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1. Introduction  

Integrals are very important in studying the functions of a complex variable. The integration 

theory is notable for its mathematical elegance. The theorems are generally concise and powerful, and 

their proofs are simple. The theory has also multiple applications in applied mathematics, engineering, 

and natural sciences, [1].  

Fractional Calculus has attracted a great interest from mathematicians, scientists, and engineers 

due to the fact that many systems can be modeled in the context of fractional-order derivatives better 

than modeling them using the classical integer-order derivatives because many systems and 

phenomena exhibit memory effect and have internal damping [25]. The main idea of Fractional 

Calculus was initiated at the end of the 17
th

 century when the French mathematician L'Hôpital 

proposed an interesting research question about the half-order derivative [25]. This was the point 
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where the discussion started going into discovering this new mathematical idea in more details, and 

recently this topic of research created a revolution in applied mathematics and sciences. Various 

fractional derivative definitions have been formulated, and the most common ones in research studies 

are the Caputo fractional derivative and Riemann-Liouville fractional derivative.  

In this current paper, our main objective is to establish, in the fractional context, important results 

on the existence of antiderivatives of a function of a complex variable in a certain domain, such as 

Cauchy-Goursat Theorem. In this way, we extend the research done in [2]. 

In this complex analysis fractional formulation, we will use the definitions of conformable 

derivatives and integrals, introduced by Khalil et al. [3]. From this new definition of derivative, 

important elements of the mathematical analysis of functions of a real variable have been established, 

among which we can highlight: Rolle’s Theorem, Mean Value Theorem, chain rule, fractional power 

series expansion, fractional integration by parts formulas, and fractional single Laplace transform and 

double Laplace transform definitions, [3–5,25]. This new definition is a limit-based definition that 

satisfies the properties of the usual derivatives.  

The conformable partial derivative of the order 𝛼 ∈  0,1]  of the real-valued functions of several 

variables and conformable gradient vector are defined, as well as the conformable version of Clairaut’s 

Theorem for partial derivatives of conformable fractional orders is proven in [6]. In [7], the 

conformable Jacobian matrix is defined; the chain rule for multivariable conformable derivative is 

given; the relation between conformable Jacobian matrix and conformable partial derivatives is 

revealed. In [8], two new results on homogeneous functions involving their conformable partial 

derivatives are introduced, specifically, the homogeneity of the conformable partial derivatives of a 

homogeneous function and the conformable version of Euler’s Theorem. Furthermore, in a short time, 

several research studies have been conducted on the theory and applications of fractional differential 

equations based on this newly defined fractional derivative, [9–21,25]. In addition, both physical and 

geometrical meanings of conformable derivatives have been interpreted in [24,26], respectively. While 

many of the classical and well-known fractional derivatives can offer many advantages in modelling 

various physical systems, there are some disadvantages associated with those fractional derivatives 

such as the difficulty of obtaining analytical solutions and the need to implement special numerical 

techniques to overcome this challenge. However, conformable derivative provides a great help in 

finding analytical solutions in a very simple and effective way comparing to the classical fractional 

derivatives such as Grünwald-Letnikov, Caputo, and many others (we refer to [25] for more 

information about some analytical methods for solving wave equation in the context of conformable 

derivative). 

In relation to complex fractional analysis, a theory of analytic functions in the conformable sense 

is developed in [22,23]. Furthermore, the definition of conformable integral along a contour and its 

first properties are introduced in [2]. 

The paper is organized as follows: In Section 2, the main concepts of conformable fractional 

calculus are presented. In Section 3, an important property of moduli of fractional contour integrals is 

presented. In Section 4, we establish the necessary and sufficient conditions for a continuous function 

to have 𝛼 −antiderivative. In Section 5, we develop the conformable version of some of the 

well-known Cauchy Theorems, specifically, the Cauchy-Goursat theorem, the Cauchy theorem for 

star-shaped domains, and the Morera theorem. In Section 6, we present several examples that show 

how the physical concepts, such as the circulation and the net flow of the velocity vector field of a 

two-dimensional fluid flow, can be modified appropriately to directly acclimatize the perception of 

fractional contour integrals. 
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2. Basic definitions and tools 

We state in this section some definitions, remarks, and theorems which are important for our 

research study: 

Remark 2.1. Let 𝛼 ∈  0,1) . Then, 1 − 𝛼 ≥ 0 . So, 𝑧1−𝛼 = 𝑟1−𝛼𝑒𝑖 1−𝛼 𝜃  is well defined for all 

𝑧 ≠ 0. Further, the function 𝑓 𝑧 = 𝑧1−𝛼  is analytic on 𝐶 −  −∞, 0] . 

Remark 2.2. [27]. On one hand, ∀ 𝑚 ∈ Ν, assume that 𝑟 =  𝑧  and Φ = 𝑎𝑟𝑔 𝑧 where 𝑧 ∈ 𝐶, then 

the De Moivre’s formula can be defined as: 𝑧𝑚 = 𝑟𝑚 𝑐𝑜𝑠 𝑚𝛷 + 𝑖 𝑠𝑖𝑛 𝑚𝛷  . On the other hand, 

assume now that 𝛺 = 𝜌 𝑐𝑜𝑠 Ψ + 𝑖 𝑠𝑖𝑛 Ψ   where ≠ 0; 𝛺 ∈ 𝐶, then there exists a number of 𝑚 

such that the 𝑚𝑡  roots of 𝛺 = 𝑧𝑚  can be expressed as follows: 

𝑧
1
𝑚 =  𝑟𝑒𝑖𝛷 

1
𝑚 = (𝑟)

1
𝑚 (𝑒𝑖𝛷 )

1
𝑚 = 𝑟

1
𝑚   𝑐𝑜𝑠  

2𝑘𝜋 + 𝛷  

𝑚
 + 𝑖 𝑠𝑖𝑛  

2𝑘𝜋 + 𝛷  

𝑚
  . 

Let 𝛼 ∈  0,1) . Then 1 − 𝛼 ≥ 0 . So, 𝑧1−𝛼 = 𝑟1−𝛼𝑒𝑖 1−𝛼 𝜃  is well defined for all 𝑧 ≠ 0 . 

Further, the function 𝑓 𝑧 = 𝑧1−𝛼  is analytic on 𝐶 −  −∞, 0] . 

Definition 2.1. [22]. Let 𝑓: 𝐷 → 𝐶 be a given function and 𝑧0 ∈ 𝐷 −  0  (which is an open set). 

Then,  𝑓 is called 𝛼 −differentiable at 𝑧0 if 

lim𝜖→0
𝑓 𝑧0+휀  𝑧0

1−𝛼 −𝑓 𝑧0 

휀
.         (1) 

In this case, we write (𝑇𝛼𝑓) 𝑧0  for such fractional derivative. Also, we use 𝑓 𝛼  𝑧0  as an 

alternative way of writing the fractional derivative. If 𝑓 is 𝛼-differentiable in some neighborhood of 

𝑧 = 0, and lim𝑧→0 𝑇𝛼𝑓  𝑧  exists, then we define:  𝑇𝛼𝑓  0 = lim𝑧→0 𝑇𝛼𝑓  𝑧 . 

As a consequence of the above definition, the following useful theorem is obtained: 

Theorem 2.1. [23]. Let 𝑓: 𝐷 → 𝐶 be a given function and 𝑧0 ∈ 𝐷 −  0  (which is an open set). If 𝑓 

is 𝛼-differentiable at 𝑧0 > 0, then 𝑓 is continuous at 𝑧0. 

One can easily prove the following: 

Theorem 2.2. [22, 23]. The fractional derivative in Definition 2.1 satisfies the following: 

(i) 𝑇𝛼 𝜆 = 0, for all constant functions such that 𝑓 𝑡 =𝜆. 

(ii)  𝑇𝛼 𝑓 + 𝑔 =   𝑇𝛼𝑓 +   𝑇𝛼𝑔 . 

(iii) 𝑇𝛼 𝑓𝑔 = 𝑓 𝑇𝛼𝑔 + 𝑔(𝑇𝛼𝑓). 

(iv) 𝑇𝛼  
𝑓

𝑔
 =

𝑔 𝑇𝛼𝑓 −𝑓(𝑇𝛼𝑔)

𝑔2 . 

(v) 𝑇𝛼  
1

𝛼
𝑧𝛼 = 1. 

(vi) 𝑇𝛼  𝑒
1

𝛼
𝑧𝛼

 = 𝑒
1

𝛼
𝑧𝛼

. 

(vii) 𝑇𝛼  sin  
1

𝛼
𝑧𝛼  = 𝑐𝑜𝑠  

1

𝛼
𝑧𝛼 . 

(viii) 𝑇𝛼  cos  
1

𝛼
𝑧𝛼  = −𝑠𝑖𝑛  

1

𝛼
𝑧𝛼 . 

(ix) In addition, if 𝑓 is differentiable, then  𝑇𝛼𝑓  𝑧 = 𝑧1−𝛼𝑓 (́𝑧). 

Motivated by the research work done in [27], to have a good visualization for some the selected 

functions in Theorem 2.2, Figures from 1 to 4 show the plot of the following functions: 

𝑓(𝑧) =
1

𝛼
𝑧𝛼 ; 𝑓(𝑧) = 𝑒

1
𝛼𝑧𝛼

;  𝑓(𝑧) = 𝑠𝑖𝑛  
1

𝛼
𝑧𝛼 ; 𝑓(𝑧) = 𝑐𝑜𝑠  

1

𝛼
𝑧𝛼  

at different chosen values of 𝛼 = 0.25; 0.50; 0.75; 0.95, respectively. 
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Figure 1. The plot of real part (a), imaginary part (b), complex map (c), and Riemann 

surface (d) of the function: 𝑓(𝑧) =
1

𝛼
𝑧𝛼  at 𝛼 = 0.25. 

 

Figure 2. The plot of real part (a), imaginary part (b), complex map (c), and Riemann 

surface (d) of the function: 𝑓(𝑧) = 𝑒
1

𝛼
𝑧𝛼

 at 𝛼 = 0.50. 
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Figure 3. The plot of real part (a), imaginary part (b), complex map (c), and Riemann 

surface (d) of the function: 𝑓(𝑧) = 𝑠𝑖𝑛  
1

𝛼
𝑧𝛼  at 𝛼 = 0.75. 

 

Figure 4. The plot of real part (a), imaginary part (b), complex map (c), and Riemann 

surface (d) of the function: 𝑓(𝑧) = 𝑐𝑜𝑠  
1

𝛼
𝑧𝛼  at 𝛼 = 0.95. 
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Definition 2.2. [22]. Let 𝑓: 𝐷 ⊂ 𝐶 → 𝐶  such that 𝑓 is 𝛼 −differentiable at 𝑧0  and in some disk 

around 𝑧0. Then,  𝑓 is called 𝛼 −analytic at 𝑧0. If 𝑓 is 𝛼 −analytic at each 𝑧 in a region 𝐷, then we 

say 𝑓 is 𝛼 −analytic on 𝐷. 

The following definition is the 𝛼-fractional integral of a complex-valued function of a complex 

variable: 

Definition 2.3. Let 𝛾:  𝑎, 𝑏 → 𝐶 be a contour, with 𝑎 > 0 and 𝛾∗ ⊂ 𝐶 −  −∞. 0  ]. Let 𝑓: 𝛾∗ → 𝐶 

be continuous. We define the contour 𝛼 − integral of 𝑓  along 𝛾  as soon as we understand the 

complex number [2], 

 𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼 =  𝑓 𝛾 𝑡  
𝑏

𝑎𝛾

 𝑇𝛼𝛾  𝑡 

 𝛾 𝑡  
1−𝛼

𝑑𝑡

𝑡1−𝛼  .      (2) 

Note that, since γ is a contour,  Tαγ  t  is also piecewise continuous on the closed interval 

 a, b ; hence, the existence of integral (2) is ensured. 

3. Upper bounds for moduli of contour 𝜶 −integrals 

In this section, we consider a contour 𝛾:  𝑎, 𝑏 → 𝐶, with 𝑎 > 0 and 𝛾∗ ⊂ 𝐶 −  −∞. 0  ]. 

Theorem 3.1. Let 𝛾:  𝑎, 𝑏 → 𝐶 be a contour. For a continuous function 𝑓: 𝛾∗ → 𝐶, we have: 

  𝑓(𝑧)
𝑑𝑧

𝑧1−𝛼𝛾
 ≤ 𝑚𝑎𝑥   

𝑓 𝑧 

𝑧1−𝛼 : 𝑧 ∈ 𝛾∗   𝐿 𝛾 ,     (3) 

where 𝐿 𝛾  is the length of the contour 𝛾.  

Proof. By theorem 4.4 in [2], we have: 

  𝑓(𝑧)
𝑑𝑧

𝑧1−𝛼
𝛾

 =   𝑓 𝛾 𝑡  
 𝑇𝛼𝛾  𝑡 

 𝛾  𝑡  
1−𝛼

𝑑𝑡

𝑡1−𝛼

𝑏

𝑎

 ≤   𝑓 𝛾 𝑡    
 𝑇𝛼𝛾  𝑡 

 𝛾 𝑡  
1−𝛼  

𝑏

𝑎

𝑑𝑡

𝑡1−𝛼

≤ 𝑚𝑎𝑥   
𝑓 𝑧 

𝑧1−𝛼
: 𝑧 ∈ 𝛾∗     𝑇𝛼𝛾  𝑡  

𝑑𝑡

𝑡1−𝛼
= 𝑚𝑎𝑥   

𝑓 𝑧 

𝑧1−𝛼
: 𝑧 ∈ 𝛾∗  𝐿 𝛾 

𝑏

𝑎

. 

Remark 3.1. In practice, it is not necessary to determine 

𝑚𝑎𝑥   
𝑓 𝑧 

𝑧1−𝛼
: 𝑧 ∈ 𝛾∗  = 𝑚𝑎𝑥   

𝑓 𝛾 𝑡  

 𝛾 𝑡  
1−𝛼 : 𝑡 ∈  𝑎, 𝑏   , 

because it is very often to have an easy estimate as follows: 

 
𝑓 𝑧 

𝑧1−𝛼
 ≤ 𝑀, ∀𝑧 ∈ 𝛾∗ 

Hence, we have max   
𝑓 𝑧 

𝑧1−𝛼 : 𝑧 ∈ 𝛾∗  ≤ 𝑀. By using (3), we obtain the following: 

  𝑓(𝑧)
𝑑𝑧

𝑧1−𝛼
𝛾

 ≤ 𝑀 ∙ 𝐿 𝛾 , 

which in practice is just as useful as (3). 

Example 3.1. Let 𝛾 denote the line segment from 𝑧 = 2𝑖 to 𝑧 = 1. By observing that of all the 

points on that line segment, the midpoint is the closest to the origin. Show that 
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𝑧

3
2 

𝑧9

𝑑𝑧

𝑧
1

2 
𝛾

 ≤ 32 2 

Solution. The midpoint of 𝛾 is clearly the closest on 𝛾 to the origin. The distance of that midpoint 

from the origin is clearly  2, and the length of 𝛾 is 2 2. 

Hence, if 𝑧  is any point of 𝛾 ,  𝑧 ≥  2 . This means that, for such a point  
𝑧

3
2 

𝑧9

1

𝑧
1

2 
 ≤ 16 . 

Consequently, by taking 𝑀 = 16 and 𝐿 𝛾 = 2 2, we have: 

  
𝑧

3
2 

𝑧9

𝑑𝑧

𝑧
1

2 
𝛾

 ≤ 𝑀 ∙ 𝐿 𝛾 = 32 2 

4. 𝜶 −Antiderivatives 

Although the value of a contour 𝛼 −integral of a function 𝑓 𝑧  from a fixed point 𝑧1 to a fixed 

point 𝑧2 depends generally on the path taken, there are certain functions whose 𝛼 −integrals from 𝑧1 

to 𝑧2 have values that are independent of path. The following theorem is useful in determining when 

fractional integration is independent of path, and moreover, when an 𝛼 −integral around a closed path 

has a value of zero. 

To prove the theorem, we shall discover a fractional extension of the fundamental theorem of 

calculus that simplifies the evaluation of many contour 𝛼 −integrals. That extension involves the 

concept of an 𝛼 −antiderivative of a continuous function 𝑓 in a domain 𝐷 ⊂ 𝐶 −  −∞. 0  ], which we 

define as follows: 

Definition 4.1. Let 𝑓 be a continuous function in a domain 𝐷 ⊂ 𝐶 −  −∞. 0  ]. If there exists a 

function 𝐹: 𝐷 → 𝐶 such that  𝑇𝛼𝐹  𝑧 = 𝑓(𝑧) for all 𝑧 in 𝐷, then 𝐹 is called 𝛼 −antiderivative 

(or 𝛼 −primitive) of 𝑓 on 𝐷. 
Remark 4.1. We notice the following: 

(i) An 𝛼 −antiderivative is, of necessary, an 𝛼 −analytic function. 

(ii) An 𝛼 −antiderivative of a given function 𝑓 is unique except for an additive complex 

constant. 

Theorem 4.1. Suppose that a function 𝑓(𝑧) is continuous on a domain 𝐷 ⊂ 𝐶 −  −∞. 0  ]. If any one 

of the following statements is true, then the others hold true. 

(iii) 𝑓 𝑧  has an 𝛼 −antiderivative 𝐹 𝑧  in 𝐷. 

(iv) The 𝛼 −integrals of 𝑓 𝑧  along contours lying entirely in 𝐷 and extending from any 

fixed point 𝑧1 to any fixed point 𝑧2 all have the same value. 

(v) The 𝛼 −integrals of 𝑓 𝑧  around closed contours lying entirely in 𝐷 all have zero value. 

Proof. To prove the above theorem, it is sufficient to show that the statement (i) implies statement (ii), 

which also implies statement (iii), and finally that statement (iii) implies statement (i). 

Let assume that statement (i) is true. If a contour 𝛾 from 𝑧1 to 𝑧2, lying in 𝐷, is just a smooth curve, 

with parametric representation 𝛾:  𝑎, 𝑏 → 𝐶, with 𝑎 > 0. By the chain rule, [4], we have: 

 𝑇𝛼 𝐹 ∘ 𝛾   𝑡 =  𝑇𝛼𝐹  𝛾 𝑡  
 𝑇𝛼𝛾  𝑡 

 𝛾 𝑡  
1−𝛼 = 𝑓 𝛾 𝑡  

 𝑇𝛼𝛾  𝑡 

 𝛾 𝑡  
1−𝛼 . 

By the fundamental theorem of calculus which can be extended to be applicable to 

complex-valued functions of a real variable [2], so it follows that 
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 𝑓(𝑧)
𝑑𝑧

𝑧1−𝛼
𝛾

=  𝑓 𝛾 𝑡  
 𝑇𝛼𝛾  𝑡 

 𝛾 𝑡  
1−𝛼

𝑑𝑡

𝑡1−𝛼

𝑏

𝑎

=  𝐹 𝛾 𝑡   
𝑎

𝑏
= 𝐹 𝛾 𝑏  − 𝐹 𝛾 𝑎   

Since 𝛾 𝑎 = 𝑧1 and 𝛾 𝑏 = 𝑧2, the value of this contour 𝛼 −integral can be written as: 

𝐹 𝑧2 − 𝐹 𝑧1  

As a result, the above value is independent of the contour 𝛾 as long as 𝛾 extends from 𝑧1 to 𝑧2 and 

lies in 𝐷. That is, 

 𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼 =
𝑧2

𝑧1
𝐹 𝑧2 − 𝐹 𝑧1 =  𝐹 𝑧  𝑧1

𝑧2 ,     (4) 

where 𝛾 is smooth. Expression (4) is also valid when 𝛾 is any contour, not necessarily a smooth one, 

that lies in 𝐷. If 𝛾 consists of a finite number of smooth curves 𝛾𝑘   𝑘 = 1,2, … , 𝑛 , each 𝛾𝑘   is 

extending from point 𝑧𝑘  to a point 𝑧𝑘+1, then 

 𝑓(𝑧)
𝑑𝑧

𝑧1−𝛼𝛾
=   𝑓 𝑧 

𝑑𝑧

𝑧1−𝛼 =   𝐹 𝑧𝑘+1 − 𝐹 𝑧𝑘  =𝑛
𝑘=1𝛾𝑘  

𝑛
𝑘=1 𝐹 𝑧𝑛+1 − 𝐹 𝑧1 . 

The fact that statement (ii) follows from statement (i) is now established. 

To see that statement (ii) implies statement (iii), we let 𝑧1 and 𝑧2 represent any two points on a closed 

contour 𝛾 lying in 𝐷 and form two paths, each with initial point 𝑧1 and final point 𝑧2, such that 

𝛾 = 𝛾1 +  −𝛾2  = 𝛾1 − 𝛾2 . By assuming that statement (ii) is true, one can write 

 𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼𝛾1 
=  𝑓 𝑧 

𝑑𝑧

𝑧1−𝛼𝛾2 
 ,        (5) 

or 

 𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼𝛾1 
+  𝑓 𝑧 

𝑑𝑧

𝑧1−𝛼−𝛾2 
= 0.       (6) 

That is, the 𝛼 −integral of 𝑓 𝑧  around the closed contour 𝛾 = 𝛾1 − 𝛾2  has a zero value. 

It remains to show that statement (iii) implies statement (i). We do this by assuming that statement 

(iii) is true, establishing the validity to statement (ii), and then arriving at statement (i). To see that 

statement (ii) is true, we let 𝛾1  and 𝛾2  represent any two contours, lying in 𝐷, from a point 𝑧1 to a 

point 𝑧2 and let’s observe that, in view of statement (iii), Equation (6) holds. Thus, Equation(5) holds. 

Therefore, integration is independent of path in 𝐷, and we can define the function as: 

𝐹 𝑧 =  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼

𝑧

𝑧0

 , 

on 𝐷. The proof of the theorem is complete once we show that  𝑇𝛼𝐹  𝑧 = 𝑓(𝑧) everywhere in 𝐷. 

We do this by letting 𝑧 + ∆𝑧 ∙ 𝑧1−𝛼  be any point, distinct from 𝑧, lying in some neighbourhood of 𝑧 

that is small enough to be contained in 𝐷. Then, we have: 

𝐹 𝑧 + ∆𝑧 ∙ 𝑧1−𝛼 − 𝐹 𝑧 =  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼

𝑧+∆𝑧∙𝑧1−𝛼

𝑧0

−  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼

𝑧

𝑧0

=  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼

𝑧+∆𝑧∙𝑧1−𝛼

𝑧

 , 

where the path of integration from 𝑧 to 𝑧 + ∆𝑧 ∙ 𝑧1−𝛼  may be selected as a line segment. Since 

𝑓 𝑧 =  
𝑓(𝑧)

∆𝑧 ∙ 𝑧1−𝛼

𝑧+∆𝑧∙𝑧1−𝛼

𝑧

𝑑𝑠 . 
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Hence, we obtain the following: 

 
𝐹 𝑧 + ∆𝑧 ∙ 𝑧1−𝛼 − 𝐹 𝑧 

∆𝑧
− 𝑓 𝑧  =  

1

∆𝑧
 𝑓 𝑠 

𝑑𝑠

𝑠1−𝛼

𝑧+∆𝑧∙𝑧1−𝛼

𝑧

−  
𝑓(𝑧)

∆𝑧 ∙ 𝑧1−𝛼

𝑧+∆𝑧∙𝑧1−𝛼

𝑧

𝑑𝑠 

=  
1

∆𝑧
  

𝑓(𝑠)

𝑠1−𝛼
−

𝑓(𝑧)

𝑧1−𝛼
 

𝑧+∆𝑧∙𝑧1−𝛼

𝑧

𝑑𝑠 ≤
1

 ∆𝑧 
 
𝑓 𝑠 

𝑠1−𝛼
−

𝑓 𝑧 

𝑧1−𝛼
  ∆𝑧 ∙ 𝑧1−𝛼  

=  
𝑓 𝑠 

𝑠1−𝛼
−

𝑓 𝑧 

𝑧1−𝛼
  ∆𝑧 ∙ 𝑧1−𝛼   . 

Consequently, since 𝑓 is continuous, we get 

𝑙𝑖𝑚
∆𝑧→0

 
𝐹 𝑧 + ∆𝑧 ∙ 𝑧1−𝛼 − 𝐹 𝑧 

∆𝑧
− 𝑓 𝑧  = 0 , 

or  𝑇𝛼𝐹  𝑧 = 𝑓(𝑧). 

Remark 4.2. It is easy to prove that the 𝛼 −primitive 𝐹 of a continuous function 𝑓 in a domain 

𝐷 ⊂ 𝐶 −  −∞. 0]  satisfies a Lipschitz condition. In fact, we can write the following: 

𝐹 𝑧 =  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼

𝑧

𝑧0

 , 

on 𝐷. Since 𝑓 is a continuous function in 𝐷, we have  

 
𝑓(𝑧)

𝑧1−𝛼
 ≤ 𝐾, ∀𝑧 ∈ 𝐷 

So, 

 𝐹 𝑧2 − 𝐹 𝑧1  =   𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼

𝑧2

𝑧1

 ≤   
𝑓 𝑠 

𝑠1−𝛼
 𝑑𝑠

𝑧2

𝑧1

≤ 𝐾 𝑧2 − 𝑧1 , ∀𝑧1, 𝑧2 ∈ 𝐷 

Example 4.1. By finding an 
1

3
−antiderivative, we evaluate this integral, where the path is any contour 

𝛾 between the indicated limits of integration, such that 𝛾∗ ⊂ 𝐶 −  −∞. 0  ]. 

 𝑐𝑜𝑠 3𝜋 𝑧
3

 
𝑑𝑧

 𝑧23

−8𝑖

1
216

 

Solution. The function 𝑐𝑜𝑠 3𝜋 𝑧
3

  has the 
1

3
− antiderivative 

𝑠𝑖𝑛  3𝜋  𝑧
3

 

𝜋
 everywhere in the set 

𝐶 −  −∞. 0  ]. Consequently, from any contour 𝛾 from −8𝑖 to 
1

216
 , such that 𝛾∗ ⊂ 𝐶 −  −∞. 0  ], 

 𝑐𝑜𝑠 3𝜋 𝑧
3

 
𝑑𝑧

 𝑧23

−8𝑖

1
216

=  𝑠𝑖𝑛 3𝜋 𝑧
3

 

𝜋
 

1
216

−8𝑖

=
1

𝜋
 −1 + 𝑖

𝑒12𝜋 − 1

2𝑒6𝜋
  

Example 4.2. By finding an 
1

2
−antiderivative, we evaluate this integral, where the path is any contour 

𝛾 between the indicated limits of integration, such that 𝛾∗ ⊂ 𝐶 −  −∞. 0  ]. 

 𝑒𝑖2𝜋 𝑧
𝑑𝑧

 𝑧

1
64

1
4
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Solution. The function 𝑒𝑖2𝜋 𝑧  has the 
1

2
−antiderivative 

𝑒 𝑖2𝜋 𝑧

𝑖𝜋
 everywhere in the set 𝐶 −  −∞. 0  ]. 

Consequently, from any contour 𝛾 from 
1

4
 to 

1

64
 , such that 𝛾∗ ⊂ 𝐶 −  −∞. 0  ], 

 𝑒𝑖2𝜋 𝑧
𝑑𝑧

 𝑧

1
64

1
4

=   
𝑒𝑖2𝜋 𝑧

𝑖𝜋
 

1
4

1
64

=
1

𝑖𝜋
 
 2

2
+ 𝑖

 2

2
+ 1 =

1

𝑖𝜋
 
 2

2
− 𝑖

 2 + 2

2
  

Example 4.3. Using the above theorem, we can show that 

 𝑧𝑛−𝛼
𝑑𝑧

𝑧1−𝛼
= 0     𝑛 = 1,2, … 

𝛾

 

when 𝛾 is any closed contour such that 𝛾∗ ⊂ 𝐶 −  −∞. 0  ], and 𝛼 ∈  0,1] . 
Solution. Note that the function 𝑧𝑛−𝛼   𝑛 = 1,2, …  always has an 𝛼 −antiderivative in any domain 

that contains in 𝐶 −  −∞. 0  ]. So, by the above theorem, 

 𝑧𝑛−𝛼
𝑑𝑧

𝑧1−𝛼
= 0

𝛾

 

for any closed contour 𝛾 such that 𝛾∗ ⊂ 𝐶 −  −∞. 0  ], and 𝛼 ∈  0,1] . 

5. Fractional Cauchy’s integral theorem 

The usefulness of Theorem 4.1 to prove the existence of 𝛼 −antiderivatives is doubtful, since to 

justify that a function has 𝛼 −antiderivatives in a certain domain 𝛺, it is necessary to verify that its 

𝛼 −integral along any closed curve in 𝛺 is zero, which does not seem an easy task in practice. This 

problem in classical complex analysis is solved through theorems that guarantee that under certain 

conditions, the integral of a function along any curve closed is null. Those theorems are called 

Cauchy theorems. In those theorems, we consider an open set 𝛺 and a closed curve 𝛾 in 𝛺. 

Additional hypotheses are assumed in 𝛺 or 𝛾 to conclude that  𝑓 𝑧 𝑑𝑧 = 0
𝛾

 for each analytic 

function 𝑓 in 𝛺. 

In this section, we will first establish a conformable version of one of the most important classical 

integral theorems mentioned above, the so-called Cauchy-Goursat theorem. 

Theorem 5.1. Let 𝑓 be 𝛼 −analytic on a set open 𝛺 ⊂ 𝐶 −  −∞. 0  ] and let ∆ 𝑎, 𝑏, 𝑐  be a triangle 

of vertices 𝑎, 𝑏, 𝑐 contained in 𝛺. Then, we have: 

 𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼 = 0
 𝑎 ,𝑏 ,𝑐 ,𝑎 

          (7) 

Proof. We will call 𝛾 =  𝑎, 𝑏, 𝑐, 𝑎 , ∆= ∆ 𝑎, 𝑏, 𝑐  and 𝐼 =  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼𝛾
. The objective is to prove 

that 𝐼 = 0. For this, let’s consider the midpoints of the sides 𝑎´=
𝑏+𝑐

2
 , 𝑏´=

𝑎+𝑐

2
 , 𝑐´=

𝑎+𝑐

2
 . 

We can write 𝐼 in the following form: 

𝐼 =  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼
𝛾

=  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼
 𝑎 ,𝑏 ,́𝑐 ,́𝑎 

+  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼
 𝑐 ,́𝑏 ,𝑎 ,́𝑐  ́

+  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼
 𝑎 ,́𝑐 ,𝑏 ,́𝑎  ́

+  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼
 𝑏 ,́𝑐 ,́𝑎 ,́𝑏 

 

This equality is true since there are paths (the ones inside the triangle) which are travelled in 

opposite directions, so the respective integrals are cancelled (see Figure 5). 
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Figure 5. Scheme of the integration path. 

If we call these four integrals 𝐽1 , 𝐽2 , 𝐽3 , 𝐽4, and 𝐼1 one of the integrals with the largest modulus 

from them, and 𝛾1 =  𝑎1 , 𝑏1, 𝑐1, 𝑎1  to the path of 𝐼1, we have: 

 𝐼 ≤ 4 𝐼1  

By repeating the same argument for the triangle ∆1= ∆ 𝑎1 , 𝑏1, 𝑐1 , we obtain a sequence of 

triangles ∆𝑛= ∆ 𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛  and polygonal 𝛾𝑛 =  𝑎𝑛 , 𝑏𝑛 , 𝑐𝑛 , 𝑎𝑛   with the property that ∆𝑛⊂ ∆𝑛−1 

and 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∆𝑛 =
1

2
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∆𝑛−1 =

1

2𝑛
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∆  

𝐿 𝛾𝑛 =
1

2
𝐿 𝛾𝑛−1 =

1

2𝑛
𝐿 𝛾  

 𝐼𝑛+1 ≤ 4 𝐼𝑛   

Let 𝑧0 ∈  ∆𝑛
∞
𝑛=1  (which exists since we are considering the intersection of a sequence 

decreasing non-empty closed with a succession of diameters converging to zero in complete metric 

space). Clearly, 𝑧0 ∈ ∆ 𝑎, 𝑏, 𝑐 . Let’s put 𝑝 𝑧 = 𝑓 𝑧0 +  𝑇𝛼𝐹  𝑧0 
𝑧−𝑧0

𝑧0
1−𝛼  which is a polynomial 

function. Therefore, it has a 𝛼 −antiderivative; then  𝑝 𝑧 
𝑑𝑧

𝑧1−𝛼 = 0
𝛾𝑛

. 

Hence, we can write the following: 

𝐼𝑛 =  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼
𝛾𝑛

=   𝑓 𝑧 − 𝑓 𝑧0 −  𝑇𝛼𝐹  𝑧0 
𝑧 − 𝑧0

𝑧0
1−𝛼  

𝑑𝑧

𝑧1−𝛼
𝛾𝑛

 . 

If we take 

𝑧 = 𝑧0 +  𝑧 − 𝑧0 = 𝑧0 +
 𝑧 − 𝑧0 𝑧0

1−𝛼

𝑧0
1−𝛼  , 

we can also write 
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𝑓 𝑧 − 𝑓 𝑧0 −  𝑇𝛼𝐹  𝑧0 
𝑧 − 𝑧0

𝑧0
1−𝛼 = 𝑓  𝑧0 +

 𝑧 − 𝑧0 𝑧0
1−𝛼

𝑧0
1−𝛼  − 𝑓 𝑧0 −  𝑇𝛼𝐹  𝑧0 

𝑧 − 𝑧0

𝑧0
1−𝛼  . 

Given 휀 > 0, due to the 𝛼 −differentiability of 𝑓 at 𝑧0, there exists 𝛿 > 0 such that the open 

disk 𝐷 𝑧0, 𝛿  is contained in 𝛺, and for all 𝑧 ∈ 𝐷 𝑧0, 𝛿 , we have: 

 𝑓  𝑧0 +
 𝑧 − 𝑧0 𝑧0

1−𝛼

𝑧0
1−𝛼  − 𝑓 𝑧0 −  𝑇𝛼𝐹  𝑧0 

𝑧 − 𝑧0

𝑧0
1−𝛼  < 휀

 𝑧 − 𝑧0 

 𝑧0
1−𝛼  

 . 

If the 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∆𝑛 < 𝛿 then ∆𝑛⊂ 𝐷 𝑧0, 𝛿 . Furthermore, if 𝑚𝑛  denotes the minimum value 

of  𝑧1−𝛼   in 𝛾𝑛
∗, we have: 

 𝐼 ≤  𝐼𝑛  ≤
4𝑛𝐿 𝛾𝑛 

𝑚𝑛
𝑚𝑎𝑥   𝑓 𝑧 − 𝑓 𝑧0 −  𝑇𝛼𝐹  𝑧0 

𝑧 − 𝑧0

𝑧0
1−𝛼  : 𝑧 ∈ 𝛾𝑛

∗ 

≤
4𝑛휀𝐿 𝛾𝑛 

𝑚𝑛  𝑧0
1−𝛼  

𝑚𝑎𝑥  𝑧 − 𝑧0 : 𝑧 ∈ 𝛾𝑛
∗ ≤

4𝑛휀𝐿 𝛾𝑛 

𝑚𝑛  𝑧0
1−𝛼  

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∆𝑛 

≤
4𝑛휀

𝑚𝑛  𝑧0
1−𝛼  

1

2𝑛
𝐿 𝛾 

1

2𝑛
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∆ =

휀𝐿 𝛾 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ∆ 

𝑚𝑛  𝑧0
1−𝛼  

 . 

Since 휀 > 0 is chosen arbitrary, we get 𝐼 = 0. 

Remark 5.1. An open set 𝛺 ⊂ 𝐶 −  −∞. 0  ] is a star-shaped domain with respect to a point 𝑧0 ∈ 𝛺 if 

the line segment that unites 𝑧0 with any other point of 𝛺 stays inside 𝛺, that is,  𝑧0. 𝑧 ∗ ⊂ 𝛺 for all 

𝑧 ∈ 𝛺. For example, a disk is a star-shaped domain with respect to any of its points. Of course, any 

convex set is a star-shaped domain over any of its points, but there are star-shaped domains that are not 

convex (such as the polygon shown in the Figure 6). 

Theorem 5.2 (Fractional Cauchy’s theorem for a star-shaped domain). All 𝛼 − analytical 

functions in one star-shaped domain have 𝛼 −antiderivatives in that domain. 

Proof. Let 𝛺 ⊂ 𝐶 −  −∞. 0  ] be a star-shaped domain with respect to 𝑧0 and let 𝑓 be 𝛼 −analytic 

on 𝛺. We are looking for an 𝛼 −antiderivative of 𝑓, and the most intuitive way to define it is as 

follows: 

𝐹 𝑧 =  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼
 𝑧0 ,𝑧 

 . 

We are going to show that the defined 𝐹 is certainly 𝛼 −antiderivative of 𝑓 in 𝛺. Since 𝛺 is a 

star-shaped domain at 𝑧0, the function 𝐹 is well defined. Let 𝑎 ∈ 𝛺 and 𝜌 > 0, such that 𝐷 𝑎, 𝜌 ⊂
𝛺. Let us take a point 𝑧 ∈ 𝐷 𝑎, 𝜌 . Since all the points of the segment  𝑎, 𝑧  are contained in 𝛺, then 

the segment that joins 𝑧0 with any of these points will be contained in 𝛺 as this is a star-shaped 

domain. Therefore, the triangle ∆ 𝑧0, 𝑎, 𝑧  is totally contained in 𝛺 (see Figure 6). 
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Figure 6. Star-shaped domain. 

From the fractional Cauchy-Goursat theorem, we know that 

 𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼
 𝑧0 ,𝑎 ,𝑧 ,𝑧0 

= 0. 

This integral can be written as 

 𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼
+  𝑓 𝑠 

𝑑𝑠

𝑠1−𝛼
 𝑎 ,𝑧  𝑧0 ,𝑎 

+  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼
= 0.

 𝑧,𝑧0 

 

i.e., 

𝐹 𝑧 − 𝐹 𝑎 =  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼
−

 𝑧0 .𝑧 

 𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼
=  𝑓 𝑠 

𝑑𝑠

𝑠1−𝛼
 𝑎 ,𝑧 

 .
 𝑧0 ,𝑎 

 

From the previous equality, and by following the same reasoning that we use in the proof of the 

characterization of the existence of 𝛼 −antiderivatives (see Theorem 4.1), it is easily proven that 𝐹 is 

𝛼 −differentiable at 𝑎 and  𝑇𝛼𝐹  𝑎 = 𝑓(𝑎), which concludes the proof. 

Finally, we will establish a result that is a reciprocal of the fractional Cauchy-Goursat theorem for 

triangles. 

Theorem 5.3. (Fractional Morera’s Theorem). For a continuous function 𝑓: 𝛺 → 𝐶 on a set open 

𝛺 ⊂ 𝐶 −  −∞. 0  ], the following conditions are equivalent: 

(i) 𝑓 is 𝛼 −analytic on 𝛺. 

(ii)  𝑓 𝑧 
𝑑𝑧

𝑧1−𝛼 = 0
 𝑎 ,𝑏 ,𝑐 ,𝑎 

 for every triangle ∆ 𝑎, 𝑏, 𝑐  in 𝛺. 

Proof. (i) ⇒ (ii) is Theorem 5.1.  

Let us see then that (i) ⇒ (i). Let 𝑧0 and 𝑟 > 0 such that 𝐷 𝑧0, 𝑟 ⊂ 𝛺. The disk is a star-shaped 

domain, and the integral over any triangle contained in it is zero. This allows us to build an 

𝛼 −antiderivative 𝐹 𝑧 =  𝑓 𝑠 
𝑑𝑠

𝑠1−𝛼 𝑧0 .𝑧 
 for all 𝑧 ∈ 𝐷 𝑧0, 𝑟 . 𝐹  is an 𝛼 −antiderivative of 𝑓  on 
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𝐷 𝑧0, 𝑟 , that is,  𝑇𝛼𝐹  𝑧 = 𝑓(𝑧) for all 𝑧 ∈ 𝐷 𝑧0, 𝑟  (proof of this is identical to the proof of the 

existence of primitives in star-shaped domains, see theorem 5.2). Then f is the 𝛼 −derivative of 

𝛼 −analytic on function on disk 𝐷 𝑧0, 𝑟 . Therefore, it is an 𝛼 −analytic function on the mentioned 

disk; 𝑓 is particulary an 𝛼 −differentiable at 𝑧0. Since 𝑧0 is chosen arbitrary, it follows that 𝑓 is 

𝛼 −analytic on 𝛺. 

6. Application: Circulation and net flow 

It is a well-known result that if 𝑓 𝑧 = 𝑃 𝑥, 𝑦 + 𝑖𝑄(𝑥, 𝑦) is the complex representation of the 

velocity vector field 𝐹 𝑥, 𝑦 = 𝑃 𝑥, 𝑦 𝑖 + 𝑄(𝑥, 𝑦)𝑗  of a two-dimensional fluid flow, [28], the 

circulation of 𝐹 around a closed contour 𝛾 is given by 

𝑅𝑒   𝑓(𝑧)𝑑𝑧
𝛾

  . 

Likewise, the net flux of 𝐹 across a closed contour 𝛾 can be defined as 

𝐼𝑚   𝑓(𝑧)𝑑𝑧
𝛾

  . 

In the following examples we will formulate these physical concepts in terms of fractional 

contour integrals: 

Example 6.1. Suppose the velocity field of a fluid flow is 𝑓 𝑧 = sin 3 𝑧
3

 . Compute the 

circulation and net flux across a closed contour 𝛾, where 𝛾 is the square with vertices 𝑧 = 1. 𝑧 =
2 + 𝑖, 𝑧 = 1 + 2𝑖, 𝑧 = 𝑖. 

Solution: We must compute  sin 3 𝑧
3

 
𝛾

𝑑𝑧

 𝑧23 =  𝑠𝑖𝑛 3 𝑧
3

 
𝑑𝑧

 𝑧23𝛾
 , and then take the real and 

imaginary parts of the integral to find the circulation and net flux, respectively. However, since the 

function sin 3 𝑧
3

  is 
1

3
−analytic in 𝐶 −  −∞. 0] , we immediately have  𝑠𝑖𝑛 3 𝑧

3
 

𝑑𝑧

 𝑧23𝛾
= 0 

by the Fractional Cauchy’s integral theorem. Therefore, both of the circulation and net flux are zero. 

Example 6.2. Suppose the velocity field of a fluid flow is 𝑓 𝑧 = 𝑧
3

2 𝑧 − 2𝑖 2 . Compute the 

circulation and net flux across a closed contour 𝛾, where 𝛾 is the circle  𝑧 − 2𝑖 = 1. 

Solution. Since 𝑓 𝑧 = 𝑧
3

2 𝑧 − 2𝑖 
2
 and 𝛾 𝑡 = 2𝑖 + 𝑒𝑖𝑡 . 0 ≤ 𝑡 ≤ 2𝜋, we have: 

 𝑧
3
2 𝑧 − 2𝑖 

2 𝑑𝑧

𝑧
1
2𝛾

=   2𝑖 + 𝑒𝑖𝑡 𝑒−𝑖2𝑡𝑖𝑒𝑖𝑡𝑑𝑡
2𝜋

0

= −2  𝑒−𝑖𝑡𝑑𝑡 + 𝑖  𝑑𝑡 =
2𝜋

0

2𝜋

0

2𝜋𝑖 

Thus, the circulation around 𝛾 is 0, and the net flux across 𝛾 is 2𝜋. 

7. Conclusions 

The main objective of this work is to establish some generalizations in the field of fractional 

calculus, and to provide some important results on complex integration. The objective has been 

successfully achieved, so the definition of fractional contour integral has been used to construct some 

results, such as the necessary and sufficient conditions for a continuous function to have 

antiderivative in the conformable sense and the extension of some of the well-known Cauchy integral 
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theorems. It seems that the results obtained in this work correspond to the results obtained in the 

classical case. Finally, we would like to indicate that this research work opens the door for further 

research studies on developing the complex fractional integration with applications to natural 

sciences and engineering. 
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Comput. Math. Methods, (2018), 1–11.  

9. M. Al Horani, R. Khalil, Total fractional differential with applications to exact fractional 

differential equations, Int. J. Comput. Math., 95 (2018), 1444–1452.  

10. D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 

(2015), 109–137. 

11. M. Horani, M. A. Hammad, R. Khalil, Variations of parameters for local fractional 

nonhomogeneous linear-differential equations, J. Math. Comput. Sci., 16 (2016), 147–153. 

12. R. Khalil, M. A. Al Horani, D. Anderson, Undetermined coefficients for local differential 

equations, J. Math. Comput. Sci., 16 (2016), 140–146. 
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