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Abstract: In this paper, we establish some existence results of weak solutions and pseudo-solutions
for the initial value problem of the arbitrary (fractional) orders differential equation

dx
dt

= f (t,Dγx(t)), γ ∈ (0, 1), t ∈ [0,T ] = I

x(0) = x0.

in nonreflexive Banach spaces E, where Dγx(·) is a fractional derivative of the function x(·) : I→ E
of order γ. The function f (t, x) : I×E → E will be assumed to be weakly sequentially continuous in
x for each t ∈ I and Pettis integrable in t on I for each x ∈ C[I, E]. Also, a weak noncompactness
type condition (expressed in terms of measure of noncompactness) will be imposed.

Keywords: measure of weak noncompactness; weakly continuous solution; pseudo-solution; weakly
relatively compact; fractional Pettis integral
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1. Introduction and preliminaries

Let E be nonreflexive Banach space with norm ‖ . ‖ with its dual E∗, and we will denote
by Eω = (E, ω) = (E, σ(E, E∗)) the space E with its weak topology. Let L1(I) be the space of
Lebesgue integrable functions on the interval I = [0,T ]. Denote by C[I, E] the Banach space of
strongly continuous functions x : I → E with the sup-norm || · ||0. Also, we consider the space
C(I, E) with its weak topology σ(C(I, E),C(I, E)∗). Denote by L∞(I) the space of all measurable
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and essential bounded real functions defined on I. Let Cω(I, E) denotes the space of all weakly
continuous functions from I into Ew endowed with the topology of weak uniform convergence.

The existence of weak solutions or pseudo-solutions for ordinary differential equations in Banach
spaces has been investigated in many papers. For example, Cichoń ([6, 8]), Cramer et al. [9],
Knight [20], Kubiaczyk, Szufla [21], O’Regan ([26, 27]) and for fractional order differential equations
in Banach spaces (see Agarwal et al. [2, 3], Salem et al. [34] and the references therein), for quadratic
integral equations in reflexive Banach algebra (see Banaś et al [5]).

Consider the initial value problem

dx
dt

= f (t,Dγx(t)), γ ∈ (0, 1), t ∈ I

(1.1)
x(0) = x0,

where Dγx(·) is a fractional derivative of the function x(·) : I→ E of order γ.
We remark the following:

• for real-valued function and the function f is independent of the fractional derivatives, then we
have the problems studied in, for example [10, 31].
• for real-valued function with γ ∈ (0, 1) we have the problem studied in [16] with nonlocal and

integral condition.
• in abstract spaces with conditions related to the weak topology on E and when E is reflexive

Banach space, then we have the problem studied in [33].
• in abstract spaces with conditions related to the weak topology on E and the function f is

independent of the fractional derivatives, then we have the problem studied in [6, 7].

Motivated by the above results, in this paper we investigate the case where f is a vector-valued
Pettis integrable function. The assumptions in the existence theorem are expressed in terms of the
weak topology, and a weak noncompactness type condition will be considered.

Here we prove the existence of a weak solution x ∈ C[I, E] of the the initial value problem (1.1)
in a nonreflexive Banach space E. For this aim, we consider firstly the following integral equation of
fractional type

x(t) = p(t) + λ Iα f (t, x(t)), t ∈ I, 0 < α < 1. (1.2)

Now, let us recall the following basic facts.
Let E be a Banach space and let x : I→ E, then x is said to be Pettis integrable on some interval I if
and only if there is an element xJ ∈ E corresponding to each J ⊂ I such that

φ(xJ) =

∫
J
φ(x(s)) ds f or all φ ∈ E∗,

where the integral on the right is supposed to exist in the sense of Lebesgue.
In a Banach space, both Pettis integrable functions and weakly continuous functions are weakly

measurable. Moreover, in reflexive Banach space (even in Banach spaces without a copy of c0 ) it
is true that “the weakly measurable function x(·) is Pettis integrable on I if and only if φ(x(·)) is
Lebesgue-integrable on I, for every φ ∈ E∗” (see Diestel and Uhl [11]). Also, it can be easily proved
that weak differentiability implies weak continuity.

AIMS Mathematics Volume 6, Issue 1, 52–65.



54

Let us denote by P∞(I, E) the space of all weakly measurable and Pettis integrable functions
x(·) : I→ E with the property that 〈φ, x(·)〉 ∈ L∞(I), for every φ ∈ E∗. Since for each t ∈ I the real
valued function s 7→ (t–s)α−1 is Lebesgue integrable on [0, t], the fractional Pettis integral [2]

Iαx(t) :=
∫ t

0

(t–s)α−1

Γ(α)
x(s)ds, t ∈ I,

exists, for every function x(·) ∈ P∞(I, E), as a function from I into E (see [32]). Moreover, we have

〈φ, Iαx(t)〉 =

∫ t

0

(t–s)α−1

Γ(α)
〈φ, x(s)〉ds, t ∈ I,

for every φ ∈ E∗, and the real function t 7→ 〈φ, Iαx(t)〉 is continuous (in fact, bounded and uniformly
continuous on I if I = R ) on I, for every φ ∈ E∗ ([4], Proposition 1.3.2).
In the following, consider α ∈ (0, 1) and for a given function x(·) ∈ P∞(I, E) we also denote by
x1−α(t) the fractional Pettis integral

I1–αx(t) =

∫ t

0

(t–s)−α

Γ(α)
x(s)ds, t ∈ I.

Lemma 1. [32] The fractional Pettis integral is a linear operator from P∞(I, E) into P∞(I, E).
Moreover, if x(·) ∈ P∞(I, E), then for α, β > 0 we have

(a) IαIβx(t) = Iα+βx(t), t ∈ I;
(b) limα→1Iαx(t) = I1x(t) = x(t)–x(0) weakly uniformly on I;
(c) limα→0Iαx(t) = x(t) weakly on I.

If y(·) : I→ E is a pseudo-differentiable function on I with a pseudo-derivative x(·) ∈ P∞(I, E),
then the fractional Pettis integral I1–αx(t) exists on I. The fractional Pettis integral I1–αx(t) is called
a fractional pseudo-derivative of y(·) on I and it will be denoted by Dαy(·); that is,

Dαy(t) = I1–αx(t), t ∈ I.

Usually, Dαy(·) is called the Caputo fractional pseudo-derivative of y(·).
For the properties of the fractional integral in Banach spaces (see [33, 34, 2]).
Now, we give the definition of the weak derivative of fractional order.

Definition 1. Let x : I → E be a weakly differentiable function and let x′ be a weakly continuous.
Then the weak derivative of x of order β ∈ (0, 1] by

Dβx(t) = I1−βDx(t)

where D is the weakly differential operator.

Recall that a function h : E → E is said to be weakly sequentially continuous if h takes each
weakly convergent sequence in E to a weakly convergent sequence in E. In reflexive Banach spaces,
both Pettis-integrable and weakly continuous functions are weakly measurable (see [11, 14, 15, 18]).
The following results are due to Pettis (see [29]).
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Proposition 1. If x(·) is Pettis integrable and h(·) is a measurable and essentially bounded real-
valued function, then x(·)h(·) is Pettis integrable.

The following result follows from the Hahn-Banach theorem.

Proposition 2. Let E be a normed space with x0 , 0. Then there exists a φ ∈ E∗ with
‖ φ ‖= 1 and φ(x0) =‖ x0 ‖.

Our main condition that guarantees the existence of weak solutions of (1.2) will be formulated in
terms of a measure of weak noncompactness β introduced by De Blasi in [12]. Further on, denote by
mE the family of nonempty and bounded subsets of E.
Let us recall that for any subset A ∈ mE of a Banach space E,

β(A) = in f {r > 0 : there exists a weakly compact set C such that A ⊂ C + rB1};

where B1 is the closed unit ball in E. The measure of weak noncompactness will be understood as a
function β : mE → [0,∞) such that (A, B ∈ mE) [12]

(a1) β(A) = 0⇔ A is relatively weakly compact in E,
(a2) β(A) = β(convA),
(a3) A ⊂ B⇒ β(A) ≤ β(B),
(a4) β(A ∪ {x}) = β(A), x ∈ E,
(a5) β(λA) = |λ|.β(A), λ ∈ R,
(a6) β(A + B) ≤ β(A) + β(B),
(a7) β(A ∪ B) = max ( β(A), β(B) ).

It is necessary to remark that if β has these properties, then the following lemma is true:

Lemma 2. ([1, 6, 25])
Let H ⊂ C[I, E] be a family of bounded and equicontinuous functions. Then the function t 7→ υ(t) =

β(H(t)) is continuous and β(H(I)) = sup{β(H(t)) : t ∈ I}, where β(·) denotes the weak noncompactness
measure on C(I, E) and H(t) = {u(t), u ∈ H}, t ∈ I.

Now we have the following theorem that will be needed in this paper.

Theorem 1. [22] Let Ω be a closed convex and equicontinuous subset of a metrizable locally convex
vector space E and let A be a weakly sequentially continuous mapping of Ω into itself. If for some
x ∈ Ω the implication

V = conv(A(V) ∪ {x})⇒ V is relatively weakly compact

holds, for every subset V of Ω, then A has a fixed point.

2. Main result

Let α ∈ (0, 1). In this section we study the existence of solutions of the equation (1.2) in a
nonreflexive Banach space E, it will be investigated under the assumptions:

(I) p ∈ C[I, E];
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(II) f (·, ·) : I × E → E is a function such that:

(i) for each t ∈ I, f (t, ·) is weakly sequentially continuous in x;
(ii) for each x ∈ C[I, E], f (·, x(·)) ∈ P∞(I, E);

(iii) for any r0 > 0, there exists a nonnegative constant Mr0 with || f (s, x(s))|| ≤ Mr0 for all t ∈ I
and all x ∈ E with ||x|| ≤ r0.

Definition 2. By a solution to (1.2) we mean a function x ∈ C[I, E] which satisfies the integral equation
(1.2). This is equivalent to finding x ∈ C[I, E] with

φ(x(t)) = φ(p(t) + λIα f (t, x(t))), t ∈ I, 0 < α < 1,

for all φ ∈ E∗.

Now, we shall prove the following existence theorem

Theorem 2. Let the assumptions (I) and (II) be satisfied, and if

β( f (I × X)) ≤ K β(X), K ≥ 0

for each bounded subset X of E, then there exists at least one weak solution x ∈ C[I, E] for the
equation (1.2), for each λ ∈ R such that | λ |< ρ, ρ > 0.

Proof.
Let r(H) be the spectral radius of the integral operator H defined as

Hu(t) =

∫ t

0

(t − s)α−1

Γ(α)
Ku(s)ds, u ∈ C[I,R], t ∈ I,

and let

ρ = min

sup
r>0

r− ‖ p ‖0
Mr0 Tα

Γ(α+1)

,
1

r(H)


Fix λ ∈ R, | λ |< ρ and choose r0 > 0 such that

‖ p ‖0 + | λ |
Mr0T

α

Γ(α + 1)
≤ r0. (2.1)

Let us define the operator A by

(Ax)(t) = p(t) + λ Iα f (t, x(t)), t ∈ I, 0 < α < 1.

First, note that assumption (ii) implies that for each x ∈ C[I, E], f (·, x(·)) is Pettis integrable on I
then φ( f (·, x(·))) is Lebesgue integrable on I for every φ ∈ E∗. Also, f (·, x(·)) is fractionally Pettis
integrable for all t ∈ I which implies that the fractional Pettis integral of the function f is weakly
continuous and thus the operator A makes sense.
Now, define the set Ω as follows:

Ω = {x ∈ C[I, E] :‖ x ‖0≤ r0, ∀t1, t2 ∈ I : [‖ x(t2) − x(t1) ‖≤‖ p(t2) − p(t1) ‖
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+
| λ | Mr0

Γ(α + 1)
(| tα2 − tα1 | +2(t2 − t1)α)]}.

Note that Ω is closed, bounded, convex and equicontinuous subset of C[I, E].
We shall show that A satisfies the assumptions of Theorem 1. The proof will be given in four steps.

Step 1 : The operator A maps C[I, E] into itself.
Let t1, t2 ∈ I, t2 > t1, without loss of generality, assume Ax(t2) − Ax(t1) , 0, then there
exists φ ∈ E∗ with ‖ φ ‖= 1 and

‖ Ax(t2) − Ax(t1) ‖= φ(Ax(t2) − Ax(t1)).

Thus

‖ Ax(t2) − Ax(t1) ‖ ≤ | φ(p(t2) − p(t1)) | + | λ | |
∫ t2

0

(t2 − s)α−1

Γ(α)
φ( f (s, x(s))) ds

−

∫ t1

0

(t1 − s)α−1

Γ(α)
φ( f (s, x(s))) ds |

≤ ‖ p(t2) − p(t1) ‖ + | λ | |

∫ t1

0
(
(t2 − s)α−1

Γ(α)
−

(t1 − s)α−1

Γ(α)
)φ( f (s, x(s))) ds |

+ | λ | |

∫ t2

t1

(t2 − s)α−1

Γ(α)
φ( f (s, x(s))) ds | .

≤ ‖ p(t2) − p(t1) ‖ + | λ | Mr0

∫ t1

0
|

(t1 − s)α−1

Γ(α)
−

(t2 − s)α−1

Γ(α)
| ds

+ | λ | Mr0

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds

≤ ‖ p(t2) − p(t1) ‖ + | λ | Mr0(
| tα2 − tα1 |
Γ(α + 1)

+ 2
(t2 − t1)α

Γ(α + 1)
)

≤ ‖ p(t2) − p(t1) ‖ +
| λ | Mr0

Γ(α + 1)
(| tα2 − tα1 | +2(t2 − t1)α).

Hence

‖ Ax(t2) − Ax(t1) ‖≤‖ p(t2) − p(t1) ‖ +
| λ | Mr0

Γ(α + 1)
(| tα2 − tα1 | +2(t2 − t1)α). (2.2)

This estimation shows that A maps C[I, E] into itself.

Step 2 : The operator A maps Ω into itself.
To see this, take x ∈ Ω; without loss of generality; assume Iα f (t, x(t)) , 0, then there exists (by
Proposition 2) φ ∈ E∗ with ||φ|| = 1 and ||Iα f (t, x(t))|| = φ(Iα f (t, x(t))) and by
(4) φ(Iα f (t, x(t))) = Iαφ( f (t, x(t))). Thus

‖ Ax(t) ‖ ≤ φ(p(t)) + φ(λIα f (t, x(t))) ≤ ‖ p(t) ‖ + | λ | Iαφ( f (t, x(t)))

≤ ‖ p(t) ‖ + | λ |

∫ t

0

(t − s)α−1

Γ(α)
| φ( f (s, x(s))) | ds
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≤ ‖ p(t) ‖ + | λ | Mr0

∫ t

0

(t − s)α−1

Γ(α)
ds

≤ ‖ p(t) ‖ +
| λ | Mr0 t

α

Γ(α + 1)

≤ ‖ p ‖0 +
| λ | Mr0T

α

Γ(α + 1)
≤ r0,

therefore, ‖ Ax ‖0= sup
t∈I
‖ Ax(t) ‖ ≤ r0, and by using (2.2) we get A : Ω→ Ω.

Step 3 : The operator A is weakly sequentially continuous on Ω.
To see this, let (xn(·)) be a sequence in Ω such that xn(·) converges weakly to x(·) in Ω.
Then xn(t) → x(t) in Eω for each t ∈ I. Fix t ∈ I. Then by the weak sequential continuity of f (t, .) it
follows that f (s, xn(s)) converges weakly to f (s, x(s)) for each s ∈ I, therefore
φ( f (s, xn(s))) converges to φ( f (s, x(s))) for each s ∈ I.
By the Lebesgue dominated convergence theorem [17] we have Iα f (s, xn(s))→ Iα f (s, x(s)) and then
Axn(t)→ Ax(t) in Eω for each t ∈ I, so A is weakly sequentially continuous on Ω.

Step 4 : V ⊂ Ω is relatively weakly compact.
Put Ax(t) = p(t) + Fx(t) where Fx(t) = λ Iα f (t, x(t)) for x ∈ Ω, t ∈ I.

Suppose that V ⊂ Ω such that V ⊂ conv(A(V)
⋃
{0}). We will show that V is weakly relatively

compact in C[I, E].
Put N = F(V), υ(t) = β(V(t)), ν(t) = β(N(t)) for t ∈ I.
Obviously V(t) ⊂ conv(A(V)(t)

⋃
{0}), t ∈ I. Using the properties of β we have

υ(t) ≤ β(A(V)(t)
⋃
{0}) = β(A(V)(t)) = β(F(V)(t)) = ν(t), t ∈ I.

As V ⊂ Ω is equi-continuous, by Lemma 2 the function t 7→ ν(t) is continuous on [0, t). It follows
that s 7→ (t − s)α−1ν(s) is continuous on [0, t).
Hence there exists δ > 0, 0 < ε < 1 such that

‖ (t − τ)α−1ν(τ) − (t − s)α−1ν(s) ‖<
ε

2
,

and
‖ ν(ζ) − ν(τ) ‖<

ε

2(ti − ti−1)α−1 ,

for | τ − s |< δ and | τ − ζ |< δ with τ, ζ, s ∈ [0, t), it follows that

| (t − τ)α−1ν(ζ) − (t − s)α−1ν(s) |≤| (t − τ)α−1ν(τ) − (t − s)α−1ν(s) | +(t − τ)α−1 | ν(ζ) − ν(τ) |

that is
| (t − τ)α−1ν(ζ) − (t − s)α−1ν(s) |< ε (2.3)

for all τ, ζ, s ∈ [0, t) with | τ − s |< δ, | τ − ζ |< δ. Fix t ∈ I, divide the interval [0, t) into n parts 0 =

t0 < t1 < ... < tn = t, ti − ti−1 < δ, i = 1, 2, 3, ..., n. Put Ti = [ti−1, ti]. In view of Lemma 2 it follows that
for each i ∈ [1, 2, ..., n] there exists τi ∈ Ti such that

β(N(Ti)) = ν(τi), i = 1, ..., n.
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By the Mean Value theorem we have

Fx(t) ≤| λ |
n∑

i=1

∫
Ti

(t − s)α−1

Γ(α)
f (s, x(s)) ds

∈
| λ |

Γ(α)

n∑
i=1

(ti − ti−1)conv((t − s)α−1 f (Ti × V(Ti)))

where f (Ti × V(Ti)) = { f (s, x(s)) : s ∈ Ti, x ∈ V}. Then

FV(t) ⊂
| λ |

Γ(α)

n∑
i=1

(ti − ti−1)conv((t − s)α−1 f (Ti × V(Ti)))

for some τi ∈ Ti. Hence

ν(t) ≤
| λ |

Γ(α)

n∑
i=1

(ti − ti−1)(t − ti)α−1β( f (Ti × V(Ti)))

≤
| λ |

Γ(α)

n∑
i=1

(ti − ti−1)(t − ti)α−1Kβ(V(Ti))

≤
| λ |

Γ(α)

n∑
i=1

(ti − ti−1)(t − ti)α−1Kβ(N(Ti))

≤
| λ |

Γ(α)

n∑
i=1

(ti − ti−1)(t − ti)α−1Kν(τi).

Moreover as
| (t − ti)α−1ν(τi) − (t − s)α−1ν(s) |< ε Γ(α), s ∈ Ti,

we have
(t − ti)α−1ν(τi)(ti − ti−1) ≤

∫
Ti

(t − s)α−1ν(s) ds + εΓ(α)(ti − ti−1).

Thus

ν(t) ≤
| λ |

Γ(α)

∫
Ti

(t − s)α−1Kν(s) ds+ | λ | K
n∑

i=1

(ti − ti−1) ε.

As ε is arbitrary, and letting n→ ∞ we get

ν(t) ≤| λ |
∫ t

0

(t − s)α−1

Γ(α)
Kν(s) ds.

Since | λ | r(H) < 1, it follows that ν(t) = 0 ⇒ υ(t) = 0 for t ∈ I. Hence V(t) is weakly relatively
compact in E. Applying now Theorem (1) we deduce that A has a fixed
point.

Remark:
Now, If E is reflexive, it is not necessary to assume any compactness condition on the function f
because, a subset of reflexive Banach space is weakly compact if and only if it is weakly closed and
bounded in norm.
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3. Initial value problem

In this section we shall study existence theorems of weak solutions and pseudo-solutions for the
initial value problem (1.1).

3.1. Weak solution for the initial value problem

As a particular case of Theorem 2 we can obtain a theorem on the existence of solutions belonging
to the space C(I, E) for the initial value problem (1.1).
Consider the following assumption:

(i)∗ f (·, x(·)) is weakly-weakly continuous.

Theorem 3. If the assumptions of Theorem 2 be satisfied and replace the assumptions (i) and (ii) by
the assumption (i)∗ . Then the initial value problem (1.1) has at least one weak solution x ∈ C[I, E].

Proof.
Putting α = 1 − γ, p(t) = 0 and λ = 1 in the equation (1.2) and considering a solution y : I → E,
then y(·) satisfies

y(t) = I1−γ f (t, y(t)), (3.1)

and
Iγy(t) = I1 f (t, y(t)), t ∈ I,

since f is weakly continuous in t, then it is weakly differentiable with respect to the right end point of
the integration interval and its derivative equals the integrand at that point [25], therefore

d
dt

Iγy(t) = f (t, y(t)), t ∈ I.

Set
x(t) = x0 + Iγy(t) = x0 + I1 f (t, y(t)). (3.2)

Then x(·) is weakly differentiable and x(0) = x0,
dx
dt = f (t, y(t)) ,

since f is weakly continuous in t, I1−γ dx
dt exists and

Dγx(t) = I1−γ dx
dt

= I1−γ f (t, y(t)) = y(t).

Then any solution of (3.1) will be a solution of (1.1), this solution is given by (3.2). This completes the
proof.

3.2. Pseudo-solutions for the initial value problem

In this subsection, we are looking for sufficient conditions to prove the existence of pseudo-solution
to the initial value problem (1.1) under the Pettis integrability assumption imposed on f .
The existence of pseudo-solution in Banach space for the initial value problem

x′(t) = f (t, x(t)), x(0) = x0 (3.3)
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is proved in [6, 7]. The function f : I × E → E will assumed to be Pettis integrable.
The existence of pseudo-solutions of (3.3) is equivalent to the existence of solutions to the integral

equation (see [29])

x(t) = x0 +

∫ t

0
f (s, x(s)) ds (3.4)

Definition 3. [20] A function x : I → E is said to be a pseudo-solution of the initial value problem
(3.3) if
(a) x(·) is absolutely continuous and x(0) = x0,
(b) for each φ ∈ E∗ there exists a null set N(φ) (i.e. N is depending on φ and mes(N(φ)) = 0) such
that for each t < N(φ)

(φx)′(t) = φ( f (t, x(t)))

where x′ denotes the pseudo-derivative (see Pettis [29] or [6]).

The following lemma will be needed.

Lemma 3. Let x(·) : I→ E be a weakly measurable function.
If x(·) is Pettis integrable on I, then the indefinite Pettis integral

y(t) =

∫ t

0
x(s)ds, t ∈ I

is absolutely continuous on I and x(·) is a pseudo-derivative of y(·).

Now, we can prove the following theorem.

Theorem 4. Let the assumptions of Theorem 2 be satisfied. Then the initial value problem (3.3) has at
least one pseudo-solution.

Proof:
For any x ∈ C[I, E] and by a direct application of Theorem 2 (with α = 1), it can be easily seen that
the equation (3.4) has a weak solution x ∈ C[I, E].
Let x be a weak solution of (3.4). Then for any φ ∈ E∗ we have

φx(t) = φ(x0 +

∫ t

0
f (s, x(s)) ds)

= φ(x0) + φ(
∫ t

0
f (s, x(s)) ds)

= x0 +

∫ t

0
φ( f (s, x(s))) ds.

By differentiating both sides, we obtain

d
dx
φx(t) = φ( f (s, x(s))) a.e. on I

and

lim
t→0+

φx(t) = lim
t→0+

[φ(x0) +

∫ t

0
φ( f (s, x(s)))ds] = x0.
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That is, x(t) has a pseudo-derivative and satisfies

d
dt

x(t) = f (t, x(t)) on I.

Now we shall study the existence of pseudo-solution for the initial value problem (1.1).

Definition 4. A function x : I→ E is called pseudo-solution of the problem (1.1) if x ∈ C[I, E] has a
pseudo-derivative, x(0) = x0 and satisfies

φ(
dx
dt

) = φ( f (t,Dγx(t))) a.e. on I for each φ ∈ E∗.

The following Lemma is needed.

Lemma 4. If y ∈ C[I, E] is a solution to the problem

y(t) = I1−γ f (t, y(t)), γ ∈ (0, 1), t ∈ I (3.5)

then x(t) = x0 + Iγy(t) is a pseudo-solution for the problem (1.1).

Proof:
Let y ∈ C[I, E] be a solution to the problem (3.5). For x(t) = x0 + Iγy(t), then x(t) ∈ C[I, E] and the
real function φx is continuous for every φ ∈ E∗; moreover

lim
t→0+

φx(t) = lim
t→0+

[x0 + (Iγφy)(t)]

= x0 + lim
t→0+

(Iγφy)(t)

= x0 + lim
t→0+

∫ t

0

(t − s)γ−1

Γ(γ)
φ(y(s)) ds

= x0.

Thus φx(0) = x0 for φ ∈ E∗. That is x(0) = x0.

Then we have

Dγx(t) = Dγ[x0 + Iγy(t)]
= 0 + DγIγy(t)
= D0y(t)
= y(t).

Theorem 5. Let the assumptions of Theorem 2 be satisfied. Then the initial value problem (1.1) has at
least one pseudo-solution x ∈ C[I, E].

Proof
Firstly, observe that x(t) = x0 + Iγy(t) makes sense for any y ∈ C[I, E].
According to Theorem 2 it can be easily seen that the integral equation (3.5) has a solution y ∈ C[I, E].
Let y be a weak solution of (3.5). Then for any φ ∈ E∗ we have

φy(t) = φ(I1−γ f (t, y(t))) = I1−γφ( f (t, y(t))). (3.6)
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Operating by Iγ on both sides of (3.6) and using the properties of fractional calculus in the space
L1[I] (see [23, 28]) result in

Iγφy(t) = I1φ( f (t, y(t)).

Therefore
φ(Iγy(t)) = I1φ( f (t, y(t)),

φ(x(t) − x0) = φ(x(t)) − x0 = I1φ( f (t, y(t)).

Thus
d
dt
φ(x(t)) = φ( f (t,Dγx(t)),

and
d
dt
φ(x(t)) = φ( f (t,Dγx(t)) a.e. on I

That is, x(t) has the pseudo-derivative and satisfies

dx(t)
dt

= f (t,Dγx(t)) on I.

4. Conclusions

In this paper, we established some existence results of weak solutions and pseudo-solutions for the
initial value problem of the arbitrary (fractional) orders differential equation in nonreflexive Banach
spaces, we investigate the case of a vector-valued Pettis integrable function. The assumptions in the
existence theorem are expressed in terms of the weak topology using a weak noncompactness type
condition (expressed in terms of measure of noncompactness) .
For real-valued function and the function f is independent of the fractional derivatives, we have the
problems studied in [10, 31]. In abstract spaces with conditions related to the weak topology on a
reflexive Banach space, we have the problem studied in [33]. In abstract spaces with conditions related
to the weak topology on a Banach space and the function f is independent of the fractional derivatives,
we have the problem studied in [6, 7].
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