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1. Introduction

Branching processes have wide applications and have raised the interest of many researchers, see
[10]. The model was first established by Galton and Watson [8] in order to study the demographic
phenomenon that a large proportion of families were continually dying out. Decades later, Feller [7]
formalized the model to the modern version. He provided the recursion of the population of the n-th
generation Zn as follows,

Zn+1 =

Zn∑
i=1

ξn,i, (1.1)

where ξn,i are random variables representing the number of offspring of the i-th individual in the n-th
generation. In this model, time is discretized by generations. However, in real life, population
develops continuously in time. Therefore, researchers improved the model to a continuous-time
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version. The first general formulation of the continuous-time discrete-state branching processes was
given by Kolmogorov and Dmitrive, and has been one of the most popular demographic models,
see [21].

In microbiology, the population is large and the events of birth and death occur very frequently.
Scientists usually use terminologies like density or viral load to describe the amount, and the number
is often not integers, see [20]. In this situation, a branching model of continuous-time and continuous-
state is more appropriate and convenient to approximate the dynamics. Ba and Pardoux [1] proved
that the continuous-state branching processes can be considered as the scaling limit of the continuous-
time discrete-state branching processes. They considered the interactions between individuals and
established the limiting stochastic equation,

Yt = 1 +

∫ t

0
f (Ys)ds +

∫ t

0

√
2cYsdB(s), (1.2)

where x 7→ f (x) is a function on [0,∞) representing the interactions, c is a positive constant and B(s)
is a standard Brownian motion. This has the general form of a Feller branching diffusion.

There are plenty of biological articles focusing on how the population is influenced by the
environment, see [5] for an example. But the investigation on the mathematical models of the
continuous-state branching process in random environment, which is usually abbreviated as
CBRE-process, is just in its infancy. Pioneering works on CBRE-processes include [2] and [9]. To
describe the drastic reduction in population by catastrophes, Bansaye et al. [2] added a Lévy process
with bounded variation into the continuous-state branching model. They used the following equation
to model infected cells,

Yt = 1 +

∫ t

0
bYsds +

∫ t

0

√
2cYsdB(s) +

∫ t

0

∫ 1

0
(θ − 1)Ys−N(ds, dθ), (1.3)

where c > 0, b are constants, B(s) is a Brownian motion and N(ds, dθ) is Poisson random measure
representing the catastrophes. They studied the behavior of P(Yt > 0) as t → ∞. This work was
generalised by Li and Xu [17], who set the random environment to be a Lévy process {L(t) : t ≥ 0}
with no jump less than −1. This jump restriction prevents the population from becoming negative.
They constructed an equation for (α + 1)-stable branching processes in Lévy random environment
(CBRE-processes) as follows,

X(t) = x +

∫ t

0

(1+α)
√

(1 + α)cX(s−)dZα(s) +

∫ t

0
X(s−)dL(s),

where c > 0, α ∈ (0, 1] are constants, {Zα(t) : t ≥ 0} is a spectrally positive (α + 1)-stable process.
Motivated by the models above, we construct an (α + 1)-stable continuous-state branching process

with both the effect of random environments and a time inhomogeneous competition, which will be
abbreviated as the (α + 1)-stable CBCRE-process. The equation of our model is

X(t) = x +

∫ t

0

(1+α)
√

(1 + α)cX(s−)dZα(s) −
∫ t

0
f (s)X(s)ds +

∫ t

0
X(s−)dL(s), (1.4)

where s 7→ f (s) is a locally bounded non-negative function on [0,∞) describing the competition
between individuals. When f ≡ 0, our model degenerates to the model of (α + 1)-stable CBRE-
processes in [17]. Furthermore, [17] studied the asymptotic behavior of the survival probability.
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But our results include the asymptotic behavior of the process itself. In other words, we study the
asymptotic property of the paths instead of probability. When α = 1, f ≡ 0 and {L(t) : t ≥ 0} takes
the special form of

∫ t

0

∫ 1

0
(1 − θ)N(ds, dθ), our model degenerates to the model of [2]. When α = 1 and

L(t) ≡ 0, it becomes a model with only interactions but no environments, like [1].
In this paper, we define the extinction time of the process as the first time that the process reaches

zero, which is denoted by T0.We provide the distribution of T0, and give a necessary condition for T0 to
be almost surely finite. The long-time behavior is an important topic for stochastic processes, see [11–
13]. Our results also include the long-time behavior of the model. We present the limit distribution of
CBCRE-processes conditioned on large extinction times. Furthermore, we find a determining function
g to describe the asymptotic behavior near extinction of the (α+1)-stable CBCRE-process {X(t) : t ≥ 0}.
In other words,

lim sup
t→0

X(T0 − t)
g(t)

= 1, almost surely.

This is a result more accurate than [2] and [17], since we describe the behavior of the paths rather
than the extinction and survival probability. And this result is new even in CBRE-processes without
competition.

The paper is organized as follows, in Section 2, we establish the model, present the stochastic
equation and state the main results. In Section 3, we give the proofs of the main results including a
time-space transformation. In Section 4, we apply the results to two mathematical biological models. In
the first part of Section 4, we improved the stochastic Susceptible-Infected-Recovered (SIR) epidemic
model by considering the influence of environment. In the second part of Section 4, we apply our
results to a virus elimination model and conclude that the differences between the immune systems
of different hosts only affects the distribution of their recovery time. The asymptotic behavior of the
viral load near the host’s recovery time (equivalently, the extinction time of virus) depends only on the
characteristics of the virus.

2. Preliminaries and main results

In this section, we establish the model of (α + 1)-stable CBCRE-processes on a filtered probability
space (Ω,F ,Ft,P). Suppose that constants b ∈ R, c > 0, α ∈ (0, 1]. A stable branching mechanism is
a continuous function φ on [0,∞) with the representation

φ(λ) = cλα+1, λ > 0. (2.1)

Suppose that (1 ∧ z2)n(dz) is a finite measure on (0,∞), {L(t) : t ≥ 0} is an (Ft)-Lévy process with
Lévy-Itô decomposition:

L(t) = bt + σW(t) +

∫ t

0

∫
[−1,1]

(ez − 1)Ñ(ds, dz) +

∫ t

0

∫
[−1,1]c

(ez − 1)N(ds, dz), (2.2)

where {W(t) : t ≥ 0} is an (Ft)-Brownian motion, and N(ds, dz) is an (Ft)-Poisson random measure on
(0,∞)×Rwith intensity dsn(dz),whose compensated measure is denoted by Ñ(ds, dz). Let s 7→ f (s) be
a locally bounded nonnegative function on [0,∞). For any positive constant x, consider the following
stochastic integral equation,

X(t) = x +

∫ t

0

(1+α)
√

(1 + α)cX(s−)dZα(s) −
∫ t

0
f (s)X(s)ds +

∫ t

0
X(s−)dL(s), (2.3)
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where {Zα(t) : t ≥ 0} is a spectrally positive (α + 1)-stable process with α ∈ (0, 1]. When α = 1, this
can be regarded as a Brownian motion. When α ∈ (0, 1), its Lévy measure is

α1z>0dz
Γ(1 − α)z2+α

, (2.4)

where Γ(1 − α) =
∫ ∞

0
t−αe−tdt. In this equation,

∫ t

0
f (s)X(s)ds describes the influence of competition

on the population dynamics. We may consider f (s) as a competition rate. It changes with time and
it stays non-negative, since at a fixed time point, the competition becomes fiercer as the population
becomes larger. In Eq (2.3), there are two kinds of noise:

∫ t

0
(1+α)√(1 + α)cX(s−)dZα(s) represents the

randomness of branching, which is the same as the noise term in the equation of traditional stable
branching processes, see P.55 of [16]; and

∫ t

0
X(s−)dL(s) represents the effect of random environments,

see [9] and [17].
For convenience, define another (Ft)-Lévy process {ξ(t) : t ≥ 0} by

ξ(t) = at + σW(t) +

∫ t

0

∫
[−1,1]

zÑ(ds, dz) +

∫ t

0

∫
[−1,1]c

zN(ds, dz),

where

a = b −
σ2

2
−

∫
[−1,1]

(ez − 1 − z)n(dz). (2.5)

In the situation where f ≡ 0, the unique strong solution of (2.3) is the CBRE-process with branching
mechanism φ and random environment {ξ(t) : t ≥ 0} defined by [9]. Denote

ξ̄(t) := ξ(t) −
∫ t

0
f (s)ds. (2.6)

Theorem 2.1. The Eq (2.3) has a positive unique strong solution {X(t) : t ≥ 0}. And the solution is a
conservative Markov process on [0,∞) with transition semigroup (Qt)t≥0 defined by∫ ∞

0
e−λyQt(x, dy) = Pe−xvξ̄0,t(λ), λ, x ≥ 0, (2.7)

where r 7→ vξ̄r,t(λ) is the unique positive solution of

vξ̄r,t(λ) = eξ̄(t)−ξ̄(r)λ −

∫ t

r
eξ̄(s)−ξ̄(r)φ(vξ̄s,t(λ))ds, t ≥ r ≥ 0. (2.8)

Proof. According to Theorem 1.3 of [6],

X(t) = x +

∫ t

0

(1+α)
√

(1 + α)cX(s−)dZα(s) −
∫ t

0
f (s)X(s)ds, (2.9)

has a unique strong solution. Following by similar arguments in [19], the existence and uniqueness of
Eq (2.3) can be proved. The remaining procedures can be obtained by repeating the calculations in the
proof of Theorem 3.6 in [9], with ξ in there replaced by ξ̄. �
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The unique strong solution {X(t) : t ≥ 0} of Eq (2.3) is a CBCRE-process with initial value x,
branching mechanism φ, and competition f in random environment ξ, which is abbreviated as (α+ 1)-
stable CBCRE-process. By the definition in He et al. [9], the extinction time T0 := inf{t ≥ 0 : X(t) = 0}
is obviously an Ft-stopping time. Again, by replacing parameters as in the proof of Theorem 3.3, we
have the following conclusion paralleling to that in Section 5 of [17].

Proposition 2.2. The distribution of the extinction time T0 is provided as

P(T0 ≤ t) = P(X(t) = 0) = P(e−xv̄ξ̄0,t), (2.10)

where v̄ξ̄0,t := [
∫ t

0
cαe−αξ̄(s)ds]−

1
α .

Furthermore, if we assume that lim inf
t→∞

ξ̄(t) = −∞, then we have

lim inf
t→∞

v̄ξ̄0,t = lim inf
t→∞

[
∫ t

0
cαe−αξ̄(s)ds]−

1
α = 0. (2.11)

From (2.10) it is obvious that v̄ξ̄0,t is decreasing in t. Thus,

lim sup
t→∞

v̄ξ̄0,t = lim inf
t→∞

v̄ξ̄0,t = 0. (2.12)

Using Fatou’s Lemma we get,

lim inf
t→∞

P(T0 ≤ t)≥P lim inf
t→∞

e−xv̄ξ̄0,t = 1. (2.13)

Thus,
P(T0 = ∞) = lim

t→∞
P(T0 > t) = 0.

Therefore, lim inf
t→∞

ξ̄(t) = −∞ is the necessary condition for the stable CBRE-process {X(t) : t ≥ 0}
to extinct in a finite time almost surely. The main result of this paper is the extinction behavior of
the process, including the limit distribution conditioned on large extinction times and the asymptotic
behavior near extinction.

Theorem 2.3. [Conditional Limit Theorem] Let x > 0 and t ≥ 0. {X(t) : t ≥ 0} is a stable CBCRE-
process with initial value x and extinction time T0. Then for any Ft-measurable bounded random
variable F,

P̄[F] = lim
r→∞

P[F|T0 > r + t],

where P̄ is a probability measure such that P̄[F] = P[Mt(x)F] with

Mt(x) =
1
x

e−ξ̄(t)X(t).

The above result provides the distribution of {X(t) : t ≥ 0} conditioned on large extinction times.
Under this new probability measure, {X(t) : t ≥ 0} is still a Markov process in (0,∞). See [15] for the
similar conditional limit theorems of continuous-state branching processes with neither environment
nor competition.
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Theorem 2.4. [Asymptotic Behavior Theorem] Let {X(t) : t ≥ 0} be an (α + 1)-stable CBCRE-process
with competition f and random environment ξ. Its extinction time is denoted by T0. Suppose that

lim inf
t→∞

(
ξ(t) −

∫ t

0
f (s)ds

)
= −∞.

Then,

lim sup
t→0

X(T0 − t)

(cαt)
1
α (log log 1

t )−α
= 1, P-a.s.

3. Proofs of main results

In this section, we prove the main results and provide an interesting time-space transformation.

Proposition 3.1. The process t → Mt(x) := 1
xe−ξ̄(t)X(t) is a positive (Ft)-martingale with PM0(x) = 1.

Proof. Define Mt = e−ξ̄t X(t), where X(t) is the strong solution of (2.3). By Itô’s formula,

Mt = x +

∫ t

0
e−ξ̄(s−)dX(s) −

∫ t

0
X(s−)e−ξ̄(s−)dξ̄(s)

+
σ2

2

∫ t

0
X(s)e−ξ̄(s)ds −

∫ t

0
σ2X(s)e−ξ̄(s)ds

+

∫ t

0

∫ ∞

−∞

{
[X(s−) + X(s−)(ez − 1)]e−ξ̄(s−)+z − X(s−)e−ξ̄(s−)

−e−ξ̄(s−)X(s−)(ez − 1) + X(s)e−ξ̄(s−)z
}
N(ds, dz)

= x +

∫ t

0
e−ξ̄(s−) (1+α)

√
(1 + α)cX(s−)dZα(s). (3.1)

It is easy to see that {Mt : t ≥ 0} is a positive martingale with PMt = x. The conclusion is obvious. �

Proof of Theorem 2.3. By Proposition 3.1 and Girsanov’s theorem, there is a unique probability
measure P̄ on (Ω,F ) such that

P̄[F] = P[Mt(x)F],

for any Ft-measurable bounded random variable F. Now it suffices to show that
P̄[e−λX(t)] = lim

r→∞
P[e−λX(t)|T0 > r + t]. Define Pξ̄ to be the quenched law conditioned on the random

environment,

Pξ̄[e−λX(t)|T0 > t + r] =
Pξ̄[e−λX(t)1{T0>r+t}]

Pξ̄(T0 > r + t)

= lim
θ→∞

Pξ̄[e−λX(t)(1 − e−θXt+r )]
Pξ̄(1 − e−θXt+r )

=
Pξ̄[e−λX(t)(1 − e−X(t)vξ̄t,t+r )]

1 − e−xvξ̄0,t+r

.
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It is not difficult to get vξ̄0,r+t = vξ̄0,t(v
ξ̄
t,t+r) and d

dλvξ̄0,t(λ)
∣∣∣∣
λ=0

= eξ̄t . By the above and (2.13) we have,

lim
r→∞

vξ̄t,t+r = 0 almost surely. Then

lim
r→∞

Pξ̄[e−λX(t)|T0 > t + r] = lim
r→∞

Pξ̄[e−λX(t)(1 − e−X(t)vξ̄t,t+r )]

1 − e−xvξ̄0,t+r

= lim
r→∞

Pξ̄[e−λX(t)(vξ̄t,t+r)−1(1 − e−X(t)vξ̄t,t+r )]

(vξ̄t,t+r)−1(1 − e−xvξ̄0,t+r )

=
1
x

e−ξ̄tPξ̄[X(t)e−λX(t)].

By bounded convergence theorem, it is easy to see that

lim
r→∞

P[e−λX(t)|T0 > t + r] =
1
x

P[X(t)e−λX(t)−ξ̄t].

That completes the proof. �

Consider the stochastic integral equation

Y(t) = x +

∫ t

0

(1+α)
√

(1 + α)cY(s−)dZα(s). (3.2)

The unique strong solution of (3.2) is a continuous-state branching process with (α+1)-stable branching
mechanism. We denote the process by {Y(t) : t ≥ 0}. There is a nice relationship between the process
{Y(t) : t ≥ 0} and {X(t) : t ≥ 0}.

Proposition 3.2. [Time-space Transformation] A stable CBCRE-process can be obtained by a
time-space transformation of a classical continuous-state branching process with the same branching
mechanism. In other words, Y(A(t))eξ̄(t) is a weak solution of (2.3), where A(t) =

∫ t

0
e−αξ̄(s)ds.

Proof. By Itô’s formula and integration by parts,

Y(A(t))eξ̄(t) = x +

∫ t

0
eξ̄(s)dY(A(s)) +

∫ t

0
Y(A(s))deξ̄(s)

= x +

∫ t

0
Y(A(s))eξ̄(s)(a +

σ2

2
)ds +

∫ t

0
Y(A(s))eξ̄(s)σdW(s)

+

∫ t

0
eξ̄(s) (1+α)

√
(1 + α)cY(A(s))dZα(A(s)) −

∫ t

0
eξ̄(s)Y(A(s)) f (s)ds

+

∫ t

0

∫
[−1,1]c

Y(A(s))eξ̄(s)(ez − 1)N(ds, dz)

+

∫ t

0

∫
[−1,1]

Y(A(s))eξ̄(s)(ez − 1)Ñ(ds, dz)

+

∫ t

0

∫
[−1,1]

Y(A(s))eξ̄(s)(ez − 1 − z)dsn(dz)
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= x +

∫ t

0
eξ̄(s) (1+α)

√
(1 + α)cY(A(s))dZα(A(s))

−

∫ t

0
f (s)Y(A(s))eξ̄(s)ds +

∫ t

0
Y(A(s))eξ̄(s)dL(s). (3.3)

Let Z̃(t) :=
∫ t

0
e

α
1+α ξ̄(s)dZα(A(s)). Then Z̃ is also an (α + 1)-stable process with Lévy measure m(dz)

defined by (2.4). Thus,

Y(A(t))eξ̄(t) = Y(0) +

∫ t

0

(1+α)
√

(1 + α)cY(A(s))eξ̄(s)dZ̃(A(s))

−

∫ t

0
f (s)Y(A(s))eξ̄(s)ds +

∫ t

0
Y(A(s))eξ̄(s)dL(s).

�

We denote the extinction time of {Y(t) : t ≥ 0} by T ′0 := inf{t ≥ 0 : Y(t) = 0}. There is a result on
the asymptotic behavior near extinction of Y(t), which we state as the Lemma below.

Lemma 3.3. [Kyprianou and Pardo [14]] Suppose that {Y(t) : t ≥ 0} is a continuous-state branching
process with branching mechanism φ given by (2.1). Then

lim sup
t→0+

Y(T ′0 − t)
g(t)

= 1,P-a.s.,

where g(t) = (cαt)
1
α (log log 1

t )−α.

Now we are able to give the asymptotic behavior near extinction of the (α + 1)-stable CBCRE-
process {X(t) : t ≥ 0}.

Proof of Theorem 2.4. Without loss of generality, assume that {X(t) : t ≥ 0} is the unique strong
solution of (2.3). By Theorem 3.2 we get, X(t) has the same distribution to Y(A(t))eξ̄(t). Thus,

lim
t→0+

Y(A(T0 − t)) = 0.

According to Lemma 3.3,

lim sup
t→0+

Y(A(T0 − t))
g(A(T0) − A(T0 − t))

= 1,P-a.s. (3.4)

Thus,

lim sup
t→0+

X(T0 − t)
g(te−αξ̄(T0))eξ̄(T0)

= 1, P-a.s.

Notice that the limitation is in the sense of P-a.s., and αξ̄(T0) is pathwisely constant. Thus, when
t → 0+, the influence of ξ̄(T0) can be ignored compared to log 1

t . Hence we get the conclusion. �

The time-space transformation that we use in the proof builds a strong bridge between CBCRE-
processes and traditional continuous-state branching processes. This novel approach contributes to the
study of continuous-state branching processes in random environments and can be used for further
exploration in similar models.
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4. Applications

In this section we apply our model to mathematical biology. We consider a particle system with X(0)
particles at time t = 0. After each unit of time, each particle in the system splits into a random number
of new particles following a fixed reproduction law. This procedure can approximate the reproduction
of a virus at the micro level, as well as the increase in the infectious population at the macro level. If
we denote the population of the n-th generation by Zn, we can get

Zn+1 =

Zn∑
i=1

ξn,i, (4.1)

where ξn,i are random variables representing the number of offspring of the i-th individual in the n-
th generation. This is the definition of classic branching processes, or GW-processes. However, the
discrete setting is idealized. This is problematic since the reproduction of the virus and the speed of
contagion are always quite fast, and the quantities we discuss are always quite large. Thus, it is more
appropriate and convenient to compress the original process defined by (4.1) both in time and state.
It was provided in 36 and 37 pages of [4] that the scaling limits of a series of GW-processes with a
fixed reproduction law are continuous-time and continuous-state stable branching processes. Moreover,
when we consider the random environment and competition, we can have stable CBCRE-processes as
the scaling limits, see [3]. Thus, it is reasonable to apply our model to the study of epidemic and viral
load.

4.1. Application to an epidemic model

In this part, we apply our results to an improved stochastic Susceptible-Infected-Recovered (SIR)
epidemic model. The stochastic SIR-model was introduced in [18] as the nonlinear stochastic
differential equations:

dS (t) = −βI(t)
S (t)
N(t)

dt −

√
βI(t)

S (t)
N(t)

dB1(t)

dI(t) = [βI(t)
S (t)
N(t)

− (α + γ)I(t)]dt +

√
βI(t)

S (t)
N(t)

dB1(t)

−
√
γI(t)dB2(t) +

√
αI(t)dB3(t)

dR(t) = γI(t)dt +
√
γI(t)dB2(t). (4.2)

In this model, the whole population N(t) is divided into three parts: the susceptible part S (t), the
infectious part I(t) and the recovered part R(t). Parameters α, β and γ denote the disease mortality rate,
the transmission rate and the recovery rate, respectively. B1(t), B2(t) and B3(t) are mutually independent
standard Brownian motions.

To better approximate the actual conditions, we consider environmental influences on the epidemic
model. The environment may affect the dynamics of an infectious population via fast traffic tools
like airplanes and high-speed railways, and policies like quarantine and lock-down, among others.
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We describe the environment by the Lévy processes ξ(t) and L(t) defined in Section 2 and build the
following equations:

dS (t) = −βI(t)
S (t)
N(t)

dt −

√
βI(t)

S (t)
N(t)

dB1(t)

dI(t) = [βI(t)
S (t)
N(t)

− (α + γ)I(t)]dt +

√
βI(t)

S (t)
N(t)

dB1(t)

−
√
γI(t)dB2(t) +

√
αI(t)dB3(t) + I(t)dL(t)

dR(t) = γI(t)dt +
√
γI(t)dB2(t). (4.3)

When the infectious population is small compared to the large whole population, the infectious
population can be approximated by a branching process defined by

I(t) = I(0) +

∫ t

0
(β − α − γ)I(s)ds +

∫ t

0

√
(β + α + γ)I(s)dB(s) +

∫ t

0
X(s)dL(s), (4.4)

where B(s) is a standard Brownian motion and L(t) is defined by (2.2). According to the results in
previous sections, if the condition lim inf

t→∞
[ξ(t) + (β − α − γ)t] = −∞ is satisfied, the epidemic will be

eliminated in a finite amount of time T. The distribution of T is given by

P(T ≤ t) = P exp
(
− 2I(0)

( ∫ t

0
(α + β + γ)e−ξ(s)+(α+γ−β)sds

)−1
)
.

Moreover, the infectious population will tend toward zero as t → T in the behavior described by the
function

(α + β + γ)(T − t)
2 log log 1

(T−t)

.

4.2. Application to a virus elimination model

The continuous-state branching process is a natural model for population which die and multiply
fast and randomly, see Bansaye et al. [2]. Assume that at time 0 a person is infected with initial viral
load x. Then the viruses in the person replicate with the branching mechanism

φ(λ) = cλα+1, λ > 0,

where c > 0, α ∈ (0, 1]. The immune cells of the host are produced according to a Poisson distribution
with parameter r > 0, and kill a random fraction θ ∈ (0, 1) of the viruses. The distribution of the killing
fraction θ is denoted by ν, where ν satisfies

∫ 1

0
θν(dθ) < ∞.

Hence, the dynamics of the viral load {X(t) : t ≥ 0} is the unique positive strong solution of the
stochastic integral equation on the probability space (Ω,F ,Ft,P),

X(t) = x +

∫ t

0

(1+α)
√

(1 + α)cX(s−)dZα(s) −
∫ t

0

∫ 1

0
θX(s−)M(ds, dθ). (4.5)
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In this equation, {Zα(t) : t ≥ 0} is a spectrally positive (α + 1)-stable process with α ∈ (0, 1], as defined
in Section 2. M(ds, dθ) is a Poisson random measure with intensity rdsν(dθ).

A host recovers when the viral load reaches zero. And the time it takes to recover is denoted by T,
which amounts to the extinction time of {X(t) : t ≥ 0}. According to the conclusions in Section 2, T is
a random time with distribution

P(T ≤ t) = P(e−xη0,t), (4.6)

where

η0,t := [
∫ t

0
cα exp{−α

∫ s

0

∫ 1

0
ln(1 − θ)M(du, dθ)}ds]−

1
α < ∞, P-a.s. (4.7)

Moreover, the viral load tends toward zero near the recovery moment T in a behavior that can be
approximated by function

(cα(T − t))α
−1

(log log
1

(T − t)
)−α.

These results demonstrate

• The fewer viruses with which a host was infected at beginning, the faster the host is expected to
recover;
• Differences in the sensitivity and effectiveness between the immune systems of different hosts

(corresponding to r and ν in the model) result in different lengths of recovery time;
• The proliferative ability of the virus (corresponding to c, α in the model) affects both the recovery

time and the behavior of the viruses being eliminated. Indeed, it is the only factor determining
this behavior.
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