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1. Introduction

In some scientific fields, the fractional diffusion equation has many wide applications, such as
biology, mechanical engineering, physical, signal processing and systems identification, fractional
dynamics, chemical, finance, control theory, and so on, see [1–8]. In the past years, the direct
problems for the fractional diffusion equation have been studied extensively. Recent years, more and
more people are focusing on the inverse problems for this kind of equation, which usually include
parameter identification problem, inverse initial value problem, Cauchy problem, inverse heat
conduction problem, inverse source problem, inverse boundary condition problem, and so on.

The time-fractional diffusion equation is derived by replacing the classical time derivative with
fractional derivative, and it can be used to describe superdiffusion and subdiffusion phenomena. In this
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paper, we consider the sideways problem of the time-fractional diffusion equation in the following
Dα

t u(x, t) − uxx(x, t) = 0, x > 0, t > 0,
u(x, 0) = 0, x ≥ 0,
u(1, t) = g(t), t ≥ 0,
u(x, t)|x→∞bounded,

(1.1)

here, Dα
t denotes the Caputo fractional derivative defined by [4]

Dα
t u(x, t) =


1

Γ(1 − α)

∫ t

0

uτ(x, τ)
(t − τ)α

dτ, 0 < α < 1,

ut(x, t), α = 1,
(1.2)

and the Fourier transform with respect to t is

F {Dα
t f (t); ξ} = (iξ)α f̂ (ξ), i =

√
−1. (1.3)

We know that, as α = 1, problem (1.1) just is the standard inverse heat conduction problem(IHCP).
Let δ > 0 be the measured error bound, given the measured data gδ(t) that satisfies ‖gδ(t)−g(t)‖L2(R) ≤ δ,
the task of this paper is to seek u(x, t)(0 ≤ x < 1) from (1.1). This problem is ill-posed in the sense that
the solution does not depend continuously on the given data, so the regularized method is required to
overcome its ill-posedness and recover the stability of the solution. The early papers which considered
the sideways problem for time-fractional diffusion equation can be found in [9, 10]. After that, some
regularized methods have been presented and used to solve some similar problems, such as spectral
truncation method [11–15], convolution method [16, 17], and so on.

In the ordinary Tikhonov method, the regularization item is imposed as ‖u(x, t)‖2L2(R). In this paper,
to solve problem (1.1), we construct a Tikhonov-type regularized method by adding the regularized
item as ‖u(0, t)‖2Hs(R) (0 ≤ s < p, p > 0 is a constant), and under the a-posteriori selection of
regularized parameter we derive the convergence estimates of logarithmic and double logarithmic
types. Ultimately, by doing some numerical experiments we verify the simulation effectiveness of
Tikhonov-type method. Note that, the considered problem is defined in the unbounded region, some
traditional numerical methods (such as finite difference and finite element methods) can not be
applied directly, so many scholars developed the artificial boundary method or translated the
unbounded problem into a bounded one by adopting certain transformation, but these methods may
lead to artificial errors and singularity. On the other hand, since the singularity of the time fractional
derivative can produce a full numerical discrete matrix, this leads to a lot of computation and storage.
In view of this, based on the Fourier translation we adopt the Tikhonov-type regularized method to
give the explicit expression of regularized solution in frequency space, and use the fast discrete
Fourier transform to compute the regularized solution, this technology is simple and convenient, and
it can overcome the weak singularity near the initial time.

The writing motivation and innovation of this work are as below: we not only design a stable
regularization method to overcome the ill-posedness of the considered problem, but also shall derive
the a-posteriori convergence result for the regularized solution under an a-posteriori selection rule for
the regularized parameter, which has not been considered in the existing references [9–17], etc, so the
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work is relatively novel in solving the sideways problem of time-fractional diffusion equation. It can
be seen as an extension and supplement on the existing works.

The writing arrangement of the article are as below. Section 2 constructs the regularized method
based on the result of conditional stability. Section 3 is devoted to derive the convergence estimate
of a-posteriori type for regularized solution. In Section 4, we make some numerical experiments and
simulations to verify the calculation effect. Section 5 gives the corresponding summary.

2. Conditional stability and regularization method

2.1. Conditional stability

Let f ∈ L2(R), we respectively define the Fourier transform(FT) and inverse Fourier transform(IFT)
as

f̂ (ξ) :=
1
√

2π

∫ ∞

−∞

f (y)e−iξydy, ξ ∈ R. (2.1)

f (y) :=
1
√

2π

∫ ∞

−∞

f̂ (ξ)eiξydξ, y ∈ R. (2.2)

For ξ ∈ R, we take the Fourier transform with regard to t, in the frequency domain the solution of
(1.1) can be expressed as

û(x, ξ) = eψα(ξ)(1−x)ĝ(ξ), (2.3)

here, ψα(ξ) = |ξ|
α
2

(
cos

(
απ
4

)
+ isign(ξ) sin

(
απ
4

))
. hence, we can obtain that the exact solution of (1.1) is

u(x, t) =
1
√

2π

∫ ∞

−∞

eψα(ξ)(1−x)ĝ(ξ)eiξtdξ. (2.4)

Equation (2.4) means that, when |ξ| → ∞, the function e|ξ|
α
2 (1−x) cos απ

4 tends to infinity, i.e., the solution
of (1.1) is not stable ( it does not depend continuously on the given data). But if it satisfies certain
a-priori condition, one can establish the stability of solution, i.e., the conditional stability.

Let E > 0, we suppose that the solution of (1.1) satisfies the a-priori bound

‖u(0, ·)‖p ≤ E, p > 0, (2.5)

where the norm of Sobolev space Hp is defined as

‖u(0, ·)‖p =

(∫ ∞

−∞

(1 + ξ2)p |̂u(0, ·)|2dξ
)1/2

, (2.6)

we know that, as p = 0, this is the L2-norm. Throughout this paper, we denote ‖ · ‖ as the L2-norm.
In [18], by using the interpolation method the authors established the following result of condition
stability under the assumption of the a-priori bound condition (2.5).
Theorem 1. [18] Suppose that the a-priori bound condition (2.5) is valid, then for the fixed 0 ≤ x < 1,
there holds the estimate of conditional stability

‖u(x, ·)‖ ≤ E1−x‖g(·)‖x
(

1
cos(απ/4)

ln
1
‖g(·)‖

) −2p(1−x)
α

. (2.7)
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2.2. Tikhonov-type regularization method

From the Eq (2.4) we can see that, in order to recover the consecutive dependence of solution for
problem (1.1), one need design a stable approximation solution of it by removing the part of high
frequency of function e|ξ|

α
2 (1−x) cos απ

4 . In the following, we give a concise description for the designed
procedure of the regularized method.

For the fixed 0 ≤ x < 1, according to (2.4) we can equivalently transform (1.1) into the operator
equation below

K(x)u(x, t) = g(t), (2.8)

and based on (2.3), K̂(x) : L2(R) → L2(R) is a linear bounded multiplication operator with K̂(x) =

e−ψα(ξ)(1−x) = e−|ξ|
α
2 (1−x) cos( απ4 )−i|ξ|

α
2 (1−x)sign(ξ) sin( απ4 ), by the basic calculation, we know that the adjoint

operator of it can be written as K̂∗(x) = e−|ξ|
α
2 (1−x) cos( απ4 )+i|ξ|

α
2 (1−x)sign(ξ) sin( απ4 ).

We assume gδ satisfy the following error bound

‖gδ − g‖ ≤ δ. (2.9)

Let µ > 0 denote the regularization parameter, to construct the regularized solution, we consider the
variational problem

min
u∈L2(R)

‖K(x)u(x, t) − gδ(t)‖2 + µ‖u(0, t)‖2Hs(R), 0 ≤ s < p, (2.10)

By (2.3) and using the Parseval identity, we know that problem (2.10) becomes as

min
û∈L2(R)

∥∥∥∥e−ψα(ξ)(1−x)û(x, ξ) − ĝδ(ξ)
∥∥∥∥2

+ µ

∥∥∥∥∥∥(1 + |ξ|2
)s/2 e−ψα(ξ)(1−x)

e−ψα(ξ) û(x, ξ)

∥∥∥∥∥∥2

. (2.11)

Now, we denote ûδµ(x, ξ) be the regularization solution for (1.1) in the frequency domain, then ûδµ(x, ξ)
satisfies the normal equatione−2|ξ|

α
2 (1−x) cos( απ

4 ) + µ
(
1 + |ξ|2

)s e−2|ξ|
α
2 (1−x) cos( απ

4 )

e−2|ξ|
α
2 cos( απ

4 )

 ûδµ(ξ, t) = e−|ξ|
α
2 (1−x) cos( απ

4 )+i|ξ|
α
2 (1−x)sign(ξ) sin( απ

4 )ĝδ(ξ), (2.12)

according to (2.12), we obtain that ûδµ(ξ, t) holds the following formulation

ûδµ(x, ξ) =
eψα(ξ)(1−x)ĝδ(ξ)

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

, (2.13)

finally, we can write the expression of regularized solution for (1.1) as

uδµ(x, t) =
1
√

2π

∫ ∞

−∞

eψα(ξ)(1−x)ĝδ(ξ)eiξt

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

dξ. (2.14)

Remark 1. In the construction procedure of the regularized solution (2.14), in (2.10) we add the
penalty item in the sense of H s-norm. We know that, in the standard Tikhonov method, the penalty item
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is usually imposed in the sense of L2-norm, i.e., ‖u(x, t)‖2L2(R), and the Tikhonov regularized solution
can be expressed as

uδTikµ(x, t) =
1
√

2π

∫ ∞

−∞

eψα(ξ)(1−x)ĝδ(ξ)eiξt

1 + µe2(1−x)|ξ|
α
2 cos( απ4 )

dξ. (2.15)

And if setting x = 0 and making a modification on (2.15), then we can obtain a simplified Tikhonov
regularized solution

uδS Tikµ(x, t) =
1
√

2π

∫ ∞

−∞

eψα(ξ)(1−x)ĝδ(ξ)eiξt

1 + µe2|ξ|
α
2 cos( απ4 )

dξ. (2.16)

3. An a-posteriori convergence result

This section is devoted to derive the convergence estimate for the regularized method, we select the
regularized parameter µ by a kind of a-posteriori rule that is presented in [19]. Setting h(δ) > δ, here µ
is found by solving the equation

‖uδµ(1, t) − gδ(t)‖ = h(δ). (3.1)

On the a-posteriori selection rule of regularized parameter, we can refer to [20] which gives the general
description for the a-posteriori rule of regularized parameter. We give two Lemmas that will be used
in the following.
Lemma 1. Let %(µ) = ‖uδµ(1, t) − gδ(t)‖, 0 < h(δ) < ‖gδ‖, then for µ ∈ (0,+∞), %(µ) is a continuous and
strictly increasing function; and limµ→0 %(µ) = 0, limµ→+∞ %(µ) = ‖gδ‖.
Proof of Lemma 1. By taking

%(u) =

∥∥∥∥∥∥∥µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )ĝδ(ξ)

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

∥∥∥∥∥∥∥ , (3.2)

one can easily prove it.
From Lemma 1, we can know that the Eq (3.1) has a unique solution as 0 < h(δ) < ‖gδ‖.

Lemma 2. We suppose (2.5) hold, then the regularized parameter µ = µ(δ, gδ) determined by (3.1)
satisfies 1

µ
≤

C2
1 E2

4(h(δ)−δ)2 , here C1 is a positive constant.
Proof of Lemma 2. According to (3.1), it can be gotten that

h(δ) =

∥∥∥∥∥∥∥µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )ĝδ(ξ)

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥ µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

(ĝδ(ξ) − ĝ(ξ))

∥∥∥∥∥∥∥ +

∥∥∥∥∥∥∥ µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

ĝ(ξ)

∥∥∥∥∥∥∥
≤ δ +

∥∥∥∥∥∥∥µ(1 + |ξ|2)se|ξ|
α
2 cos( απ4 )(1 + |ξ|2)−

p
2 (1 + |ξ|2)

p
2 e|ξ|

α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

ĝ(ξ)

∥∥∥∥∥∥∥
≤ δ + E sup

ξ∈R

B(ξ), (3.3)
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using the mean value inequality and by the simple computation, we can obtain that

B(ξ) =
µ(1 + |ξ|2)se|ξ|

α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

(1 + |ξ|2)−
p
2

=

√
µ(1 + |ξ|2)−

p
2

1
√
µ
· (1 + |ξ|2)−se−|ξ|

α
2 cos( απ4 ) +

√
µe|ξ|

α
2 cos( απ4 )

≤

√
µ

2
· (1 + |ξ|2)−

p−s
2 . (3.4)

Since 0 ≤ s < p, and lim|ξ|→0+(1 + |ξ|2)−
p−s

2 = 1, lim|ξ|→+∞(1 + |ξ|2)−
p−s

2 = 0, then there exists C1 > 0,
such that B(ξ) ≤ C1

√
µ/2. Now combining (3.3), we can derive the result of Lemma 2.

Theorem 2. Let the exact and observed datum g, gδ satisfy (2.9), the a priori assumption (2.5) is valid.
Denote u, uδµ given in (2.4), (2.14) are the exact and regularized solutions of the considered problem,
respectively.
(i) If we select the regularized parameter µ by the Eq (3.1) with h(δ) = δ + δ

1−γ
2 (0 < γ < 1), then the

below convergence result of logarithmic type can be established

‖uδµ(x, t) − u(x, t)‖ ≤
C2C2

1E2δγ

4
+ E1−x

(
2δ + δ

1−γ
2

)x
 1
cos(απ/4)

ln
1

(2δ + δ
1−γ

2 )

 −2p(1−x)
α

; (3.5)

(ii) If we select the regularized parameter µ by the Eq (3.1) with h(δ) = δ+
√
δ ln 1

δ
, then the following

convergence estimate of double logarithmic type can be derived

‖uδµ(x, t) − u(x, t)‖ ≤
C2C2

1E2

4
(
ln 1

δ

)2 + E1−x

(
2δ +

√
δ ln

1
δ

)x  1
cos(απ/4)

ln
1

(2δ +
√
δ ln 1

δ
)


−2p(1−x)

α

, (3.6)

where, C2 > 0 is a constant, C1 is given in Lemma 2.
Proof of Theorem 2. By using the Parseval theorem, we have

‖uδµ(x, ·) − u(x, ·)‖ ≤ ‖ûδµ(x, ·) − ûµ(x, ·)‖ + ‖ûµ(x, ·) − û(x, ·)‖. (3.7)

From (2.9), for µ ∈ (0, 1), one can derive that

‖ûδµ(x, ·) − ûµ(x, ·)‖ =

∥∥∥∥∥∥∥ eψα(ξ)(1−x)

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

(ĝδ(ξ) − ĝ(ξ))

∥∥∥∥∥∥∥
≤

δ

µ
(
e−(1−x)|ξ|

α
2 cos( απ4 ) + (1 + |ξ|2)se(1+x)|ξ|

α
2 cos( απ4 )

) . (3.8)

We notice that, lim|ξ|→0+ e−(1−x)|ξ|
α
2 cos( απ4 ) + (1 + |ξ|2)se(1+x)|ξ|

α
2 cos( απ4 ) = 2, and lim|ξ|→+∞ e−(1−x)|ξ|

α
2 cos( απ4 ) +

(1 + |ξ|2)se(1+x)|ξ|
α
2 cos( απ4 ) = +∞, then there exists a positive number C2, such that

‖ûδµ(x, ·) − ûµ(x, ·)‖ ≤ C2δ/µ. (3.9)

From (3.9) and Lemma 2, we have

‖uδµ(x, ·) − uµ(x, ·)‖ ≤
C2C2

1E2δ

4(h(δ) − δ)2 . (3.10)
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On the other hand, it can be noticed that

‖K(x)(uµ(x, t) − u(x, t))‖ = ‖K̂(x)(ûµ(x, t) − û(x, t))‖

=

∥∥∥∥∥∥∥ µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

ĝ(ξ)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥ µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

(ĝδ(ξ) − ĝ(ξ))

∥∥∥∥∥∥∥ (3.11)

+

∥∥∥∥∥∥∥ µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

ĝδ(ξ)

∥∥∥∥∥∥∥
≤ δ + h(δ).

Meanwhile, using the a-priori assumption (2.5), one can derive that

‖uµ(x, t) − u(x, t)‖Hp(R) =

∥∥∥∥∥∥∥(1 + |ξ|2)
p
2

µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

eψα(ξ)(1−x)ĝ(ξ)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥(1 + |ξ|2)
p
2

µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

1 + µ(1 + |ξ|2)se2|ξ|
α
2 cos( απ4 )

eψα(ξ)ĝ(ξ)

∥∥∥∥∥∥∥ (3.12)

≤

∥∥∥∥(1 + |ξ|2)
p
2 û(0, ξ)

∥∥∥∥ = ‖u(0, x)‖Hp(R) ≤ E.

Using the result of the conditional stability (2.7), we can get that

‖uµ(x, t) − u(x, t)‖ ≤ E1−x (δ + h(δ))x
(

1
cos(απ/4)

ln
1

(δ + h(δ))

) −2p(1−x)
α

. (3.13)

Combining with (3.10) and (3.13), it can be obtain that

‖uδµ(x, t) − u(x, t)‖ ≤
C2C2

1E2δ

4(h(δ) − δ)2 + E1−x (δ + h(δ))x
(

1
cos(απ/4)

ln
1

(δ + h(δ))

) −2p(1−x)
α

. (3.14)

Ultimately, the convergence results (3.5) and (3.6) can be established, respectively.
Remark 2. We find that, if adopting the normal discrepancy principle [20] to select the regularized
parameter µ, i.e., ‖uδµ(1, t) − gδ(t)‖ = τδ (τ > 1), the convergence result of regularized method can not
be easily established. So here we adopt a modified version (3.1) to choose the regularized parameter
and derive the corresponding convergence result.
Remark 3. We point out that this method and the corresponding analysis can be extended to multi-
dimensional models. For instance, the two-dimensional problem in a semi-infinite slab

Dα
t u(x, y, t) − uxx(x, y, t) − uyy(x, y, t) = 0, 0 < x < 1, y > 0, t > 0,

u(x, y, 0) = 0, 0 ≤ x ≤ 1, y ≥ 0,
u(x, 0, t) = 0, 0 ≤ x ≤ 1, t ≥ 0,
u(1, y, t) = g(y, t), y ≥ 0, t ≥ 0,
ux(1, y, t) = 0, y ≥ 0, t ≥ 0.

(3.15)
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We can adopt the similar procedure to determine the distribution u(x, y, t) for 0 ≤ x < 1 from the
measured data gδ(y, t).

4. Numerical simulations

In this section, for smooth and non-smooth cases we respectively verify the effectiveness of
proposed method by doing some numerical experiments. We use the fast discrete Fourier transform
(DFT) and inverse Fourier transform (IFT) to complete our numerical experiments. Since the analytic
solution of problem (1.1) is generally difficult to be expressed explicitly, we construct the final data
g(t) by solving the following direct problem.


Dα

t u(x, t) − uxx(x, t) = 0, x > 0, t > 0,
u(x, 0) = 0, x ≥ 0,
u(0, t) = f (t), t ≥ 0.

(4.1)

This is a well-posed problem and the solution at x = 1 can be given as

g(t) := u(1, t) =
1
√

2π

∫ ∞

−∞

e−ψα(ξ) f̂ (ξ)eiξtdξ, (4.2)

which is taken as the exact data. The measured data is selected by the following random form

gδ(x) = g(x) + εrand(size(g(x))), (4.3)

here ε denotes the noisy level, the function rand(size(g)) returns an array of random entries that is the
same size as g.

The exact and regularized solutions are calculated by (2.4) and (2.14), respectively. For δ > 0, we
fix γ = 0.1, the regularized parameter is chosen by the a-posteriori rule (3.1) with h(δ) = δ + δ

1−γ
2 . In

order to make the sensitivity analysis for numerical results, we calculate the relative error by

ε(u) = ‖u(x, t) − uδµ(x, t)‖/‖u(x, t)‖. (4.4)

We select the interval [0, 4] to make the numerical experiment, and suppose the function value be equal
to zero for t ∈ (−∞, 0)

⋃
(4,+∞).

Example 1. In the direct problem (4.1), we take smooth function f (t) = 2e−2t2 .

For α = 0.2, s = 1, γ = 0.1, ε = 0.01, the exact and regularized solutions at x = 0.9, 0.5, 0.3, 0 with
µ = 6.2383e − 06 are shown in Figure 1. At x = 0, we also investigate the influences of α and s on
numerical result. For s = 1, γ = 0.1, ε = 0.01, the relative errors for various α are given in Table 1.
For α = 0.2, γ = 0.1, ε = 0.01, the relative errors for various s are presented in Table 2.
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Figure 1. α = 0.2, s = 1, γ = 0.1, ε = 0.01: Exact and regularized solutions with µ=6.2383e-
06. (a): x = 0.9, (b): x = 0.5, (c): x = 0.3, (d): x = 0.

Table 1. s = 1, γ = 0.1, ε = 0.01: the relative errors for various α at x = 0.

α 0.05 0.1 0.3 0.5 0.7 0.9
µ 5.6612e-06 5.6303e-06 8.6958e-06 2.1836e-05 3.7929e-05 4.5216e-05
ε(u) 0.0334 0.0375 0.0694 0.1219 0.3108 0.9472

Table 2. α = 0.2, γ = 0.1, ε = 0.01: the relative errors for various s at x = 0.

s 0.25 0.5 0.75 1.0 2.0 3.0
µ 0.0016 3.7939e-04 5.3591e-05 6.2383e-06 7.3903e-10 7.1920e-14
ε(u) 0.0363 0.0456 0.0489 0.0500 0.0512 0.0516

Figure 1 shows that the simulation effect of this method is feasible and acceptable in solving the
considered problem. Table 1 means that the numerical result becomes well as α tends to zero. Table 2
shows that, the better numerical results are, the smaller as s is taken. Meanwhile, as s = 0, our method
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just is the simplified Tikhonov method.
Example 2. In (4.1), we take the non-smooth function f (t) with

f (t) =

0.5t, 0 ≤ t ≤ 2,
0.5(4 − t), 2 ≤ t ≤ 4.

(4.5)

For α = 0.2, s = 1, γ = 0.1, ε = 0.01, numerical results at x = 0.9, 0.5, 0.3, 0 with µ=1.1539e-04
are shown in Figure 2. For s = 1, γ = 0.1, ε = 0.01, the relative errors for various α are given in
Table 3. The relative errors for various s are presented in Table 4 with α = 0.2, γ = 0.1, ε = 0.01.
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Figure 2. α = 0.2, s = 1, γ = 0.1, ε = 0.01: Exact and regularized solutions with µ=1.1539e-
04. (a): x = 0.9, (b): x = 0.5, (c): x = 0.3, (d): x = 0.

Table 3. s = 1, γ = 0.1, ε = 0.01: the relative errors for various α at x = 0.

α 0.05 0.1 0.3 0.5 0.7 0.9
µ 2.6555e-04 2.0622e-04 5.8400-05 1.0613e-05 1.0663e-06 4.8697e-08
ε(u) 0.0281 0.0314 0.0548 0.1567 0.6489 0.9875
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Table 4. α = 0.2, γ = 0.1, ε = 0.01: the relative errors for various s at x = 0.

s 0.25 0.5 0.75 1.0 2.0 3.0
µ 0.0034 0.0018 5.7902e-04 1.1539e-04 1.2494e-07 1.2513e-10
ε(u) 0.0203 0.0306 0.0378 0.0403 0.0419 0.0422

Figure 2 and Tables 3, 4 mean the similar simulation results with the case of Example 1, which
indicate that the computation effect of this method is also satisfied and acceptable in solving the non-
smooth case.

5. Conclusions

A sideways problem of the time-fractional diffusion equation is investigated. We design a Tikhonov-
type regularized method to overcome the ill-posedness and recover the continuous dependence of the
solution on the given data, based on the result of conditional stability, we derive the convergence
estimates of logarithmic and double logarithmic types for the regularized method by adopting an a-
posteriori choice rule of regularized parameter. Finally, we verify the convergence and stability for this
method by doing some numerical experiments.
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