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Abstract: Most models of cancer assume that tumor cells populations, at low densities, grow
exponentially to be eventually limited by the available amount of resources such as space and nutrients.
However, recent pre-clinical and clinical data of cancer onset or recurrence indicate the presence of a
population dynamics in which growth rates increase with cell numbers. Such effect is analogous to
the cooperative behavior in an ecosystem described by the so called Allee effect. In this work, we
study the consequences of the Allee effect on cancer growth via the properties of dynamical models
incorporating the Allee effect, and the implications that the occurrence of such effect has for the choice
of the more appropriate therapy. Some simulations will be presented in which the model is used to fit
data from in vitro experiments and clinical trials.
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1. Introduction

The notion that cancer is an evolutionary process, driven by random mutations and selection
of the fittest clones, has become so widespread to be, nowadays, commonplace. Indeed random
mutations are the source of genetic diversity of clonal population which has a great relevance to
explain the emergence of cancer types resistant to therapies. On the other hand the growth of tumor
species depends on how effectively they are able to access resources and, on the other hand, on how
successfully they develop mechanisms to prevent detection and elimination by the immune system [17].
Taking a step further one can say that cancer is an ecosystem [19,27] formed by coexisting populations,
embedded in an environment comprising normal and immune cells [23].

The multiplicity of species in cancer populations has a clear relevance for the design of therapies
as heterogeneity is a major factor in cancer drug resistance, see e.g. [29]; even though a therapy
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can decimate a cancer type, one or more variants of the tumor population exist which are resistant,
driving to the resurgence of treatment-refractory disease [16]. This observation has led to the idea
of combination therapy, in which agents with different actions are combined, thus increasing the
likelihood of synergistic anti-tumor effects, [6, 10, 29].

A more radical approach maintains that it is impossible to eliminate all cancer species, of which one
will be anyway resistant, but it is more appropriate to devise therapies to keep cancer cells numbers
under control: this is the so called adaptive therapy. Not surprisingly, given the relevance of the
problem, there exist a large literature on mathematical models of cancer dynamics. For a review see
for instance [2, 11, 32] and references therein. In particular several contributions can be found in the
framework of population dynamics: among others on tumor immune interaction, several populations
are considered in [9, 33] and spatial-temporal dynamics in [1]. The effects of therapies are studied in
the context of evolutionary dynamics [14, 15], while the immuno-therapy are considered in [8, 13].

In most models it is assumed that cancers grows by cell-autonomous proliferation, manifested as an
initial exponential increase in cell number, eventually limited by the carrying capacity, see e.g. [3]; in
the following, models of this type will be called exponential. However, there is a increasing body of
works showing that, in some cases, cancer growth at low densities deviates from the exponential growth
and that cell population kinetics are best described by considering processes models involving the Allee
effect, see for instance [20, 22, 26], a biological phenomenon characterized by a positive correlation
between population size or density and the mean individual fitness of a population or species.

In particular, two types of Allee effect can occur: weak or strong. In the weak effect the rate
of growth increases with the population density and remains always positive; the strong effect, in
addition, is characterized by a population threshold below which the population decreases until it
reaches extinction, [7]. Models incorporating the Allee effect have been developed to fit data from
clinical outcomes following tumor resection [26] and the in vitro BT-474 breast cancer cell line data,
[20]. In addition, observations of in vitro cell growth have shown that low seeding density may have
an adverse effect on cancer growth, [22].

Allee effect can originate from a variety of mechanisms including cooperative interactions which
can potentially be relevant to cancer [22]. Cooperation is common to a wide variety of organisms,
see for instance [7, 25]; in cancer it might be needed to produce a sufficient density of growth factors
required for tumour proliferation or pro-angiogenic growth factors such as vascular endothelial growth
factor A (VEGFA), [22].

Some specific mathematical models of mechanisms leading to an Allee effect have been presented
in [4,21] and the role of the Allee effect in the spreading of cancer cells has been investigated in [12,30].

All these findings are very relevant both to understand how cancer evolves and to determine the
more suitable type of therapy. In particular, as mentioned before, it has been suggested recently that the
maximum tolerated dose therapy (MTD), commonly used, should be replaced by an adaptive therapy,
whose aim is to control, rather than to eradicate, cancer. The rationale of is that MTD therapy is not
able, in general, to completely destroy cancer populations, and in some cases attempts to eradication
can lead to worse outcomes, [15]. Simulations and calculation to support this idea are based on different
variations of the exponential model. However, in situations where the Allee effect occurs, MTD could
be a better option, in that it can eliminate permanently cancer populations, if the effect is strong or, at
least, delay significantly cancer regrowth, as in case of weak effect.

Motivated by these observations, in this work it will be investigated how the Allee effect can
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influence the outcome of different therapies. In details, the paper is organized as follows. In the
next section, population dynamics under Allee effect will be analyzed, with special reference to the
times required to reach a given concentrations. These results will be extended, in Section 3, in case
when different cancer populations are present. In Section 4, some simulations will be shown of the
effect of different therapies if the Allee effect is present or otherwise.

2. Single cancer clone

This section will study the case of a single cancer species or clone, pointing out the differences
between the usual growth equations and those incorporating the Allee effect (weak and strong). Even
if the treatment is quite straightforward, it can be useful as introduction to more complex cases.

There are different ways to model the weak and strong Allee effects, see e.g. [7]: for instance
denoting by x the number of elements in the population (cancer cells in our case), the evolution of the
population con be written as:

dx
dt

= rx
(
1 −

x
K

) (
1 −

A + c
x + c

)
, (2.1)

where r is the reproduction rate and K corresponds to the carrying capacity, i.e. the maximum value
that x can take. Parameter A is a threshold: A > 0 corresponds to the strong effect whereas A ≤ 0
models the weak case. In the following, it will be assumed A = 0 to model the weak Allee effect, so
that Eq (2.1) becomes

dx
dt

= rx
(
1 −

x
K

) x
x + c

. (2.2)

The parameter c is related to the intra-specific cooperative interactions in a population. More precisely
c measures the amount of cooperation that a population needs to grow: if c is very large an appreciable
growth occurs only for high population density (compare [5]): on the contrary if c = 0 species can
increase even without cooperation and Eq (2.2) reduces to

dx
dt

= rx
(
1 −

x
K

)
; (2.3)

describing an initial exponential growth eventually limited by a logistic term; in the sequel this process
will be called exponential, as usually done in the literature. It is obvious that Eqs. (2.3) and (2.2)
have the same stationary states, xs = 0 (unstable), and xs = K (stable); thus logistic and weak Allee
processes differ mainly on the rate of growth and this difference is large when x is small. In order
to elucidate this point, let’s suppose x << K so that the logistic term x/K can be disregarded: then
Eq (2.2) can be easily integrated and the results is

t =
1
r

[
ln

(
x
x0

)
+

c
x0
−

c
x

]
, (2.4)

where x0 is the initial value and x > x0. On the other hand, the integration of Eq (2.3), again neglecting
the term x/K, leads to

t =
1
r

ln
(

x
x0

)
(2.5)
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Thus, to attain a given value x∗ << K (which could be, for instance a detectability threshold) the weak
Allee process requires, with respect to the logistic case, an additional time

δt =
1
r

(
c
x0
−

c
x∗

)
,

which increases with c, as expected. In Figure 1 exponential growth is compared with the dynamics
characterizing the weak Allee effect, for different value of c.
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5.0×108

1.0×109

1.5×109

2.0×109
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c = 0.001 K

c = 0.1 K

c = 0.3 K

c = 0.5 K

Figure 1. Comparison of exponential growth with dynamics of the weak Allee effect. The
dotted yellow curve represents the exponential case and the continuous curves correspond to
weak Allee dynamics for different values of c, expressed in terms of the carrying capacity K.
Here r = 0.12, K = 2.764 · 109 and A = 0.

In Figure 1 exponential dynamics growth is compared to the case of weak Allee effect, for increasing
values of c to which correspond a decreasing rate of growth.

Consider now the application of a therapy: its effect can be modelled by adding a destruction term
−gx, to Eqs (2.2) and (2.3), see e.g. [28], where g may be either a constant or a function of time. It is
straightforward to show that if g > r, x = 0 is a globally stable point of Eqs (2.3) and (2.2) (indeed
x = 0 is the only stationary point in R+ ); in addition in case of Eq (2.2), x = 0 is locally stable for
any g > 0 even though, obviously, its basin of attraction depends on the actual value of g. Note that,
in both models, cancer can decrease only during medical treatment, to grow again when the therapy is
stopped, albeit with different rates.

Obviously the situation is very different if a strong Allee effect is relevant: in this case if x < A
cancer population will tend to zero, in other word x = 0 is a stable point and its basin of attraction is
the segment [0, A]. During the therapy, the basin of attraction increases to [0, A′], with A′ > A. Thus, if
at the beginning of the therapy x < A′, the medical treatment is able to decrease x below the threshold
A, then the cancer population will continue to decrease even after the therapy has been discontinued.

3. Two cancer clones

This section will focus on the effects of interaction between populations both subjected to Allee
effect and compared with the case of traditional exponential growth, that will be dealt first. In the
following x1 and x2 will denote ambiguously the two population and their size.
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3.1. Exponential growth

Basic elements determining the evolution of the cell populations are proliferation, predation and
competition for resources: the growth of the cancer species is limited by the amount of available
resources as in the single species case and further constrained by inter-specific competition.

The model can be formalized by a system of ordinary differential equations, see for instance [25]:

dx1

dt
= r1x1 −

r1

K1
x2

1︸        ︷︷        ︸
proli f eration

−
b12

K1
x1x2︸   ︷︷   ︸

competition

− g1(t)x1︸ ︷︷ ︸
therapies

,

dx2

dt
= r2x2 −

r2

K2
x2

2 −
b21

K2
x1x2 − g2(t)x2.

(3.1)

Consider tumor clones x1: the first two terms in the RHS of the equation represent the growth
of x1 in isolation, i.e. in absence of other cancer species and medical treatment, compare Eq (2.3).
Development of x1 is constrained by the competition with clone x2 (measured by the competition rate
b12); furthermore the medical treatment (for instance chemotherapy) can act on x1 and its effects are
represented in the model by the term g1(t)x1 where g1 takes into account the drugs kinetics in the
organism, see [18]. This is equivalent to rewrite the growth term as f1(t)x1 = (r1 − g(t))x1: when
g(t) > r1 then dx1/dt < 0, meaning that the cancer can be eradicated by a given treatment. The same
considerations apply mutatis mutandis to tumor species x2. In the following, for simplicity’s sake, fi(t),
will be denoted by fi. If fi > 0 the asymptotic states of the system are well known from population
theory [25]: there exist four possible such states depending on the values of parameters

a12 =
K2

K1
b12, a21 =

K1

K2
b21,

as follows.

1. a12 < 1, a21 > 1: species x1 reaches its carrying capacity K1, whereas x2 goes to 0 and this trend
does not depend on initial conditions. Stationary points are (K1, 0) (stable), (0, 0) (unstable), and
(0,K2) (unstable).

2. a12 > 1, a21 < 1: x2 dominates, irrespective of initial condition. The only stable state is obviously
(0,K2).

3. a12 > 1, a21 > 1: again just one species survives depending now on the initial conditions. There
are 4 stationary states : (K1, 0), (0,K2) (locally stable) and (0, 0), (x∗1, x

∗
2) unstable with x∗i ∈ (0,Ki).

4. a12 < 1, a21 < 1: the two species now coexist and the only stable state is of the form (x∗1, x
∗
2), with

x∗1, x
∗
2 , 0.

Cases 1 − 3 embody the principle of competitive exclusion by which if the competitive interaction
are strong enough just one species survives.

Turning now to the effect of therapies, it is clear the only way both x1, x2 can decreases is that
fi < 0, i = 1, 2 that is ri < gi; obviously when the medical treatment ends at least one species starts to
grow again.
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3.2. Weak Allee effect

Equations for competing species affected by Allee effect can be derived in a way analogous to (3.1),
with the obvious modifications; in particular for the weak effect:

dx1

dt
= r1x1

(
1 −

x1

K1

) (
1 −

c
x1 + c

)
−

b12x1x2

K1
− g1x1,

dx2

dt
= r2x2

(
1 −

x2

K2

) (
1 −

c
x2 + c

)
−

b21x1x2

K2
− g2x2. (3.2)

The corresponding nullclines are x1 = 0, x2 = 0 and

x2 =
K1

b12

[
r1

(
1 −

x1

K1

) (
x1

x1 + c

)
− g1

]
x1 =

K2

b21

[
r2

(
1 −

x2

K2

) (
x2

x2 + c

)
− g2

]
. (3.3)

In case of weak effect, the main difference with the exponential case of Eq (3.1), is that, in
absence of therapy, there exist just two types of asymptotic states, namely dominance depending on
the initial conditions or coexistence, as can be shown with standard methods: in other words no species
completely dominate the other. Values of a12, a21 determine the occurrence of the two cases and, if the
principle of competitive exclusion applies, the areas of the respective basins of attraction.

A coexistence of two species is depicted in Figure 2, where the two species have the same c, but
different reproduction rates r, with r1 > r2. The figure also shows the vector field of system (3.2).
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x

0 5.0×1081.0×1091.5×1092.0×1092.5×109
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5.0×108

1.0×109
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2.0×109

2.5×109

x1

x2

Figure 2. Numerical results derived from (3.2). The left panel shows the trend to the
stationary point of coexistence of the two clones, sensitive x1 (red dotted line) and resistant x2

(blue dotted line), while the green curve shows the total cancer load. The right panel presents
the corresponding orbit in the phase space. Parameters used in the simulations are r1 = 0.12,
r2 = 0.05, b21 = 0.01, b12 = 0.04, k1 = k2 = 2.764 · 109, A1 = A2 = 0, c = 0.001k1.

When the therapy is applied, the state (0, 0) becomes locally stable for any gi > 0, so, at least for
certain initial conditions, both cancer types decrease; discontinuation of therapy results in the growth
of at least one species, albeit with a sensibly slower rate than in the exponential case.
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3.3. Strong Allee effect

Equations for populations subjected to a strong Allee effect are similar to the system (3.2), but for
the presence of a threshold parameter A > 0. A complete analysis of competing populations subjected
to the strong Allee effect can be found in [31]:

dx1

dt
= r1x1

(
1 −

x1

K1

) (
1 −

A1 + c
x + c

)
−

b12x1x2

K1
− g1x1,

dx2

dt
= r2x2

(
1 −

x2

K2

) (
1 −

A2 + c
x + c

)
−

b21x1x2

K2
− g2x2, (3.4)

Nullclines of system (3.4) are x1 = 0, x2 = 0 and

x2 =
K1

b12

[
r1

(
1 −

x1

K1

) (
1 −

A1 + c
x + c

)
− g1

]
x1 =

K2

b21

[
r2

(
1 −

x2

K2

) (
1 −

A2 + c
x + c

)
− g2

]
. (3.5)

From the analysis of the nullclines, it is straightforward to show that, for any possible set of parameter
values, the state (0, 0) is stable; obviously, its basin of attraction, denoted by B0, depends on the
parameter values and increases with A1, A2, b12, b12, whereas decreases for increasing r1, K1, r2, K2.

If the interactions between the two species are strong, there are two possible asymptotic states
(K1, 0), (0,K2), with basins of attractions B1, B2 respectively, and which species survives depends on
the initial conditions, whereas weak competition results in a stable coexistence state with basin Bc,
compare also [31].

The results of a medical treatment, gi , 0, is to increase the threshold values A1, A2 and,
correspondingly, to widen the basin of attraction of (0, 0), to a new set B′0: clearly B′0 ⊃ B0. If
the therapy can move a point (x1(0), x2(0)) ∈ B′0 to (x1(t), x2(t)) ∈ B0, for some time t, then, after
discontinuation of the treatment, the cancer population will keep decreasing.

Some speculative examples of the effects of therapies in case of cancer population subjected to a
strong Allee effect will be shown the next section in Figure 5, where the same parameters of Figure 3
have been used, with the sole exception of thresholds A1, A2.

4. Applications

The experimental evidence for the Allee effect concerns so far the weak case [20, 26] and in this
section we will look for other possible examples of weak effect occurrence. To this aim, we have
applied the system (3.2) to data found in [24]. As in [24], we assume cancer population to be composed
of two types, x1 susceptible to a therapy and x2 resistant, while x = x1 + x2 is the total cancer load; note
that in [24] the data have been fitted with a pair of exponential derived from a probabilistic model: our
aim here is not to compare the two fits, but, rather, to show that a model of weak Allee effect can also
fit the data, and to obtain some information on the parameter values, and in particular on c.

In the following x1 denotes the clone susceptible to medical treatment and x2 is the resistant one;
we assume r1 > r2, representing an evolutionary trade off between rate of growth and resistance to
therapy. Initial conditions for all simulations are set as following: x1 = 1.2 · 108 and x2 = 6 · 107.
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The first simulation presents results of the fit of system (3.2) to data of colon-rectal cancer
progression reported in [24] to which the reader is referred for further details: here, as in [24] cancer
population is supposed to be composed of two clonal types with different sensitivities to therapies.
Results are presented in Figure 3. In the left hand panel, the fit concerns the control case (no therapy).
Cancer evolution in which just a type of cancer clones is affected by the therapy is represented in the
center panel: here after an initial decline of the total load x, cancer grows again, due to the unrestricted
increase of the resistant species even after the second application of the same treatment. Finally,
the right hand panel depicts a situation in which a combination therapy is adopted and it is able to
completely eradicate the cancer. In general, there is a good agreement between data and the numerical
prediction of the model. Note that in the left hand panel, in particular, is suggestive of a weak Allee
effect in the interval between therapies as the cancer load takes some time before starting to regrow.

10 20 30 40 50
t

5.0×108

1.0×109

1.5×109

2.0×109

2.5×109

3.0×109
x

50 100 150 200
t

5.0×108

1.0×109

1.5×109

x

50 100 150 200
t

1×108

2×108

3×108

4×108

x

Figure 3. Fit of system (3.2) to data of colon-rectal cancer progression [24]. Left panel
depicts the control case: black curve represents the data and the green curve the total cancer
load x = x1 + x2. The central panel shows the situation in which just a populations, shown by
the red dotted curve, is affected by the therapy, whose period is indicated by the shaded area
in the graph of the left panel, the therapy is effective against both clonal types. Parameters
used in the simulations are r1 = 0.12, r2 = 0.05, b21 = 0.01, b12 = 0.04, k1 = k2 = 2.764 ·109,
A1 = A2 = 0 and c = 0.001k1. During therapies, in the middle panel, g1 = 0.21 and g2 = 0,
while in the right panel, g1 = 0.24 and g2 = 0.065.

A further example consistent with a weak Allee effect is represented by data again reported in [24]
concerning cancer cells treated with the drug centuximab. As shown in Figure 4, at the beginning of
the therapy the total cancer load decreases due to the declining of the sensitive population, but that
allows the resistant cells to growth unchecked by the competition and this growth is very slow at low
concentration. This fact and the excellent agreement of the results of the model with the data, is, in our
opinion, a clear indication of the presence of a weak Allee effect.

Finally we have used the system (3.4) to simulate speculative results of a therapy acting on
populations in which a strong Allee effect is present. As it can seen in Figure 5, after the initial
increase, if the therapy is able to bring the population under their thresholds, after the end of medical
treatment, the total cancer load will keep decreasing to cancer eradication.

AIMS Mathematics Volume 5, Issue 6, 7649–7660.



7657

20 40 60 80
t

1×107

2×107

3×107

4×107
x

20 40 60 80
t

1×107

2×107

3×107

4×107
x

Figure 4. Numerical results derived from (3.4) fitted to system cancer cell treated with
centuximab. The green curve in the left panel shows the total cancer load and black dots are
data. The right panel presents the same results and the dynamics of the two clones sensitive
x1 (red dotted line) and resistant x2 (green dotted line). Parameters used in the simulations
are r1 − g1 = −0.065, r2 = 0.114, g2 = 0, b21 = 0.01, b12 = 0.04, k1 = k2 = 2.764 · 109,
A1 = A2 = 0, c = 10−4 · Ki.
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Figure 5. The top left panel depicts the effects of the therapy in case of strong Allee effect.
The top right panel shows the detail of the decreasing phase. In the bottom panels the
corresponding vector fields are presented: in particular the bottom right panel details the
vector field close to the origin. Parameters used in the simulations are r1 = 0.12, r2 = 0.05,
b21 = 0.01, b12 = 0.04, k1 = k2 = 2.764 · 109, Ai = 5 · 10−4Ki and c = 10−3Ki.
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5. Conclusion

Results of the present work clearly support the idea that the occurrence, or otherwise, of the Allee
effect at the onset of cancer is relevant not just for a better understanding of cancer dynamics but
also for the choice of the most appropriate therapy, [22]. Indeed, in presence of a strong effect the
administration of a maximum tolerated dose can be preferable to a therapy aiming just to control cancer
in that the former can push the number of tumor cells below the threshold thus ensuring eradication.
In case of weak effect tumor will necessarily grow again after therapy discontinuation, however MTD
should ensure a long period of relatively low count of cancer cells.

The problem is, therefore, to find suitable means to determine the use whether a given type of cancer
is affected by an Allee effect. Obviously solving this problem is simpler if it is possible to perform
"in vitro" experiments; in particular, it is easier to demonstrate that a threshold exists (strong effect)
rather than there is no threshold, and not that the study fails to reveal one [7]. In principle, changing
the initial density of the cells plated in vitro one can try to pinpoint the size of the population for which
the per capita population growth rate becomes negative. However, estimates of the Allee threshold
are usually affected by errors due to fluctuations which are particularly relevant at low cells abundance
(compare [7] and citations therein). Discovering a weak effect is more complicated as it depends on
the analysis of time series data, as shown in [20,26], and also by the simulations presented here, but of
course results are less clear cut than in case of a strong effect, as they depend crucially on the choice of
models, and alternative interpretations are possible. Obviously, the presence of an Allee effect is more
difficult to find in clinical situations: to find the occurrence of the effect requires the observation of
cancer at low population density and this is not always possible during clinical trials and furthermore
the effect can be masked by other factors, such as the action of the immune system [28].
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