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1. Introduction

In mathematics, quantum calculus, also known as q-calculus, is the study of calculus without limit.
In q-calculus, we obtain q-analogues of mathematical formulas that can be recaptured as q tends to
one. The history of q-calculus can be traced back to Euler, who first introduced q-calculus in the track
of Newton’s work on infinite series. Then, in 1910, F. H. Jackson [1] presented a systematic study
of q-calculus and defined the q-definite integral, which is known as the q-Jackson integral. In recent
years, the interest in q-calculus been arising due to high demand of mathematics in this field. The q-
calculus numerous applications in various fields of mathematics and other areas such as combinatorics,
dynamical systems, fractals, number theory, orthogonal polynomials, special functions, mechanics and
also for scientific problems in some applied areas, see [2–14] for more details.

Along with the development of the theory and application of q-calculus, the theory of q-calculus
based on two parameters (p, q)-integers has also presented and recieved more attention during the last
few dacades. In 1991, R. Chakrabati and R. Jagannathan [15] introduced the (p, q)-calculus. Next, P.
N. Sadjang [16] studied the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas.
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Recently, M. Tunç and E. Göv [17] defined the (p, q)-derivative and (p, q)-integral on finite intervals.
Moreover, they studied some properties of (p, q)-calculus and (p, q)-analogue of some important
integral inequalities. The (p, q)-integral inequalities have been studied and rapidly developed during
this period by many authors, see [18–26] and the references therein.

Mathematical inequalities was applied in various branches of mathematics as analysis, differential
equations, geometry, etc. One typical such example is Hardy inequality. Let us just mention that in
1920, G. H. Hardy [27] presented the following famous inequality for f is a non-negative integrable
function and s > 1, then ∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)s

dx ≤
( s

s − 1

)s ∫ ∞

0
f s(x)dx, (1.1)

which is now known as Hardy inequality.
Hardy inequality has been studied by a large number of authors during the twentieth century. Over

the last twenty years a large number of papers have appeared in the literature which deal with the
simple proofs, various generalizations and discrete analogue of Hardy inequality, see [28–35] for more
details.

In 2014, L. Maligranda et al. [36] studied a q-analogue of Hardy inequality (1.1) and some related
inequalities. It seems to be a huge new research area to study these so called q-Hardy type inequalities.
They obtained more general results on q-Hardy type inequalities. By taking q→ 1, we obtain classical
results on Hardy inequality (1.1). Next, L. E. Persson and S. Shaimardan [37] studied some q-analogue
of Hardy type inequalities for the Riemann-Liouville fractional integral operator, see [38,39] for more
details.

The purpose of this paper is to study some (p, q)-Hardy type inequalities for (p, q)-integrable
functions by using (p, q)-derivative and (p, q)-integral. Moreover, we also study (p, q)-Hölder integral
inequality and (p, q)-Minkowski integral inequality for two variables. By taking q→ 1 and p = 1, our
results reduce to classical results on Hardy type inequalities, Hölder integral inequality and
Minkowski integral inequality for two variables.

2. Preliminaries

In this section, we recall some known concepts and basic results of (p, q)-calculus. Throughout this
paper, we let p, q be constants with 0 < q < p ≤ 1 and [a, b] ⊆ R. We give some definitions and
theorems for (p, q)-calculus, which will be used in these papers [16–23].

First, we give some (p, q)-notation, which would appear in this study quite frequently. For any real
number n, the (p, q)-analogue of n is defined by

[n]p,q =
pn − qn

p − q
(2.1)

and
[−n]p,q =

1
(pq)n [n]p,q. (2.2)

If p = 1, then (2.1) reduces to

[n]q =
1 − qn

1 − q
, (2.3)
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which is q-analogue of n.

Definition 2.1. [18] If f : [a, b]→ R is a continuous function, then (p, q)-derivative of the function f
on [a, b] at x is defined by

aDp,q f (x) =
f (px + (1 − p)a) − f (qx + (1 − q)a)

(p − q)(x − a)
, x , a. (2.4)

The function f is said to be a (p, q)-differentiable function on [a, b] if aDp,q f (x) exists for all x ∈ [a, b].

Since f : [a, b] → R is a continuous function, we have aDp,q f (a) = lim
x→a

Dp,q f (x). In Definition 2.1,
if a = 0, then 0Dp,q f = Dp,q f is defined by

Dp,q f (x) =
f (px) − f (qx)

(p − q)x
, x , 0. (2.5)

And, if p = 1, then Dp,q f (x) = Dq f (x), which is the q-derivative of the function f , and also if q → 1
in (2.5), then it reduces to a classical derivative.

Example 1. Define function f : [a, b]→ R by f (x) = x2 + x + c, where c is a constant. Then for x , a,
we have

aDp,q(x2 + x + c) =

[
(px + (1 − p)a)2 + px + (1 − p)a + c

]
−

[
(qx + (1 − q)a)2 + qx + (1 − q)a + c

]
(p − q)(x − a)

=
(p + q)x2 + 2ax[1 − (p + q)] + a2[(p + q) − 2] + (x − a)

(x − a)

=
x(p + q)(x − a) − a(p + q)(x − a) + 2a(x − a) + (x − a)

(x − a)
= (p + q)(x − a) + 2a + 1. (2.6)

Theorem 2.2. If f , g : [a, b] → R are continuous functions and c, d are constants, then the following
formulas hold:

(i) aDp,q[c f (x) ± dg(x)] = caDp,q f (x) ± daDp,qg(x);
(ii) aDp,q[ f (x)g(x)] = f (px + (1 − p)a)aDp,qg(x) + g(qx + (1 − q)a)aDp,q f (x);

(iii) aDp,q

[
f (x)
g(x)

]
=

g(px + (1 − p)a)aDp,q f (x) − f (px + (1 − p)a)aDp,qg(x)
g(px + (1 − p)a)g(qx + (1 − q)a)

.

The proof of this theorem is given in [17].

Definition 2.3. [18] If f : [a, b] → R is a continuous function and 0 < a < b, then the (p, q)-integral
is defined by ∫ b

a
f (x) adp,qx = (p − q)(b − a)

∞∑
k=0

qk

pk+1 f
(

qk

pk+1 b +

(
1 −

qk

pk+1

)
a
)
. (2.7)

And, f is said to be a (p, q)-integrable function on [a, b] if
∫ b

a
f (x) adp,qx exists for all x ∈ [a, b]. If

a = 0 in (2.7), then one can get the classical (p, q)-integral defined by∫ b

0
f (x)dp,qx = (p − q)b

∞∑
k=0

qk

pk+1 f
(

qk

pk+1 b
)
, (2.8)
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and ∫ b

a
f (x)dp,qx =

∫ b

0
f (x)dp,qx −

∫ a

0
f (x)dp,qx. (2.9)

If p = 1 in (2.8), then we have the classical q-integral [11].

Example 2. Define function f : [a, b]→ R by f (x) = 2x + c, where c is a constant. Then we have∫ b

a
f (x) adp,qx =

∫ b

a
(2x + c) adp,qx

= 2(p − q)(b − a)
∞∑

k=0

qk

pk+1

(
qk

pk+1 b +

(
1 −

qk

pk+1

)
a
)

+ (p − q)(b − a)
∞∑

k=0

qk

pk+1
(c)

=
2(b − a)(b − a(1 − p − q))

p + q
+ (b − a)c. (2.10)

If p = 1, we have (2.10) reduces to the q-integral of f (x) = 2x + c. Furthermore, if a = 0, p = 1 and
q→ 1, (2.10) reduces to the classical integral.

The proofs of the following theorems are given in [17].

Theorem 2.4. If f , g : [a, b] → R are continuous functions, t ∈ [a, b] and α is a constant, then the
following formulas hold:

(i) aDp,q

∫ t

a
f (x) adp,qx = f (t);

(ii)
∫ t

c
aDp,q f (x) adp,qx = f (t) − f (c) for c ∈ (a, t);

(iii)
∫ t

a
[ f (x) + g(x)] adp,qx =

∫ b

a
f (x) adp,qx +

∫ b

a
g(x) adp,qx;

(iv)
∫ t

a
α f (x) adp,qx = α

∫ b

a
f (x) adp,qx;

(v)
∫ t

0
xαdp,qx =

bα+1

[α + 1]p,q
;

(vi)
∫ t

c
f (px + (1 − p)a) aDp,qg(x) adp,qx = ( f g)(x)

∣∣∣t
c
−

∫ t

c
g(qx + (1 − q)a) aDp,q f (x) adp,qx.

Theorem 2.5. If f , g : [a, b]→ R are continuous functions and r > 1 with 1/r + 1/s = 1, then∫ b

a
| f (t)g(t)| adp,qt ≤

(∫ b

a
| f (t)|r adp,qt

)1/r (∫ b

a
|g(t)|s adp,qt

)1/s

. (2.11)

Theorem 2.6. If f , g : [a, b]→ R are continuous functions and 0 < r < 1 with 1/r + 1/s = 1, then∫ b

a
| f (t)g(t)| adp,qt ≥

(∫ b

a
| f (t)|r adp,qt

)1/r (∫ b

a
|g(t)|s adp,qt

)1/s

. (2.12)

The proof is similar to the proof of Lemma 2.2 in [32].
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Definition 2.7. [16] The improper (p, q)-integral of f (x) on [0,∞] is defined by∫ ∞

0
f (x) 0dp,qx = (p − q)

∞∑
k=−∞

qk

pk+1 f
(

qk

pk+1

)
. (2.13)

And, f is said to be a (p, q)-integrable function on [0,∞] if
∫ ∞

0
f (x)dp,qx exists for all x ∈ [0,∞].

And, if p = 1 then (2.13) reduces to∫ ∞

0
f (x)dqx = (1 − q)

∞∑
k=−∞

qk f
(
qk

)
, (2.14)

which is an improper q-integral of f (x) on [0,∞] and appeared in [13].

Definition 2.8. [23] Let h : [0, b] × [0, d] ⊂ R2 → R be a continuous function in each variable; let
0 < qi < pi ≤ 1, where i = 1, 2. The definite (p1 p2, q1q2)-integral on [0, b] × [0, d] is defined by∫ t

0

∫ s

0
h(z,w)dp1,q1z dp2,q2w = (p1 − q1)(p2 − q2)st

∞∑
m=0

∞∑
n=0

(
qn

1

pn+1
1

) (
qm

2

pm+1
2

)
h
(

qn
1

pn+1
1

s,
qm

2

pm+1
2

t
)

(2.15)

for (s, t) ⊂ [0, b] × [0, d]. And, h is said to be a (p1 p2, q1q2)-integrable function on [0, b] × [0, d] if∫ t

0

∫ s

0
h(z,w)dp1,q1z dp2,q2w exists for all (s, t) ⊂ [0, b] × [0, d].

Example 3. Define function h : [0, b] × [0, d] ⊂ R2 → R by h(z,w) = znwm, where m, n are constants.
Then we have ∫ t

0

∫ s

0
h(z,w)dp1,q1zdp2,q2w =

∫ t

0

∫ s

0
znwmdp1,q1zdp2,q2w

=

(p1 − q1)sn+1 p−n−1
1

∞∑
i=0

(
qn

1

pn+1
1

)i
×

(p2 − q2)tm+1 p−m−1
2

∞∑
j=0

(
qm

2

pm+1
2

) j


=

(
sn+1

[n + 1]p1,q1

) (
tm+1

[m + 1]p2,q2

)
. (2.16)

Theorem 2.9. If f : [0, b] → R is a non-negative function, r > 1 and f r is a q-integrable function on
[0,∞], then [∫ ∞

0

(
1
x

∫ x

0
f (t)dqt

)r

dqx
]1/r

≤
1[

r−1
r

]
q

[∫ ∞

0
f r(t)dqt

]1/r

. (2.17)

The proof of this theorem is given in [36].

3. Main results

In this section, we first present the (p, q)-Hölder inequality for two variables.
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Theorem 3.1. If h and g are functions defined on [0, b] × [0, d] and m1,m2 > 1 with 1/m1 + 1/m2 = 1,
then ∫ t

0

∫ s

0
|h(z,w)g(z,w)| dp1,q1zdp2,q2w ≤

(∫ t

0

∫ s

0
|h(z,w)|m1 dp1,q1zdp2,q2w

)1/m1

×

(∫ t

0

∫ s

0
|g(z,w)|m2 dp1,q1zdp2,q2w

)1/m2

. (3.1)

Proof. From Definition 2.8 and the discrete Hölder inequality, we get∫ t

0

∫ s

0
|h(z,w)g(z,w)| dp1,q1zdp2,q2w

= (p1 − q1)(p2 − q2)st
∞∑

m=0

∞∑
n=0

(
qn

1

pn+1
1

) (
qm

2

pm+1
2

) ∣∣∣∣∣∣h
(

qn
1

pn+1
1

s,
qm

2

pm+1
2

t
)

g
(

qn
1

pn+1
1

s,
qm

2

pm+1
2

t
)∣∣∣∣∣∣

= (p1 − q1)(p2 − q2)st
∞∑

m=0

∞∑
n=0

∣∣∣∣∣∣∣h
(

qn
1

pn+1
1

s,
qm

2

pm+1
2

t
) (

qn
1

pn+1
1

qm
2

pm+1
2

)1/m1
∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣g
(

qn
1

pn+1
1

s,
qm

2

pm+1
2

t
) (

qn
1

pn+1
1

qm
2

pm+1
2

)1/m2
∣∣∣∣∣∣∣

≤

(p1 − q1)(p2 − q2)st
∞∑

m=0

∞∑
n=0

∣∣∣∣∣∣h
(

qn
1

pn+1
1

s,
qm

2

pm+1
2

t
)∣∣∣∣∣∣m1 ( qn

1

pn+1
1

qm
2

pm+1
2

)1/m1

×

(p1 − q1)(p2 − q2)st
∞∑

m=0

∞∑
n=0

∣∣∣∣∣∣g
(

qn
1

pn+1
1

s,
qm

2

pm+1
2

t
)∣∣∣∣∣∣m2 ( qn

1

pn+1
1

qm
2

pm+1
2

)1/m2

=

(∫ t

0

∫ s

0
|h(z,w)|m1dp1,q1zdp2,q2w

)1/m1 (∫ t

0

∫ s

0
|g(z,w)|m2dp1,q1zdp2,q2w

)1/m2

.

The proof is completed. �

Next, we present the (p, q)-Minkowski integral inequality for two variables.

Theorem 3.2. If h is (p1 p2, q1q2)-integrable function on [0, b] × [0, d], α ∈ (0, 1] and 1 ≤ r < ∞, then(∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, y)dp,qy

∣∣∣∣∣∣r dp,qx
)1/r

≤

∫ d

0

(∫ b

0
|h(x, y)|r dp,qx

)1/r

dp,qy. (3.2)

Proof. For r = 1, (3.2) holds by Fubini’s Theorem. Next, for 1 < r < ∞ and 1/r + 1/z = 1, by using
Fubini’s Theorem and Theorem 2.5, we have(∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, y)dp,qy

∣∣∣∣∣∣r dp,qx
)
≤

∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, t)dp,qt

∣∣∣∣∣∣r−1 (∫ d

0
|h(x, y)| dp,qy

)
dp,qx

=

∫ d

0

∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, t)dp,qt

∣∣∣∣∣∣r−1

|h(x, y)| dp,qx

 dp,qy
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≤

∫ d

0

∫ b

0

(∣∣∣∣∣∣
∫ d

0
h(x, t)dp,qt

∣∣∣∣∣∣r dp,qx
)1/z (∫ b

0
|h(x, y)|r dp,qx

)1/r dp,qy

≤

(∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, t)dp,qt

∣∣∣∣∣∣r dp,qx
)1/z ∫ d

0

(∫ b

0
|h(x, y)|r dp,qx

)1/r

dp,qy. (3.3)

Consequently, we obtain(∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, t)dp,qy

∣∣∣∣∣∣r dp,qx
)1−1/z

≤

∫ d

0

(∫ b

0
|h(x, y)|r dp,qx

)1/r

dp,qy.

Therefore, (∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, y)dp,qy

∣∣∣∣∣∣r dp,qx
)1/r

≤

∫ d

0

(∫ b

0
|h(x, y)|r dp,qx

)1/r

dp,qy.

The proof is completed. �

Remark 3.3. If p = 1, then (3.2) reduces to(∫ b

0

∣∣∣∣∣∣
∫ d

0
h(x, y)dqy

∣∣∣∣∣∣r dqx
)1/r

≤

∫ d

0

(∫ b

0
|h(x, y)|r dqx

)1/r

dqy. (3.4)

One easily see that when q → 1 in (3.4), the inequality turns into a Minkowski integral inequality for
two variables.

Theorem 3.4. If f : [0, b] → R is a non-negative function, r > 1 and f r is (p, q)-integrable function
on [0,∞), then (∫ ∞

0

(
1
x

∫ x

0
f (t)dp,qt

)r

dp,qx
)1/r

≤
1

[ r−1
r ]p,q

(∫ ∞

0
f r(t)dp,qt

)1/r

. (3.5)

Proof. By Definition 2.3 and Theorem 3.2, it is easy to see that(∫ ∞

0

(
1
x

∫ x

0
f (t)dp,qt

)r

dp,qx
)1/r

=

(∫ ∞

0

(∫ 1

0
f (xs)dp,qs

)r

dp,qx
)1/r

≤

∫ 1

0

(∫ ∞

0
f r(xs)dp,qx

)1/r

dp,qs.

Thus, by Theorem 2.4(vi), we get∫ 1

0

(∫ ∞

0
f r(xs)dp,qx

)1/r

dp,qs =

∫ 1

0

(∫ ∞

0

1
s

f r(t)dp,qx
)1/r

dp,qs

=
1[

r−1
r

]
p,q

(∫ ∞

0
f r(t)dp,qt

)1/r

. (3.6)

This completes the proof. �
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Remark 3.5. If p = 1, then (3.5) reduces to(∫ ∞

0

(
1
x

∫ 1

0
f (xs)dqs

)r

dqx
)1/r

≤
1

[ r−1
r ]q

(∫ ∞

0
f r(t)dqt

)1/r

, (3.7)

which is q-Hardy inequality in [36] and when q→ 1 in (3.7), the inequality reduces to (1.1).

Theorem 3.6. If f : [0, b]→ R is a non-negative function, r ≥ 1, z < r − 1 and tz f r is (p, q)-integrable
function on [0,∞), then(∫ ∞

0

(
1
x

∫ x

0
f (t)dp,qt

)r

xzdp,qx
)1/r

≤
1

[ r−z−1
r ]r

p,q

(∫ ∞

0
tz f r(t)dp,qt

)1/r

. (3.8)

Proof. The proof is similar to the proof of Theorem 3.4. �

Remark 3.7. If p = 1, then (3.8) reduces to(∫ ∞

0

(∫ 1

0
f (xs)xz/rdqs

)r

dqx
)1/r

≤
1

[ r−z−1
r ]q

(∫ ∞

0
uz f r(u)dqu

)1/r

, (3.9)

when z = 0, we get the inequality (3.7).

Theorem 3.8. If f1, f2, . . . , fn are non-negative (p, q)-integrable functions on [0, b], then∫ ∞

0

(∏n
i=1 Fi(x)

xn

)r/n

dp,qx ≤
 1
n[ r−1

r ]p,q

r ∫ ∞

0

 n∑
i=1

fi(x)

r

dp,qx, (3.10)

where

Fi(x) =

∫ x

0
fi(t)dp,qt,

for i = 1, 2, . . . , n.

Proof. By Jensen’s inequality, we have n∏
i=1

Fi(x)

r/n

≤
1
nr

 n∑
i=1

Fi(x)

r

.

Thus, we obtain ∫ ∞

0

(∏n
i=1 Fi(x)

xn

)r/n

dp,qx ≤
1
nr

∫ ∞

0

(∑n
i=1 Fi(x)

x

)r

dp,qx. (3.11)

Applying Theorem 3.4 to (3.11), we have∫ ∞

0

(∏n
i=1 Fi(x)

xn

)r/n

dp,qx ≤
 1
n[ r−1

r ]p,q

r ∫ ∞

0

 n∑
i=1

fi(t)

r

dp,qt. (3.12)

This completes the proof. �

AIMS Mathematics Volume 6, Issue 1, 77–89.



85

Remark 3.9. If p = 1, then (3.10) reduces to∫ ∞

0

(∏n
i=1 Fi(x)

xn

)r/n

dqx ≤
 1
n[ r−1

r ]p,q

r ∫ ∞

0

 n∑
i=1

fi(t)

r

dp,qt, (3.13)

which is q-Hardy inequality with many functions, and when q → 1 in (3.13), the inequality above
appeared in [33].

Theorem 3.10. If f : [0, b] → R is a non-negative function, r > 1, 0 < a < b < ∞ and f r is
(p, q)-integrable function on [a, b], then(∫ b

a

(
1
x

∫ x

0
f (t)dp,qt

)r

dp,qx
)1/r

≤
1

[ r−1
r ]p,q

(∫ b

a
f r(t)dp,qt

)1/r

. (3.14)

Proof. By Definition 2.3, it is easy to see that(∫ b

a

(
1
x

∫ x

0
f (t)dp,qt

)r

dp,qx
)1/r

=

(∫ b

a

(∫ 1

0
f (xs)dp,qs

)r

dp,qx
)1/r

.

From Theorem 3.2, we have(∫ b

a

(∫ 1

0
f (xs)dp,qs

)r

dp,qx
)1/r

≤

(∫ 1

0

(∫ b

a
f r(xs)dp,qx

)
dp,qs

)1/r

.

Thus, by Theorem 2.4(vi), we get(∫ 1

0

(∫ b

a
f r(xs)dp,qx

)
dp,qs

)1/r

=

(∫ 1

0

(∫ b

0
f r(xs)dp,qx −

∫ a

0
f r(xs)dp,qx

)
dp,qs

)1/r

=

(∫ 1

0

1
s

(∫ b

a
f r(t)dp,qt

)
dp,qs

)1/r

=
1

[ r−1
r ]p,q

(∫ b

a
f r(t)dp,qt

)1/r

.

This completes the proof. �

Remark 3.11. If p = 1, then (3.14) reduces to(∫ b

a

(
1
x

∫ x

0
f (t)dqt

)r

dqx
)1/r

≤
1

[ r−1
r ]q

(∫ b

a
f r(t)dqt

)1/r

, (3.15)

which is q-Hardy inequality about integration from a to b, and when q → 1 in (3.15), the inequality
reduces to [29].

Theorem 3.12. Let f ≥ 0, g > 0, x
g(x) be non-increasing, r > 1 and let f be (p, q)-integrable function

on [0, x]. Then ∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dp,qx ≤
1

[1 − 1/r]r
p,q

∫ ∞

0

(
x f (x)
g(x)

)r

dp,qx. (3.16)
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Proof. From Theorem 2.5, we get∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dp,qx ≤
∫ ∞

0
g−r(x)

∫ x

0
t1−1/r f r(t)dp,qt

(∫ x

0
t−1/rdp,qt

)r−1

dp,qx.

And by Theorem 2.4(vi), we obtain(∫ x

0
t−1/rdp,qt

)r−1

=
x(1−1/r)(r−1)

[1 − 1/r]r−1
p,q
.

Since the assumption of the function x
g(x) , we have∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dp,qx ≤
1

[1 − 1/r]r−1
p,q

∫ ∞

0
g−r(x)

∫ x

0
x(1−1/r)(r−1)t1−1/r f r(t)dp,qt dp,qx

=
1

[1 − 1/r]r−1
p,q

∫ ∞

0
t1−1/r f r(t)

∫ ∞

t
x(1−1/r)(r−1)g−r(x)dp,qx dp,qt

≤
1

[1 − 1/r]r−1
p,q

∫ ∞

0
t1−1/r f r(t)

(
t

g(t)

)r ∫ ∞

t
x1/r−2dp,qx dp,qt

=
1

[1 − 1/r]r
p,q

∫ ∞

0

(
t f (t)
g(t)

)r

dp,qt.

This proof is completed. �

Remark 3.13. If p = 1, then (3.16) reduces to a generalization of q-Hardy inequality as∫ ∞

0

(
1

gr(x)

∫ x

0
f (t)dqt

)r

dqx ≤
1

[1 − 1/r]r
q

∫ ∞

0

(
x f (x)
g(x)

)r

dqx. (3.17)

Also if q→ 1, then (3.17) reduces to the well known generalization of Hardy inequality as∫ ∞

0

(
1

gr(x)

∫ x

0
f (t)dt

)r

dx ≤
1

(1 − 1/r)r

∫ ∞

0

(
x f (x)
g(x)

)r

dx, (3.18)

which appeared in [34] .

The following results concern the converse inequalities.

Theorem 3.14. Let f ≥ 0, g > 0, x
g(x) be non-decreasing, 0 < r < 1 and let f be (p, q)-integrable

function on [0, x]. Then∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dp,qx ≥
1

[1 + 1/r]r−1
p,q [1/r − 1]p,q

∫ ∞

0

(
x f (x)
g(x)

)r

dp,qx. (3.19)

Proof. From Theorem 2.6, we get∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dp,qx ≥
∫ ∞

0
g−r(x)

∫ x

0
t1/r−1 f r(t)dp,qt

(∫ x

0
t1/rdp,qt

)r−1

dp,qx.
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And by Theorem 2.4(vi), we obtain(∫ x

0
t1/rdp,qt

)r−1

=
x(1+1/r)(r−1)

[1 + 1/r]r−1
p,q
.

Since the assumption of the function x
g(x) , we have

∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dp,qx ≥
1

[1 + 1/r]r−1
p,q

∫ ∞

0
g−r(x)

∫ x

0
x(1+1/r)(r−1)t1/r−1 f r(t)dp,qt dp,qx

=
1

[1 + 1/r]r−1
p,q

∫ ∞

0
t1/r−1 f r(t)

∫ ∞

t
x(1+1/r)(r−1)g−r(x)dp,qx dp,qt

≥
1

[1 + 1/r]r−1
p,q

∫ ∞

0
t1/r−1 f r(t)

(
t

g(t)

)r ∫ ∞

t
x−1/rdp,qx dp,qt

=
1

[1 + 1/r]r−1
p,q [1/r − 1]p,q

∫ ∞

0

(
t f (t)
g(t)

)r

dp,qt.

This proof is completed. �

Remark 3.15. If p = 1, then (3.19) reduces to a converse generalization of q-Hardy inequality as∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dqx ≥
1

[1 + 1/r]r−1
q [1/r − 1]q

∫ ∞

0

(
x f (x)
g(x)

)r

dqx. (3.20)

Also if q→ 1, then (3.20) reduces to the well known converse generalization of Hardy inequality as∫ ∞

0

(
1

g(x)

∫ x

0
f (t)dp,qt

)r

dp,qx ≥
1

(1 + 1/r)r−1(1/r − 1)

∫ ∞

0

(
x f (x)
g(x)

)r

dx, (3.21)

which appeared in [34] .

4. Conclusion

In this paper, we establish (p, q)-Hardy type inequalities for (p, q)-integral functions. We also obtain
(p, q)-Hölder integral inequality and (p, q)-Minkowski integral inequality for two variables. Our work
improves the results of Hardy type inequalities and the generalization of Hardy type inequalities. By
taking q→ 1 and p = 1, our results gives classical inequality formulas.
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