (1.1) and (1.2)

We define spaces Y = {y(7) : y(1) € C(K,R)} endowed with the norm ||y|| = sup{ly(7)|,7 € K}.
Obviously (Y, || - ||) is a Banach space. Also Z = {z(1) : z(1) € C(K,R)} endowed with the norm
llzI| = sup{|z(7)|, T € K} is a Banach space. Then the product space (¥ x Z,||(y,2)|]) is also a Banach
space equipped with norm ||(y, 2| = I[lyll + l|zl-

We implement operator Y : Y X Z — Y X Z using Lemma 2.7 as follows:

Ty, 2)(1) = (L1(y, 2)(7), T2y, 2)(7)), (3.1

where

1 T - do
T](y, Z)(T) = m f log I 3 lf(e, y(9), Z(H))_

(log 7)? < j s-1 dé
[ { Zgjr( ) f ) g(6.50). 200

F(S“" S‘l)f

(0, y(0), z(@))djf

f @, y(0), Z(H))—}

k=2 1 wj 1 Wj o-1 0 P 9 do
evfar Y [ (102 050200

1 4 @ o+o1-1 a6
+ﬁsz log 5) £(9.3(0). 20)—
1

s-1 do
el (1og 5) g(9,y(9),z(9))g}], (3.2)

AIMS Mathematics Volume 6, Issue 1, 168—194.



174

1 d - do
Tao(y, 2)(1) = ) f 10g Z ) 1g(9, y(9),z(9))—

1 2 k-2
(Og 7 [V] {afz UJF( ) fm f(9 y(0), Z(Q))_

4

9 01— do
+ﬁ2m f tog £)™” 6.0 200 %
1

g T\s-1 do
vl (log ) g(e,yw),z(e));}

do
+vQ{aIZ§,r( ) f tog %)™ 506,10, )

+§1— d@
0, y(0), z2(6))—
F(g‘+g1)f og 8(0,y(0), z( ))9

T\e
-— (1og9) 0. 3(0), z(@))—}] (3.3)
1

For the convenience of computation, we set

(logT)° (log T [vlaog Ty | { N\, Gogwp)  (oge) }
_ N Sy, 34
o+ 1) v o+ 1) = T+ D) F(Q+91+1)
_ (log T)*|v3(log T)* (log ;)* (log @)™
Q== [ Te+1) V‘{“] Z::A‘ffr(ﬁ D P Terat 1)} (3:5)
(log T)? [ v>(log T)? = (logw,) (log p)°*e!
(S [F(Q‘i'l) ”{%Z]Ufr(gﬂ) * 2r<g+91+1)} G0
_ (logT)s = (logT)*[vi(log T)* (log ;) (log 9)s*st
L=t [ Tc+1) +V2{“ ngr(ﬁ D P rer et 1)} - GD
A = min{l — [,(P; + P2) + L(Q1 + Q)], | — [L(P) +P>) + L(Q; + Q). (3.8)

Next, in the sequel, we enlist the premises we need. Let f, g : K X R? — R functions be continuous.

(&1) dreal constants /li,z >0(@G(=1,2)and Ay > O,’/fo > 0 such that

| (T, y1,y2)| < Ao + Ailyil + A2y,
18Ty y)l < Ao + iyl + Aalya, Vyi €R, i = 1,2,

(&,) A positive constants «;, «; (i = 1,2) such that

lf (T, y1,32) — f(T, 21, 22)| < Kily1 — 21l + Kkaly2 — 22l
lg(T,y1,2) —8(T, 21, 2| <Kily1 —zil + kel — 22, V7€ K, yi,zi €R, i =1,2.
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Theorem 3.1. Suppose that (&) hold. If
LPL+P)+LQ +Q) <1, L(P+Py)+,(@Q +Q) < 1. (3.9)

Then there exists at least one solution for problem (1.1) and (1.2) on ‘K, where P, Qy, P>, and @,
are given by (3.4)—(3.7) respectively.

Proof. We define in the first step that operator Y : Y X Z — Y X Z is completely continuous.
This implies that the operators Y'; and I, are continuous by the continuity of the functions f and
g. Accordingly, operator Y is continuous. To demonstrate the uniformly bounded of operator Y, let
A C Y x Z be a bounded set. Then 3 positive constants M; and M, such that | f(r, y(1), z(1))| < M,
lg(T, (1), 2(1))] < My, ¥ (y,2) € A. Then, for any (y, z) € A, we have

M, (T T\o-1d6 (logT)2 §~ s-1d0
11 (v, ()] < To J, (Tog 5) a2 [ { for( ) 0]) )
f §+§1 1% M1 (10 _)9—1ﬁ}
F(g + §1) 9 " T() 89/ 4

o-1d6 1 4 p\oto-1d6
— 7 log =~ g
+V3{“22“’r(g>f ) 0 ﬁzr(gwl)f] (log ) 5

Mz T \s-1d0
T (logg) ?}]

< (log,:/T)2 {MZ[V3(log T)s oy (a ij (log Z))* (log B)s*st )

fe+1) e+ D PlcrarD

yM(log T)? vi(logTy S (log ¥, (ogp)yr
(og T+ D) " [ Mo+ 1) ( ZZU]F(Q+ D PTere+ 1))

b

1T (v, DIl < PiMi + QM. (3.10)

that yields when taking 7 € K norm and using (3.4) and (3.5),

Similarly, using (3.6) and (3.7), we obtain

(log7 [ [wallogT)y [ <3 (ogw) (logg)®
M20- 20l = = {M[r( ( Zl T+ D r(g+gl+1>)

vMy(log T)* vi(log T)g (log¢))® (log 9)s*s
(logT)ZF(§+l)+M[F( +1) ( ZS’F@H) F(§+§1+1))}

< Ple + QzMz. (311)

We deduce from the inequalities (3.10) and (3.11) that T’} and Y, are uniformly bounded, implying
operator I is uniformly bounded. Next we demonstrate the equicontinuous of Y. Let 7y, 7, € K with
T < T5. Then we have
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- - do
117, 2)(2) = T2, ()] < m‘ f log = '~ (log =) 1]lf(e,yw),z(em;

- do
v f (tog Z)° |f<9,y<9),z<e>>|;|

1 2 1 2 k=2 1 L S\ C— d@
, (logm)’ — (log 7)) [vl {m Zl s fl (1og %)? ' (6, YO, 20)I
=

v

1 7 19 s+e1—1 d@
g 1@[ (tog 5) 186, y(0), 2Ol
L (oe Ty do
¥ @fl (log 5) Ir@. y<9>,z(9>>|3}

S 1 (Y wie-! do
i v | (1022 10,5000z

1 @yo+o1—-1 deo
BoTon f (log 2) " 1. (6). 20l

L7 (1og Iy do
“ta ), (oeg) 'g<9’y(0>,z<0>>|?}]

— 0ast, — 714,

independent of (y, z) with respect to |f(t, y(7),z(7))| < M, and |g(t, y(7), 2(7))| < M,. Analogously,
we can do that [T (y, 2)(12) — T2(y,2)(71)] — 0 as 7, — 71 independent of (y, z) with respect to the
boundedness of f and g. Thus the operator Y is equicontinuous in view of equicontinuity of Y’} and
T,. Thus, the operator Y is compact by Lemma (see Lemma 1.2 [29]). At last, the set Q(Y) = {(y,2) €
YXZ:(,2 =¢eY(,2);0 < e < 1} is shown to be bounded. Let (y, z) € Q(T). Then (y,z) = €T (y, 2).
For any 7 € K, we have y(7) = £Y(y, 2)(7), 2(1) = €Y2(y, 2)(7). Utilizing (&1) in (3.2), we get

y(r >|_r( ; f log =) Ao+al|y<9>|+ﬂz|z<9>|)

(log ) Sl (Y, e~ —~ ~ do
S [vl{alzéﬁﬁ (tog )" (B0 + AN + Tokel®))

1 P\s+e1-1 — - do
T e log — Ao + L@ + L|z(0)])—
+ﬁlr<g+g1)f1 (log5) ™ (Do + WO+ L)

L (o Ly 40
5o ). (log 5)" (10 + 1@ + 12|Z(9)|)§}
' do
+ V%{a’z U’F( ) f _/ S ,10 + 4ly@)] + /12|Z(9)|) .

+91
r@ o3 f (1o g (0 + @) + ﬂzlz(G)l)

TS f log ) (T +/11|Y(9)|+/12|Z(9)|) }]
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that yields when taking the norm for 7 € K,
I < (A0 + @) + l@)P1 + (Ao + 1O + Llz(O)]) Q). (3.12)
Indeed, we can obtain that
I2ll < (Ao + Aily(@)] + A(@))P + (Ao + Aily(O)] + l2(6)]) Q0. (3.13)
From (3.12) and (3.13), we get
D1+ Nzl = 2o(P1 + Pa) + 20(Q1 + Q) + D[ 11(P1 + P2) + 1 (Q1 + Q)|
+ ||Z||[/12(701 + 702) +12(Q1 + Qz)],

which yields, with [y, zI| = [[yll + |z,

/lo(P] + Pz) +’/1\()(Q1 + Qz)

<
Iy, zll < A
It implies Q(T) is bounded. So Theorem (see Theorem [27]) is valid and T has at least one fixed
point. This indicates the BVP (1.1) and (1.2) have at least one solution on K. O

Theorem 3.2. Suppose that (&,) hold. Then the BVP (1.1) and (1.2) has a unique solution on K,
provided that

(P1 + Po)k1 + k2) + (Q + @) (k1 +12) < 1, (3.14)

where P, Qy, P, and @, are given by (3.4)-(3.7).

GiI(P1 +P2) + Go(Q) + @)

——, and show that Y8, c B,, when
o +Pa) (ki +Kk2) — (Q1 + Q) (k1 +k2) 3 s
operator T is given by (3.1) and B, = {(y,2) € ¥ X Z : I(y, 2)ll < p}. For (y,2) € B,, T € K, we have

Proof. Let’s set p >
f. P21z @

lf (7, y(0), 2(D)| < 1ly(D] + K2l2(D] + G

< «ilyll + &2llzll + G1,

and
lg (7, y(7), ()| <k |yll + Kallzll + Ga.
This guides to
T < log ) 1£(6.9(8). 26)) — £(6.0.0)] + |£(6.0,0) 2
| I(YZ)(T)| m (Ogé) |f( ,)7( )aZ( ))_f(a s )|+|f(’ ) )l?

loa 12 g do
(ogr)[ { Z ffr() f log llg(g’y(H),Z(Q))—8(9,0,0)|+Ig(H,O,O)lg

ste1—1 do
A F(g +¢1) fl (log 5) 18(6, y(6), 2(8)) ~ (6, 0,0)| +1g(6,0,0)| -
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L (7 (1o Ly o
+@ fl (1og5) |£(6,¥(0), z2(0)) — f(6,0,0)|+|f(9,0,0)|?}

S f“f Wj\e-1 do
tvstar Y v | (log )" 1(6.5(6). 20)) - £(6.0,0)| +|£(6.0,0) =
3{ 47T J, (12 5) 6

110,50, 200 - £6,0,0)1 + 176,001

P ['(o+01)
L (" (10 Ty do
‘oo fl (102 )" 186, 3(®), 6)) - 56,0,0)| + Ig(6.0. 0)|?}]

(logT)?  (logT)>? {vl (log T)° ( S (logw,y
+ + v3lan Uj
o+ 1) % ['o+1) ['o+1)

(log p)*e! v3(log T)*
F(Q+Q +1) I'(c+1)

Zf (loggps , (logd)e
T+ D Plera+D

< (kqlyll + K2||Z|| + G1)P1 + Wyl +xllzll + G)Q.

< (killyll + ollzll + G1)

J=1

+ (allyll + &allzll + G2)

+ 0>

(3.15)

(log 7)” S L [ (log Y 116, (6). 26 — £(6.0,0)+ 1£6,0,00%
v aZZvjmfl (log —*)" 1£(6.5(6). 2(6)) = £(8.0.0)] + |(6,0,0)—

p\eotoi-l 4o
P o 5) £(6,5(6),2(6)) = f(6,0,0)] +1£(6,0,0)|—

L (1og Iy do
"G fl (1og 5) |8(6’,y(6‘),z(9))—g(6,0,0)|+Ig(G,0,0)lg}

SN B 0w Y do
+vs alzlfj@ fl (log )" 18(6.3(6). 26)) — 5(6.0.0)| + 15(6.0.0)|
=

+B %fﬁ(lo DN 6, (6), 20)) — 26, 0,0)] + lg(6,0, 0)|
Teren, \(08g)  EHIAITELE TSI

T \o- do
) 10, 5(0),20)) - £0.0,0)1 + 1,0, 0>|;}]

< Il +allzll + G2)Q + (kallyll + kollzll + GOP.

T
+ — log
A
(3.16)

Therefore, (3.15) and (3.16) follows that [|'Y'(y, 2)|| < p, and therefore Y8, C B,. Now, for (yi,z1),

(2,22) € ¥ X Z and any 7 € K, we get
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1T (y1, 20)(7) = T1(y2, 22)(T)]

T - do
(1o ) 16,310, 216) = £(0,32(0), 20015

< —
['(o) 0

l 2 N d@
(ogﬂ[ { for@ f _f |g(e,y1<9),zl<e>>—g(e,yz(m,m(em;

! do

i 1F(g+gl)f1 (1°g5)” 1206, y1(0), 21(0)) ~ 806, y2(0), 22(0)]
(M0 Dy do
t 1 | (1oeg) 1F(0.310),21(8)) - f(@,yz(e),zZ(e))|?}

e - 9
+V3{a22vj@ f (1og )™ 176,10, 24(0) - 0,320, 20D

Q+91—1 do
F(Q o f £(6.31(6).1(6)) = f(6.y2(6). 2206l
+— (log Z)g 186, y1(6). 21(6)) — 8(6.y2(6), mmn—}]
r(§) 1 0
(logT) (logT) (vi(log T) < (logw;)?
< (killyr = yall + &2llz1 — z2lD) To+1) + » { To+1) + V3(C¥2 Z vj T+ 1)

(log p)o* (log T)* (v3(log T)* (log ¢ (logB)s+s!
P ro s 1))}] +[ y { Tc+1) +V1(“ Zf’r( D P Tera s 1))}]
X (Killy1 = »2ll + ®allzi — z2ll)

< (Pi(ki + k) + Qi (k1 +12))(Iy1 = yall + llzi = zall)-

Likewise, we obtain

IC2(v1, 20)(T) = Ta(y2, 22)(7)]

— log T)s 1 T2 1 T§ 1 I
s@ﬂyl—y2||+K2||zl—zZ||)[(°g ), (og ){vl(Og ) ( fo(ogg’)

I'c+1) % I'c+1) I'¢c+1)
(log §)5*" (log T)*[ [ v2(log T)° o (logw)y (log ¢)?*
+ﬁ1r(g+gl+1>)}]+ v [{ T+ 1) ”l(‘“;”’r(wl) +ﬁ2r(g+@1+1))}]

X (killy1 = yall + kallzi = z2ll)
< (Palky + ko) + Qa(ky +x2))(ly1 — 2l + llz1 — zalD).
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So we obtain

111, 21) = Y12, 2N < (Pi(ky + k2) + Qi (ki +x2))(Ily1 = yall + llz1 = z2lD). (3.17)

In the same way,

121, 21) = T2 (2, 2 < (Palky + k2) + Qa(ky +x2))(IIy1 — yall + llz1 = z2lD). (3.18)

So, from (3.17) and (3.18) we conclude that

1Y, z1) = Y02, 22l < (P + Pk + k) + (Q1 + Q) (k1 +K)[lly1 — yall + llz1 — 2211

Therefore, it follows from condition (P; +P»)(k; +k2) +(Q; + @) (k; +k2) < 1, that Y is a contraction
operator. Thus we conclude by Theorem (see Theorem 1.2.2 [21]) that operator Y has a unique fixed
point, which is the unique solution to the problem (1.1) and (1.2). O

Theorem 3.3. Suppose that (&,) hold. In addition, 3 positive constants T, 7> such thatV T € K and
v,Z€R,

lf@y, Il < T, 1g(ry,2)| <Ta. (3.19)
Then the BVP (1.1) and (1.2) has at least one solution on K, if

(log T)(x1 + k2)  (log (ki + k)
I+ 1) I'c+1

<1. (3.20)

Proof. Let us define aball B, = {(y,2) € ¥ x Z : |[(,2)ll < p} closed as follows:

(log 7)? = T4 P dre de
T = — [vl{alzé@@ fl (log %) (6. ¥(6).6)

+§1—1 do
0, v(0), z2(6))—
F(§+g1)f Og 8( y()z())g

"t ) (1og ) f(e ¥(6), 2(9))_}

k-2
+V3{0122 YT f tog =) £(6,5, z<e>>—

j=1

@yo+o1-1 do
1

T

T \s- do
-t | (oeg) lgw,y(e),z(e));}},

1 ’ - do
T120:9(0) = 5 fl (log g)g 1f(e,yw),z(e));,
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and

1 2 k-2
10,0, 9(1) = 7 [vl{agz%( ; f tog 22 116,40, 2005

“" 0. v(0 9—
F(Q+Q])f ( ,¥(0), 2(6))

T s
1ﬂ(s*) (log 9) 8(6,y(0), z(g))_}

k=2 1 e o d@
- vZ{al Zlfj@ fl (log %)g 8(0,3(60),20)%
=

1 g Ps+e1-1 do
+ﬁ1mﬁ (log 5) g(Q,y(Q),Z(Q))g
1

T T do
- (10g5) f(0,y(9),z(0))?}],

1 i s— do
Tz,z(y,Z)(T):@fl (log g) 18(9,)’(9),2(9))?~

Note that Y(y, 2)(1) = T1,1(y,2)(7) + T12(y,2)(7) and T(y, 2)(7) = V21(y, (1) + T22(y, 2)(7) on
B, is a closed, bounded, and convex subset of Banach space Y x Z and that the Ball 8,. Now let us
choose p > max{P 7 + Q7T>, P71 + @7>}, and demonstrate the T8, C B, to test Theorem’s (see

Theorem 4.4.1 [21]) condition (i), if we sety = (y1,¥2), 2 = (21,22) € B,, and using condition (3.19),
we get

1 T - do
1Ty, (7)) + T1200, ()] < mf 10gI ’ lTl—

(logr)z[ { Z‘f f §] ?1 ao
'T(s)

s+q1-1 __ do
- log 2 “
+ﬂ‘r(g+gl)f1 (Oge) T2

1 fT T \o-1 de}
+ — log—) 71—
T(o) (log )" 73
de
+V3{0/2 U]F( )f 1 g— 1;
fw Q+911 d_@
r(g+g) g

s-1__d#
+ m‘[]‘ (log 5) Tz;}]

SPiT1+ QT < p.

Similarly, we find that
12,1, 2)(T) + Y220, (DN < PoT1 + QT2 < p.
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The two above inequalities contribute to the assumption that T (y, z) + T2(9,2) € B, does. So we
define that operator (Y';,, Y, ) is a condition (iii) of Theorem (see Theorem 4.4.1 [21]) that satisfies
contraction. For (yi,z1), (2,22) € 8B, we have

T2, 20(7) = T12(y2, 22)(D)] £

< (log T)°
To+1)

and

1221, 20(7) = T22(y2, 22)(D)]| <

_ (logTy
I'(¢c+1)

do
1£(8.31(0), 21()) = f(0, y2(6). 220l

1 T T\o-1
@fl (logé)

(killyr = yall + Kallzi = zalD), (3.21)

do
|8(6, y1(6), 21(6)) — &(6, y2(6), Zz(@)lg

1 T Ty\s-1
%f; (logé)

@1”)’1

— nll +Kallzr = z2l). (3.22)

From (3.21) and (3.22) it follows that

I(C12, T22) (1, 20)(7) = (V1 2, T22)(¥2, 22) (7))

- (o TP + K2)

, (og TG +7)

I'o+1)

Tt D) )(Hyl =yl + llz1 = z2lD,

which is a contraction by (3.20). Hence Theorem’s (see Theorem 4.4.1 [21]) condition (iii) is satisfied.
Next we can demonstrate that the operator (('; ;, Y5 ;) fulfills the Theorem’s (see Theorem 4.4.1 [21])
condition (i7). By applying the continuity of the f,g : K X R X R functions, we can infer that the
(1,1, T'»,1) operator is continuous. For each (y, z) € 8, we have

2
1Ty 1y, 2)(7)] < o gT) [ {al ijl“(g‘)f gj i 1 ?
s+si-1 __ d@
+ﬁlr(g+gl)f (log‘) T2y
1 g o-1__do
+ @ (log 9) Tl }
v
”3{“2 ”’r( ) (s g
Q+Ql 1 do
i 2r(@+ l)fp Ty
¢-1 d9
r(g) (k’g e }]
:Kh
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and

1 2 k-2 48
a0 < 30 [“{“ZZ JF(Q)f oz )7

J=
.Q+Ql 1 do

ﬁzf(gw )f T
f d@}
1ﬂ(S‘) 0
(] S 1
+ vy a'lZé‘:]F( ) i

s+¢1—1 do
B (10e Y RY
ﬁlr(gm)fl( ge) 0

1 T T\o-1__d6
+ — log—) 72—
r(g)fl (1oz ) 29}]
= A,
that leads to this

11, Yo )@, 2N < Ar+ A,

Therefore the set (111, 12,1)B, is bounded uniformly. We’ll be demonstrating in the next phase that
the (1, T2,1)B, set is equicontinuous. For 71,7, € K with 7; < 7, and for any (y, z) € 8, we obtain

111, 2)(12) = Y11 (v, (1)

< (log 72)* — (log 1) {7. |:V1 (log T)Q ( kZ: v, (log w])é’ (log p)e*er )
4 ['o + I'(o + 1) F(Q+Q1 +1)

vi(log T)* (log£))® (log )+
Tz[ T(s+1) ”l(“ Zf’n +1>+ﬁ1r(g+gl+1>) }

=1

In a similar manner, we can get

2,1 (v, 2)(72) = Vo1 (v, (7))

(log 75)* — (log 7)? vi(log T)f (log¢ J)S (log 9)s+s!
< v {7’2[ T(c+1) ( Zg’F( T F(§+§1+1))

Thus (1, T2.1)(, 2)(12) = (L1.1, Y2.1)(v, 2)(71)| tends to zero as 7; — 7, independent of (y,z) €
B,. Therefore the set (1, 1,1)B, is equicontinuous. Therefore it implies from the lemma (see

Lemma 1.2 [29]) that the operator (Y, Y,,;) is compact on B,. We conclude from Theorem’s (see
Theorem 4.4.1 [21]) statement that the problem (1.1) and (1.2) has at least one solution on K. O

VZ(IOg T)Q S (log (,()J)Q (log QD)Q+Q]
T[ I+ 1D Vl( ZZ:;U"F(Q+ D PTo+or + 1))
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4. Examples

Example 4.1. Consider the following coupled system of Caputo-Hadamard type FDEs:

57
“D20y(1) = f(z,y(),2(1)), T€[1,2],
1 4.1)
“D20z(1) = g(r,y(1), 2(7)), T€[1,2],
equipped with coupled boundary conditions:
: 17 13,2 93
y(1) =0, Y(1)=0, yT)= @Zaz@wﬁ T2,
4.2)
z(1) =0, Z,(l) =0, z(T)= 5 Zv]y(wJ) + _H[zo ( )
57 49 17 9 1 9 13 17 3 11
H PN = =5 = =5 =3 = - = - = - = = = -
el STl TS T Tyt T Y T T Ty
21 ; 36 ¢ 79 c 44 ‘ 97 63 34 83 47
U = —, Uy = —, = = —_ = = — W = - W) = =, W3 = —7, Wy = =,
325 Tt T 50 T a5 T 5009 T o5t T 500 T 500 "2 T 257 P T 50" T T 25
o8 13 T3 T 93 T3
“=g00 2T T T =255 ¢ 5
[y(ol 1.
S £ VR A
f@,y(1), 2(7)) Tz 16)( T+ [+ (o) + I sin(z(7))
L (N 1 2@l
g(r,y(1),2(7)) = 257( A + sin(y(7)) + 3T+ @)
The functions f and g obviously satisfy the (E,) condition with k, = i, K| = é, Ky = 2;—2,7?0 = ﬁ,
K = 21—5, Ky = % With the data given, we find that vi =~ 0.4804530139182014,
v, =~ 0.01960022943737283, v; =~ 0.02532387378450272, v =~ 0.23033874484666408,
P, ~ 0.1414146436570378, Q; =~ 0.13001906168784882, P, =~ 0.005190521521769147,

@, ~ 0.25950439692408167.

With 0Py + P2) + 11(Q + Q) ~ 0.017736896655930263 < 1, 1o(P1 + P2) + L(Q: + Q) ~
0.0057326356926890015 < 1, all of the Theorem 3.1 requirements are fulfilled. Problem (4.1) and
(4.2) therefore have a solution on [1,2].

Example 4.2. Consider the following coupled system of Caputo-Hadamard type FDEs:

83

CDI0y(r) = 3 + o Sin(E) + s a O Te[1,2)
N 2001+ j2(0)]’ 4.3)
™ 1+ 7 8 (o)l 21 .

€920 (1) =

D) = = s 2 T+ (o) 500 @), Tell.2)
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equipped with coupled boundary conditions:

, 17 < 13, o 93
1= )= T :—§ 20+ —H w2
y1)=0, y(1)=0, y(T) 100 Z f,z((1)+250 I z(so),

8 o 3, 1 73 4
=0, 7(1)= T)=— Yw)) + ="TPy(=).
a1)=0, (=0, «7) 125;“”(‘“/)*40 Iy(55)
83 47 17 9 1 9 13 17 3 11
H _— — _— — —_—— —_— — -_— —_— — _— — —_—— —_—— _— —
ere, Q 30: S 201 Ql 20) Sl 207 fl 8) §2 40’ 63 40) 54 40’ Uy 25: U 50;
.. A R PR LA o . A 1)
U3 = %57; Uy = 5%’ 41 - 251;342 - 505 3 = 25’ {4 _93501 CL)173— 50) Wy = 25’ w3 = 50) Wy = 25;
= — = — = — = — T = 2 ﬁ = — = —
“ =300 T P TPt TR T 5y
1 9
F@3(@). 21(0) = f@32(0). 220 = (g5 01() = 320 + 75510 (D) = 2(0))
4 21
8. 1(1).21(7)) = 8. y2(1). 22(D)] = (7551 (D) = 2D + 55k (1) = 2a(D),

_1l 9 = 4 = _ 2l
we have k1 = g5, K2 = 735, KI = 155, K2 = 305+

With the data given, we find that vi =~ 0.4804530139182014, v, =~ 0.01960022943737283,
vi =~ 0.02532387378450272, v =~ 0.23033874484666408, #, =~ 0.16113944169300537,
Q; =~ 0.15010321156298798, P, = 0.00596663953967596, Q, =~ 0.2995844504200921 and
(P1 + Pk + ko) + (@) + @)k +k>) ~ 0.03912559982989178 < 1. Therefore all of the Theorem
3.2 assumptions are fulfilled. Consequently, on [1,2] a unique solution exists for the problem (4.3)
and (4.4) by Theorem 3.2.

5. Stability results for the problem (1.1) and (1.2)

The stability of the solutions given by

(@) = T1(y, (1), 2(1) = T2y, 2)(7), (5.1

Hyers-Ulam for BVP (1.1) and (1.2) is discussed in this section. Where Y| and T, are defined
by (3.2) and (3.3). Let us define nonlinear operators in the following S;, $; € C(X,R) x C(X,R) —
C(K,R);

D7) - g7, 3(1), 2(1) = S, (3, (1), TEK.
For some w1, u > 0, it considered the following inequalities:
IS1(r, DI < i, 182, DN < o (5.2)

Definition 5.1. The coupled system (1.1) and (1.2) is said to be stable in Hyers-Ulam, if H;, H, > 0
exists such that there is a unique solution (y,z) € C(K,R) X C(K,R) of problems (1.1) and (1.2) with

v, 2) = O, 2N < Hipy + Hopio,
for every solution (y*,z") € C(K,R) X C(K,R) of inequality (5.2).

{ “Dy() — f@,y(1),2(1) = Si( (1), TEK,
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Theorem 5.2. Suppose that (E,) hold. Then the BVP (1.1) and (1.2) is Hyers-Ulam-stable.

Proof. Let (y,z) € C(K,R) x C(K,R) be the (1.1) and (1.2) the solution of the problems that
satisfy (3.2) and (3.3). Let (y*, z") be any satisfying solution (5.2):

“Dy) = fr,3(0),2(1) + Si(, (1), TEK,
D7) = g(1,y(1), (1) + $: (3, (1), TEK,

So,

T - do
V(@ = Ti05 )0 + m (1og 2) $10n 200

(logr)2 {, dé
[{ Zar()f log Sz<y,z>(9);

s+e1-1 deo
fl (log 5) 52, 0O)

+ B —
lr@m)
1 T

T

(log )" Si0. z)(e)d;}

" T(o) 0

k=2 |
i\o—
+ V3 {0’2

1 J w do
Z IUj@fw (log ?]) Sl(y’Z)(e)?

Q +o1-1 do
S (v, 2)(0)—
F(Q+Q1)f 1 (v, 2)(0) 5

D sy, z)(e)—}]

(log 7

l“(c)
It follows that

T 9—1 do

1 T
T 0" 2)(0) =y (1) < mf log— Mlg

(logT)2 4 Cive-1  db
[ { Zf}r( )f _j /12?
s+q1-1  dO
e AT
1 T T\o-1 db
*@f (o2 5) “l?}
+v { U; fwj g Q lﬂ a9
3 - 1=
£1"'T(o) 0
f Q+Ql 1 d@
F(Q+Ql) Yo

T \s-1 d9
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(logTY (logT) (vi(log T) 2 (logw;®

*lTexn " v {r(g+1) (“22 UiTo+ D)
(log )™ (log T)* (v3(log T)*
+&r@+gr+nn}“+[ v {r@+1>

Z g (log {])g (log 19)§+g1 )
T+ D Picra+ )"
<P + Qlﬂz-

Similarly,

120", 2)(1) =2 ()] <

(log7)*  (log Ty {V1 (log T)g ( Z g Logd)) (log £j)*
J

I'¢c+1) v I'(¢+ I'(¢c+1)
B, (log )™ ) N (log T)2 [ { Vz(lOg Ty
I'¢c+¢+1) y I'o+1)

k=2
(log wj)® (log )™
¥ Vl(az ; Yo+ ) TPTore 1))}]”1

< Qo + Popuy,

where in (3.4)—(3.7) is described P;,9,,Q, and Q,. The Y operator, given by (3.2) and (3.3), can
therefore be excluded as follows from the fixed point property.

(@) =y (@] = [y(7) = 110", 2)(@) + T1(0°, 2)(7) =y ()]
<TG, 2@ = T8 )@+ 165, 27 =y (o)l
< (Piki + Qik) + (Pikr + Q)0 2) = O = DO + Pips + Qi (5.3)

2(7) = 2" (D] = z(7) = T2(y", 2)(7) + L2 (3", 2)(7) = 2" (7)]
<Py, (1) = V20", 2O+ [T, 2)(7) = 2°(7)
< (Qky + Paky) + (Qakzr + Pk, 2) — (0 = 2 + Qo + Popts. (5.4)

From (5.3) and (5.4) it follows that
I, 2) = O =2 < (P + Pops + (Q1 + Qz + (P1 + P2 (k1 + k2) + (Q + Q)(K) +2)
Xy, 2) = " =2

(P + P + (Q) + Q)i
T 1= ((P1 + Po)ki + k) + (Q) + @) (K1 +k2))
< Hiuy + Hopo,

v, 2) = 0" =2l <
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with
H = (P1+P)
T (P + Pk + ) + (Q + Q)& +12)
I = Q)+ @)
2T (P + PO+ k) + Q1+ Q)E +F)
Therefore, the BVP (1.1)—(1.2) is Hyers-Ulam stable. |
6. Example

Example 6.1. Consider the following coupled system of Caputo-Hadamard type FDEs:

97
~log7 2 ly(7)| 7
CP40y(r) = &
2)41y(T) R ST 16T+ bo) + 500 cos(z(1)), T€[l1,2], o
— 1 1 3 12(7)
D15 4(7) = 11
D20 = 50 * 200 O T o T ey TS

equipped with coupled boundary conditions:

: 17 < 13, 9 93
H=0 =0 T = — E s _~ Hpxw, -

=0, 2(1) =0, «T)= > s 3 pph 73 o
A)=0, 7(1)=0, )—E;vijw% ¥(zg)-
97 41 17 9 1 9 13 17 3 11
H = — = — = — = — = — = — = — = — = — = —
e eE S TR AT T TR T STt TV T T 5y
o Bl 0 3600 19 44 97 63 34 85 A7
3‘2157’ 4‘5%’ 1‘251’32‘50’ 3T 25 T 50 T 500" T 25 P T 500 T T 2y
= —, = —, = —, :—)T:z’ﬂ:—’ = —,
“ =00 2T s P T 550 T 10 5007 50
2 7
T,Y1(7), 21(T)) — J (T, V2 (T), 22(T))| = \ == IV1(T) — YT —~121(T) — 22T
|f (7, y1(7), 21(7)) = f(7, y2(7), 22(7)) 85I() ()I+200|() (D)l
11 3
8. 1(1).21(7)) = 8. y2(1). 22(D)] = (55501 (1) = 2Dl + Toelr (1) = 22(D).
wehavelq:%,KZ:JW,E:%,’K}:&.

With the data given, we find that vi =~ 0.4804530139182014, v, =~ 0.01960022943737283,
vi =~ 0.02532387378450272, v = 0.23033874484666408, P, 0.2690687091717075,
Q; ~ 0.08501392524416244, P, ~ 0.010361690715239952, Q, ~ 0.16968755312542472. Then
problem (6.1) and (6.2) has a unique solution for [1,2], which is stable for Hyers-Ulam, with
(P1 + Pk + ko) + (Q1 + Q) + k) ~ 0.0342619702607479 < 1, so all requirements of
Theorem 5.2.

Q
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7. Existence results for the problem (1.1) and (1.3)

Lemma 7.1. Let f,% € ACK[1, T). Then, the linear system solution of FDEs

{ Dy = f),
“De(r) = §(),

enhanced with the boundary conditions:

k=2
Y1) =0, Y(1) =0, XT) = ) (L) + BT 2(9),
j=1
k=2
d1)=0, £(1) =0, «T) = a2 ) vy + BTy,
j=1
1<ﬁ<{1<§2<---<{k_2<7j’.

. log 7)? = vl .
¥ = 17 ) + 1087 [vl{al DR + BT () - Hf’f(T)}

v =

k=2
+ w{w v I () + BT f(9) - HI%@(T)}]

j=1
and
2 k=2
20) =1 1°8(1) + (log ) [vl {Clz v I f(¢) + B I f(9) - ”Ii@m}
=1
k=2 ' R
+ w{al D ETTREG) + BT o) - Hf’f(ﬂ}]
j=1
where
k=2

28,(log )2+
vi =(ogT)’, v2=a Z vjlog £)° + %’

j=1
2B1(log §)***!

2
, V=V, —V)V3.
I'G+¢1) :

k=2
V3 =a ij(log )+
=1

Proof. Solving the FDEs (7.1) in a standard manner, we get

y(r) = Hﬁf(r) + ap + a; log T + a>(log T)Z,
21) = HI°8(t) + by + by log T + by(log 7)%,

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)
(7.8)

where a;,b; € R, i = 0,1,2, are arbitrary constants. Using the boundary conditions (7.2) in (7.7)

and (7.8), we obtainap = a; =0, by = b; =0, and

k=2
avi—byvs = a1 ) EMT) + BT @) - AT,

=1

(7.9)
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k=2
bovi—avs = @ ) v T + T @) - P,

J=1

Solving the system (7.9)—(7.10) for a,, b,, we get

k-2
vl(al D ET R + BT ) - Hfgfm)

a =
Jj=1
k=2
+V3(C¥2 Z v (@) + BT () - Hfgm),
o
by = vl(azzv, ) + BT () - Hfé(T))

j=1

k=2
m(al D ET /) + BT ) - HfgﬂT)),
Jj=1

(7.10)

(7.11)

(7.12)

where vy, v,,v3, v are given by (7.5) and (7.6) respectively. Substituting the values of ay, b, in (7.7)

and (7.8), we obtain the solutions (7.3) and (7.4).

Next, we define an operator

Ty, 2(1) = (T1(y, 2)(7), T2y, 2)(7)),

in relation to problem (1.1) and (1.3), with

1 T - do
T]()), Z)(T) = m f lOg I ¢ lf(e, y(9), Z(Q))_

(log ) - do
[ { ijr( ) f log )" 20,30, 200

s+ei-1 deo
1 T

T \o- do
(log —)g "6, y(0), z(6))—}

T

k-2 e g]
+v3 vjr( ) 1 gy f(9 ¥, 2(9))—

Jj=

f m_lf(e @), 2022
r<@+91> YR AT,

(1og T) (6, (0), z(e))—}]

F(s*) 0

O

(7.13)

(7.14)
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1 T 5- do
100,200 = i [ (10g5)” s0.30). 200

(log 7) S Y, e do
e [vl{azj:z;vj@ fl (log =) f(6.y(0).2(6)

1 J Fotoi-1 do

+ﬂzm]; (logg) f(H,Y(Q),Z(H))?
1 T T \s-1 do
"o ) (log ) g(e,y(e),z(e»;}

k=2 1 4 Live-1 do
+vZ{a1;§j@ (loe ) s@ .00

+S1—

1 V\ste1-1 do
+ﬁ1mfl (log 5) g(G,y(H),Z(G))g

__b
I'(0)

For the convenience of computation, we set

T The- do
- (1og )’ 1 f(@,y(@),z(@))?}]. (7.15)

L R s R OO ey | I
S L {fo?fff’ii Aiae )
S A O i e
e SR b e el o

Now for the problem (1.1) and (1.3), we state the results of existence, uniqueness, and stability. We
are not providing the proof as it is similar to those in Section 3, Section 4, Section 5, Section 6.

Theorem 7.2. Suppose that (E,) hold. If
(P +P2) +//1\1(Q1 + Q) <1, L(P+P2) +//{2(Q1 +@) < 1. (7.20)

Then there exists at least one solution for problem (1.1) and (1.3) on ‘K, where P, Qi, P>, and @,
are given by (7.16)—(7.19) respectively.

Theorem 7.3. Suppose that (E;) hold. Then the BVP (1.1) and (1.3) has a unique solution on K,
provided that

(P1+ P (ki + k) + (Q) + @)(k; +12) < 1, (7.21)
where P, Qy, P, and @, are given by (7.16)—(7.19).
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Theorem 7.4. Suppose that (E,) hold. In addition, 3 positive constants T, T, such that ¥ v € K and
y,Z €R,

|f(T’y’Z)| < 7~15 |g(T5yaZ)| < TZ- (722)
Then the BVP (1.1) and (1.3) has at least one solution on ‘K, if

(log T) (k1 + K2) N (log T)S (k1 +k2) <1

Tle+1) Ic+1) 723

Theorem 7.5. Suppose that (E,) hold. Then the BVP (1.1) and (1.3) is Hyers-Ulam-stable.
8. Conclusions

We have studied the existence, uniqueness, and stability of solutions for a coupled system of
Caputo-Hadamard-type FDEs augmented by Hadamard fractional integral and multi-point conditions
via the alternatives of Leray-Schauder, Banach, fixed-point theorems of Krasnoselskii, Hyer-Ulam
stable. The work presented in this paper is new and significantly contributes to the existing literature on
the topic. When the parameters involved in problem (a;, @», 81, 5>) were set, our results corresponded
to some special problems. Suppose we present the problems (1.1) and (1.2) with the form: to take
a1 = a, = 0 in the results provided;

y1)=0, y(1)=0, y(T)=p"I"2(9),
21 =0, Z(1) =0, z«T) =B "1 y),
1<d<p<T,

while the results are:

k-2
Y1) =0, Y1) =0, MT) =1 ) &Ly,
j=1

k-2
d)=0, Z(1)=0, «T) = a2 ) vpy(w)),
j=1
1<§] < Wi <§2<w2<~-~<{k_2<wk_2<T,

followed by B, = 5, = 0. We can solve above problems similar to problem (1.1) and (1.2) by using the
methodology employed in the previous section.
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