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1. Introduction

In this work, we consider the following periodic boundary value problem (PBVP for short) in a
Banach space E D2αx(t) = f (t, x(t),Dαx(t)), t ∈ (0, 1], 0 < α ≤ 1,

x(0) = x(1), Dαx(0) = Dαx(1),
(1.1)

where f (t, x, y) is a continuous E-value function on [0, 1] × E × E, Dα is the conformable fractional
derivative of order α,D2α = DαDα is the conformable sequential fractional derivative.

Sequential fractional derivative for a sufficiently smooth function g(t) due to Miller and Ross [1] is
defined as Dδg(t) = Dδ1Dδ2 . . .Dδkg(t), here δ = (δ1, δ2, . . . , δk) is a multi-index. In general, the
operator Dδ can be Riemann–Liouville or Caputo or any other kind of differential operators. There is
a close connection between the sequential fractional derivatives and the non-sequential derivatives [2].
Many research papers have appeared recently concerning the existence of solutions for fractional
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differential equations involving Riemann-Liouville or Caputo sequential fractional derivatives by
techniques of nonlinear analysis such as fixed point theorems, coincidence degree continuation
theorems and nonlinear alternatives, see, for example, the papers [3–11] and the references therein.

In recent years, there has been a significant development in ordinary and partial differential
equations involving fractional derivatives due to their wide range of applications in varied fields of
science and engineering. Generally, for most of the fractional differential equations, it is difficult to
find exact solutions in closed forms. In most cases, only approximate solutions or numerical solutions
can be expected. Therefore, many iterative methods have been designed to be one of the suitable and
successful classes of numerical techniques for obtaining the solutions of numerous types of fractional
differential equations, see, for instance, [12–16] and the references therein. The monotone iterative
technique, combined with the method of upper and lower solutions, is an effective technique for
proving the existence of solutions for initial and boundary value problems of nonlinear differential
equations. The basic idea of this method is that by choosing upper and lower solutions as two initial
iterations, one can construct the monotone sequences for a corresponding linear equation and that
converge monotonically to the extremal solutions of the nonlinear equation. Not only does this
method give constructive proof for existence theorems but also the monotone behavior of iterative
sequences is useful in the treatment of numerical solutions of various initial and boundary value
problems. So many authors developed the upper and lower solutions method to investigate fractional
differential equations, see, for example, [17–23] and the references therein.

In [2], using the method of upper and lower solutions and its associated monotone iterative
technique, the authors considered the existence of minimal and maximal solutions and uniqueness of
solution of the following initial value problem for fractional differential equation involving
Riemann-Liouville sequential fractional derivativeD2αy(t) = f (t, y(t),Dαy(t)), t ∈ (0,T ], 0 < α ≤ 1,

t1−αy(t)|t=0 = y0, t1−αDαx(t)|t=0 = y1,

where f (t, x, y) is continuous on [0, 1] × R × R.
The nonlinear impulsive fractional differential equation with periodic boundary conditions

D2αu(t) = f (t, u,Dαu), t ∈ (0,T ] \ {t1, . . . , tm}, 0 < α ≤ 1,
limt→0+ t1−αu(t) = u(1), limt→0+ t1−αDαu(t) = Dαu(1),
limt→t+j (t − t j)1−α(u(t) − u(t j)) = I j(u(t j)),

limt→t+j (t − t j)1−α(Dαu(t) −Dαu(t j)) = I j(u(t j)),

is studied in [24], whereDα is the standard Riemann-Liouville fractional derivative andD2α = DαDα

is the Riemann-Liouville sequential fractional derivative. I j, I j ∈ C(R,R), j = 1, 2, . . . ,m. f is
continuous at every point (t, u, v) ∈ [0, 1] × R × R. The existence and uniqueness results of solutions
are obtained by the method of upper and lower solutions and its associated monotone iterative
technique.

A new simple well-behaved definition of the fractional derivative called conformable fractional
derivative has been presented very recently in [25]. This new definition is a natural extension of the
usual derivative, and it satisfies some similar properties to the integer order calculus such as derivative
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of the product of two functions, derivative of the quotient of two functions and the chain rule. In [26]
the author developed further the definitions and properties of conformable fractional derivative and
integral.

conformable fractional derivative: Given a function f : [0,∞) → R, the conformable fractional
derivative of f of order α ∈ (0, 1] is defined by

Dα f (t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

, t > 0.

If there exists conformable fractional derivative of f of order α ∈ (0, 1] in some (0, a), a > 0, and
limt→0+Dα f (t) exists, then defineDα f (0) = limt→0+Dα f (t). Evidently,Dα f (t) = f ′(t) for α = 1.

conformable fractional integral: Given a function f : [0,∞) → R, the conformable fractional
integral of f of order α ∈ (0, 1] is defined by

Iα f (t) =

∫ t

0
τα−1 f (τ)dτ.

The conformable sequential fractional derivative is proposed in [26]. Given a function f : [0,∞)→
R and α ∈ (0, 1], the conformable sequential fractional derivative of f of order n is expressed by

Dnα f (t) = DαDα . . .Dα︸          ︷︷          ︸
n−times

f (t), t > 0.

The physical and geometrical meaning of the conformable fractional derivative is interpreted in
[27]. Several applications of the definition have shown the significance of conformable fractional
derivative. For example, [28] discussed the potential conformable quantum mechanics, [29] discussed
the conformable Maxwell equations, and [30, 31] showed that the conformable fractional derivative
models present good agreements with experimental data. For recent results on the existence, stability
and oscillation of solutions for conformable fractional differential equations, we refer the reader to
[32–44].

The existence of solutions for periodic boundary value problem of impulsive conformable fractional
integro-differential equationtkD

αx(t) = f (t, x, (Fx)(t), (S x)(t)), t ∈ J = [0,T ] \ {t1, . . . , tm}, 0 < α ≤ 1,
x(0) = x(T ), x(t+

k ) − x(t−k ) = Ik(x(tk)), k =, 2, . . . ,m,

is studied in [33], where tkD
α denotes the conformable fractional derivative of order α starting from

tk, f ∈ C(J × R3,R), (Fx)(t) =
∫ t

0
l(t, s)x(s)ds, (S x)(t) =

∫ T

0
h(t, s)x(s)ds, l ∈ C(D,R+),D = {(t, s) ∈

J2 : t ≥ s}, h ∈ C(J2,R+), Ik ∈ C(R,R). By the method of upper and lower solutions in reversed order
coupled with the monotone iterative technique, some sufficient conditions for the existence of solutions
are established.

In [42], applying the upper and lower solutions method and the monotone iterative technique, the
authors investigated the existence of solutions to antiperiodic boundary value problem for impulsive
conformable fractional functional differential equation

tkD
αx(t) = f (t, x, x(ω(t))), t ∈ J = [0,T ] \ {t1, . . . , tm}, 0 < α ≤ 1,

x(0) = −x(T ), x(t+
k ) − x(t−k ) = Ik(x(tk)), k =, 2, . . . ,m,

x(t) = x(0), t ∈ [−r, 0],
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where f ∈ C(J ×R2,R), tkD
α denotes the conformable fractional derivative of order α starting from tk,

ω ∈ C(J, J+), J+ = [−r,T ], r > 0, t − r ≤ ω(t), t ∈ J and tk < ω(t) ≤ t, t ∈ (tk, tk+1], Ik ∈ C(R,R).
However, to the best of our knowledge, the existence of minimal and maximal solutions and

uniqueness of solution for fractional PBVP (1.1) involving conformable sequential fractional
derivatives in ordered Banach spaces have not been considered up to now. Inspired by above works,
we apply the theory of noncompactness measure and the method of upper and lower solutions
coupled with the monotone iterative technique to construct two monotone iterative sequences, and
then prove that the sequences converge to the extremal periodic solutions of PBVP (1.1), respectively,
under some monotonicity conditions and noncompactness measure conditions of f . Also, we prove
minimal and maximal solutions are equal and thus we obtain the uniqueness of solution. Moreover,
we give the existence and uniqueness results of periodic solutions of the non-sequential fractional
differential equation.

2. Preliminaries

In this section, we introduce some notations, definitions and preliminary facts which are used
throughout this paper. Let J = [0, 1] and E be an ordered Banach space with the norm ‖ · ‖ and the
partial order “≤”, whose positive cone P = {x ∈ E, x ≥ θ} is normal with normal constant L, where θ
denotes the zero element of E. Generally, C(J, E) denotes the ordered Banach space of all continuous
E-value functions on the interval J with the norm ‖x‖c = maxt∈J ‖x(t)‖ and the partial order “≤”
deduced by the positive cone Pc = {x : x ∈ C(J, E), x(t) ≥ θ}. Pc is also normal with the same normal
constant L. Let Cα(J, E) = {x : x ∈ C(J, E),Dαx ∈ C(J, E)}, evidently, Cα(J, E) also is a Banach space
with the norm ‖x‖α = max{‖x‖c, ‖Dαx‖c}. A function x ∈ Cα(J, E) is called a solution of PBVP (1.1) if
it satisfies the equation and the boundary conditions in (1.1).

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

Definition 2.1. ([45]) Let E be a Banach space and let ΩE be the family of bounded subsets of E. The
Kuratowski measure of noncompactness is the map µ : ΩE → [0,∞] defined by

µ(B) = inf{ε > 0 : B ⊆ ∪n
i=1Bi, diam(Bi) ≤ ε}, here B ∈ ΩE.

Property 2.2. The Kuratowski measure of noncompactness satisfies some properties (for more details
see [45]).

(1) µ(B) = 0⇔ B is compact (B is relatively compact), where B denotes the closure of B.

(2) µ(A ∪ B) = max{µ(A), µ(B)}.

(3) µ(cB) = |c|µ(B), c ∈ R.

Denote the Kuratovski noncompactness measures of bounded sets in C(J, E) and Cα(J, E) by µc and
µcα , respectively. For any H ⊂ C(J, E) and t ∈ J, set H(t) = {x(t) : x ∈ H} ⊂ E. If H is bounded
in C(J, E), then H(t) is bounded in E, and µ(H(t)) ≤ µc(H). Furthermore, we have the following
well-known result.

Lemma 2.3. ([45]) Let H ⊂ C(J, E) be bounded and equicontinuous. Then µ(H(t)) is continuous on J
and µc(H) = maxt∈J µ(H(t)).
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We can deduce the following useful result by Lemma 2.3.

Lemma 2.4. Let H ⊂ Cα(J, E) be bounded and equicontinuous. Then

µcα(H) = max{max
t∈J

µ(H(t)),max
t∈J

µ(DαH(t))},

whereDαH(t) = {Dαx(t)|x ∈ H} ⊂ E, t ∈ J.

Proof. Firstly, we prove that µcα(H) ≤ d =: max{maxt∈J µ(H(t)),maxt∈J µ(DαH(t))}. Noting that H ⊂
C(J, E) andDαH ⊂ C(J, E) are bounded and equicontinuous, by Lemma 2.3, we know

µc(H) = max
t∈J

µ(H(t)) ≤ d, µc(DαH) = max
t∈J

µ(DαH(t)) ≤ d.

Therefore, there exist V1,V2, . . . ,Vn ⊂ H and W1,W2, . . . ,Wm ⊂ H such that H =
⋃n

i=1 Vi =
⋃m

j=1 W j

and
diamcVi < d + ε, diamcD

αW j < d + ε, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (2.1)

where diamc(·) denotes the diameter of the bounded subset of C(J, E). At the same time, for any
x1, x2 ∈ Vi, by (2.1) we obtain

‖x1(t) − x2(t)‖ ≤ d + ε. (2.2)

Similarly, for y1, y2 ∈ W j, we have

‖Dαy1(t) −Dαy2(t)‖ ≤ d + ε. (2.3)

Let Hi j = {x : x ∈ Vi,D
αx ∈ DαW j}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m. According to (2.1), (2.2) and (2.3),

we can get
diamcHi j ≤ d + ε, diamcD

αHi j ≤ d + ε,

this means diamcαHi j ≤ d + ε, i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Then it follows from H =
⋃

i=1,2,··· ,n
j=1,2,··· ,m

Hi j

that µcα(H) ≤ d.
On the other hand, for any ε > 0, there exist Hi ⊂ H, i = 1, 2, . . . , k such that H =

⋃k
i=1 Hi and

diamcα(Hi) ≤ µcα(H) + ε. Hence, for any t ∈ J and any x1, x2 ∈ Hi, i = 1, 2, . . . , k, we have

‖x1(t) − x2(t)‖ ≤ ‖x1 − x2‖c ≤ ‖x1 − x2‖cα ≤ µcα(H) + ε. (2.4)

From the fact H(t) =
⋃k

i=1 Hi(t) and (2.4), we have µ(H(t)) ≤ µcα(H) + ε for any t ∈ J, so
maxt∈J µ(H(t)) ≤ µcα(H) + ε. Thus, maxt∈J µ(H(t)) ≤ µcα(H) since ε > 0 is arbitrary. Similarly, it
follows that maxt∈J µ(DαH(t)) ≤ µcα(H). Consequently, the proof of Lemma 2.4 is completed. �

The following lemma also will be used in the proof of our main results.

Lemma 2.5. ([46–48]) Let E be a Banach space, H = {xn} ⊂ L(J, E) be a countable set with ‖xn(t)‖ ≤
ρ(t) for a.a. t ∈ J and every xn ∈ H, where ρ(t) ∈ L(J). Then µ(H(t)) is Lebesgue integrable on J, and
µ({

∫
J

xn(t)dt}) ≤ 2
∫

J
µ(H(t))dt.

Conformable calculus satisfies the following properties.

Property 2.6. ([25]) Let α ∈ (0, 1] and f , g be conformable differentiable of order α. Then
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(1) DαC = 0 for all constant functions f (t) = C.

(2) Dα(a f + bg) = aDα( f ) + bDα(g) for all a, b ∈ R.

(3) Dα( f g) = fDα(g) + gDα( f ).

(4) DαIα f (t) = f (t) for t > 0, where f is any continuous function in the domain of Iα.

Property 2.7. By the definition of conformable fractional integral, it is easy to know Iα f : C(J) →
C(J) for α ∈ (0, 1].

Remark 2.8. ([26, 39, 41]) The function exp(λ tα
α

) = eλ
tα
α , t ≥ 0, is called fractional conformable

exponential function, where α ∈ (0, 1] and λ ∈ R. The conformable derivative of fractional
conformable exponential function isDαeλ

tα
α = λeλ

tα
α .

Lemma 2.9. ([35,39]) For 0 < α ≤ 1, the general solution of the fractional nonhomogeneous equation

Dαx(t) − λx(t) = σ(t), t > 0,

is expressed by

x(t) = eλ
tα
α
[
C + Iα(e−λ

tα
α σ(t))

]
,

where C is a constant. Further, the unique solution of the linear initial value problemDαx(t) − λx(t) = σ(t), t ∈ (0, 1],
x(0) = x0,

has the following form

x(t) = eλ
tα
α
[
x0 + Iα(e−λ

tα
α σ(t))

]
.

From Lemma 2.9 we can obtain the solution of linear boundary value problem.

Lemma 2.10. For σ(t) ∈ C(J) and 0 < α ≤ 1, the unique solution x ∈ C(J) of the linear boundary
value problem Dαx(t) − λx(t) = σ(t), t ∈ (0, 1], λ , 0,

x(0) − x(1) = d,

has the following form

x(t) =
deλ

tα
α

1 − e
λ
α

+

∫ 1

0
Gλ(t, s)σ(s)ds, (2.5)

where

Gλ(t, s) =


e
λ
α eλ

tα
α e−λ

sα
α sα−1

1−e
λ
α

+ eλ
tα
α e−λ

sα
α sα−1, s ≤ t,

e
λ
α eλ

tα
α e−λ

sα
α sα−1

1−e
λ
α

, s ≥ t.

The continuity of the solution x(t) in Lemma 2.10 is guaranteed by Property 2.7.
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Remark 2.11. It is easy to know from the expression of Gλ(t, s) that for λ < 0,

0 ≤ Gλ(t, s) ≤


(

e
λ
α

1−e
λ
α

+ 1
)
sα−1 = 1

1−e
λ
α

sα−1, s ≤ t,
1

1−e
λ
α

sα−1, s ≥ t.

Thus
∫ 1

0
Gλ(t, s)ds ≤ 1

α(1−e
λ
α )

.

Furthermore, from Lemma 2.10 we can deduce the solution of linear PBVP with sequential
derivative.

Lemma 2.12. For σ(t) ∈ C(J), 0 < α ≤ 1 and M,N > 0 such that M2 ≥ 4N, the solution of the linear
PBVP D2αx(t) + MDαx(t) + Nx(t) = σ(t), t ∈ (0, 1],

x(0) = x(1),Dαx(0) = Dαx(1),
(2.6)

is

x(t) =

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)σ(τ)dτ

)
ds, (2.7)

where

λ1 =
−M −

√
M2 − 4N
2

≤ λ2 =
−M +

√
M2 − 4N
2

< 0.

Proof. Let (Dα − λ2)x(t) = y(t), t ∈ (0, 1]. Then the problem (2.6) is equivalent to(Dα − λ2)x(t) = y(t), t ∈ (0, 1],
x(0) = x(1),

(2.8)

and (Dα − λ1)y(t) = σ(t), t ∈ (0, 1],
y(0) = y(1).

(2.9)

By Lemma 2.10, we obtain that the problems (2.8) and (2.9) have the following representation of
solutions

x(t) =

∫ 1

0
Gλ2(t, s)y(s)ds, (2.10)

and

y(t) =

∫ 1

0
Gλ1(t, s)σ(s)ds, (2.11)

respectively. Substituting (2.11) into (2.10), we get (2.7). �

The following comparison result plays an important role in the proofs of our main results.

Lemma 2.13. Let M2 ≥ 4N, M,N > 0 andD2αx(t) + MDαx(t) + Nx(t) ≥ 0, t ∈ (0, 1],
x(0) ≥ x(1),Dαx(0) ≥ Dαx(1).

(2.12)

Then x(t) ≥ 0 on J.
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Proof. Rewrite (2.12) as followsD2αx(t) + MDαx(t) + Nx(t) = σ(t) ≥ 0, t ∈ (0, 1],
x(0) − x(1) = k ≥ 0,Dαx(0) −Dαx(1) = l ≥ 0.

(2.13)

Then the problem (2.13) is equivalent to(Dα − λ2)x(t) = y(t), t ∈ (0, 1],
x(0) − x(1) = k,

and (Dα − λ1)y(t) = σ(t), t ∈ (0, 1],
y(0) − y(1) = l − λ2k.

In view of λ2 < 0, l − λ2k ≥ 0, σ(t) ≥ 0, λ1 < 0 and (2.5), we can obtain y(t) ≥ 0. Furthermore,
λ2 < 0, k ≥ 0, y(t) ≥ 0 and (2.5) ensure x(t) ≥ 0 on J. �

3. Main results

Definition 3.1. Let v,w ∈ Cα(J, E). v is called a lower solution of PBVP (1.1) if it satisfiesD2αv(t) ≤ f (t, v(t),Dαv(t)), t ∈ (0, 1],
v(0) ≤ v(1), Dαv(0) ≤ Dαv(1),

(3.1)

and w is called an upper solution of PBVP (1.1) if it satisfiesD2αw(t) ≥ f (t,w(t),Dαw(t)), t ∈ (0, 1],
w(0) ≥ w(1), Dαw(0) ≥ Dαw(1).

(3.2)

In the following, we assume that v(t) ≤ w(t), t ∈ J. Define the ordered interval in space C(J, E)

[v,w] = {x(t) ∈ C(J, E), v(t) ≤ x(t) ≤ w(t), t ∈ J}.

Denote D1(t) = Dαv(t) + λ2(w(t) − v(t)) and D2(t) = Dαw(t) − λ2(w(t) − v(t)). We work with the
following conditions on the function f in (1.1).

(H1) There exist constants M,N > 0 with M2 ≥ 4N such that

f (t,w,Dαw) − f (t, v,Dαv) ≥ −M(Dαw −Dαv) − N(w − v), t ∈ J,

where v,w ∈ Cα(J, E) are lower and upper solutions of (1.1).

(H2) There exist constants M,N > 0 with M2 ≥ 4N such that

f (t, x2, y2) − f (t, x1, y1) ≥ −M(y2 − y1) − N(x2 − x1), t ∈ J,

where v ≤ x1 ≤ x2 ≤ w and D1(t) ≤ yi(t) ≤ D2(t), i = 1, 2.

AIMS Mathematics Volume 5, Issue 6, 7510–7530.
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(H3) There exists a constant K ≥ 0 such that

µ
(
{ f (t, xn, yn) + Nxn(t) + Myn(t)}

)
≤ K

(
µ({xn(t)}) + µ({yn(t)})

)
, t ∈ J,

for any monotonic sequence {xn} ⊂ [v,w] and any sequence {yn} such that D1(t) ≤ yn(t) ≤ D2(t).
Moreover,

8K(1 − λ2)
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )

< 1.

(H4) There exist constants M,N > 0 such that

f (t, x2, y2) − f (t, x1, y1) ≤ M(y2 − y1) + N(x2 − x1), t ∈ J,

where v ≤ x1 ≤ x2 ≤ w and D1(t) ≤ yi(t) ≤ D2(t), i = 1, 2. Moreover,

8K(1 − λ2)
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )

< 1,

here K = max{L(M + M), L(N + N)} and L is the normal constant of cone P.

Remark 3.2. The condition (H1) and Lemma 2.10 guarantee that Dα(w(t) − v(t)) − λ2(w(t) − v(t)) ≥
θ, t ∈ J. In fact, let z(t) = Dα(w(t) − v(t)) − λ2(w(t) − v(t)), then by (3.1), (3.2) and (H1), for t ∈ (0, 1],

Dαz(t) − λ1z(t) = D2α(w(t) − v(t)) + MDα(w(t) − v(t)) + N(w(t) − v(t))
≥ ( f (t,w,Dαw) − f (t, v,Dαv)) + MDα(w(t) − v(t)) + N(w(t) − v(t)) ≥ θ,

and z(0) − z(1) ≥ θ. By (2.5) of Lemma 2.10, x(t) ≥ θ if d ≥ θ and σ(t) ≥ θ. Thus we obtain that
z(t) ≥ θ, this implies D1(t) ≤ Dαv(t) ≤ D2(t) and D1(t) ≤ Dαw(t) ≤ D2(t).

Set Ω = {η ∈ [v,w] ∩ Cα(J, E) : D1(t) ≤ Dαη(t) ≤ D2(t)}. Obviously, Ω is well defined by Remark
3.2 when the condition (H1) holds. Now we are in the position to state our main results.

Theorem 3.3. Assume that f ∈ C([0, 1] × E × E), v and w are lower and upper solutions of BPVP
(1.1) and the conditions (H1), (H2) and (H3) are valid. Then there exist p(t), q(t) ∈ Cα(J, E) such that
p(t), q(t) are minimal and maximal solutions on the ordered interval [v,w] for BPVP (1.1), respectively,
that is, for any solution x(t) of BPVP (1.1) such that x ∈ [v,w], we have v(t) ≤ p(t) ≤ x(t) ≤ q(t) ≤
w(t), t ∈ J.

Proof. Let σ(η)(t) = f (t, η(t),Dαη(t)) + MDαη(t) + Nη(t). For any η ∈ Ω, consider the linear PBVPD2αx(t) + MDαx(t) + Nx(t) = σ(η)(t), t ∈ (0, 1],
x(0) = x(1), Dαx(0) = Dαx(1).

(3.3)

By Lemma 2.12, (3.3) has exactly one solution x(t) given by

x(t) =

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)σ(η)(τ)dτ

)
ds. (3.4)
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For any η ∈ Ω, define the operator T as Tη(t) = x(t), then the fixed points of T are exactly the solutions
of PBVP (1.1). For clarity, we divide the proof into several steps.

Step 1: Firstly, T : Ω→ Cα(J, E) is well defined. Indeed, for any η ∈ Ω, by (3.4),

Tη(t) =

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)σ(η)(τ)dτ

)
ds

= Aηeλ2
tα
α + Bηeλ2

tα
α Iαe(λ1−λ2) tα

α + eλ2
tα
α Iα

(
e(λ1−λ2) tα

α Iαe−λ1
tα
α σ(η)(t)

)
,

(3.5)

where

Aη =
e
λ1+λ2
α

(1 − e
λ1
α )(1 − e

λ2
α )

(
Iαe−λ1

tα
α σ(η)(t)

)∣∣∣∣
t=1

(
Iαe(λ1−λ2) tα

α

)∣∣∣∣
t=1

+
e
λ2
α

1 − e
λ2
α

Iα
(
e(λ1−λ2) tα

α Iαe−λ1
tα
α σ(η)(t)

)∣∣∣∣
t=1
,

and

Bη =
e
λ1
α

1 − e
λ1
α

(
Iαe−λ1

tα
α σ(η)(t)

)∣∣∣∣
t=1
.

Furthermore, Property 2.6, Property 2.7 and Remark 2.8 indicate for t > 0,

DαTη(t) =Aηλ2eλ2
tα
α + Bηλ2eλ2

tα
α Iαe(λ1−λ2) tα

α + λ2eλ2
tα
α Iα

(
e(λ1−λ2) tα

α Iαe−λ1
tα
α σ(η)(t)

)
+ Bηeλ1

tα
α + eλ1

tα
α Iαe−λ1

tα
α σ(η)(t)

= λ2

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)σ(η)(τ)dτ

)
ds +

∫ 1

0
Gλ1(t, s)σ(η)(s)ds.

(3.6)

The continuity of f together with Property 2.7 ensures that the right side of (3.6) is continuous on J.
Hence, (3.6) is also valid for t = 0. By Property 2.7, (3.5) and (3.6) we have Tη(t) ∈ Cα(J, E).

Step 2: For any η ∈ Ω, {Tη} ⊂ Cα(J, E) is bounded. In fact, from condition (H2) we can derive

f (t, v,Dαv) + MDαv + Nv ≤ f (t, η,Dαη) + MDαη + Nη ≤ f (t,w,Dαw) + MDαw + Nw.

In view of the normality of the cone P, there exists L > 0 such that ‖ f (t, η,Dαη) + MDαη + Nη‖ ≤ L.
Since λ1 < λ2 < 0, by Remark 2.11, (3.5) and (3.6) we can find

‖Tη(t)‖ ≤
L
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
,

and

‖DαTη(t)‖ ≤
|λ2|L
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )

+
L
α

1

1 − e
λ1
α

.

Hence, {Tη} ⊂ Cα(J, E) is bounded.
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Step 3: For any η ∈ Ω, {Tη} ⊂ Cα(J, E) is equicontinuous. Noticing that∣∣∣∣eλ2
tα1
α

∫ t1

0
sα−1e(λ1−λ2) sα

α ds − eλ2
tα2
α

∫ t2

0
sα−1e(λ1−λ2) sα

α ds
∣∣∣∣

≤

∣∣∣∣eλ2
tα1
α

∫ t1

0
sα−1e(λ1−λ2) sα

α ds − eλ2
tα2
α

∫ t1

0
sα−1e(λ1−λ2) sα

α ds
∣∣∣∣

+
∣∣∣∣eλ2

tα2
α

∫ t1

0
sα−1e(λ1−λ2) sα

α ds − eλ2
tα2
α

∫ t2

0
sα−1e(λ1−λ2) sα

α ds
∣∣∣∣

≤
1
α

∣∣∣∣eλ2
tα1
α − eλ2

tα2
α

∣∣∣∣ +
∣∣∣∣ ∫ t2

t1
sα−1e(λ1−λ2) sα

α ds
∣∣∣∣ ≤ 1

α

∣∣∣∣eλ2
tα1
α − eλ2

tα2
α

∣∣∣∣ +
1
α

∣∣∣∣tα2 − tα1
∣∣∣∣,

(3.7)

∥∥∥∥eλ2
tα1
α

∫ t1

0
sα−1e(λ1−λ2) sα

α

( ∫ s

0
τα−1e−λ1

τα

α σ(η)(τ)dτ
)
ds

− eλ2
tα2
α

∫ t2

0
sα−1e(λ1−λ2) sα

α

( ∫ s

0
τα−1e−λ1

τα

α σ(η)(τ)dτ
)
ds

∥∥∥∥
≤

∣∣∣∣eλ2
tα1
α − eλ2

tα2
α

∣∣∣∣∥∥∥∥ ∫ t1

0
sα−1e(λ1−λ2) sα

α

( ∫ s

0
τα−1e−λ1

τα

α σ(η)(τ)dτ
)
ds

∥∥∥∥
+ eλ2

tα2
α

∥∥∥∥ ∫ t2

t1
sα−1e(λ1−λ2) sα

α

( ∫ s

0
τα−1e−λ1

τα

α σ(η)(τ)dτ
)
ds

∥∥∥∥
≤

L
α2 e−

λ1
α

∣∣∣∣eλ2
tα1
α − eλ2

tα2
α

∣∣∣∣ +
L
α2 e−

λ1
α

∣∣∣∣tα1 − tα2
∣∣∣∣,

(3.8)

and ∥∥∥∥eλ1
tα1
α

∫ t1

0
sα−1e−λ1

sα
α σ(η)(s)ds − eλ1

tα2
α

∫ t2

0
sα−1e−λ1

sα
α σ(η)(s)ds

∥∥∥∥
≤

∣∣∣∣eλ1
tα1
α − eλ1

tα2
α

∣∣∣∣∥∥∥∥ ∫ t1

0
sα−1e−λ1

sα
α σ(η)(s)ds

∥∥∥∥ + eλ1
tα2
α

∥∥∥∥ ∫ t2

t1
sα−1e−λ1

sα
α σ(η)(s)ds

∥∥∥∥
≤

L
α

e−
λ1
α

∣∣∣∣eλ1
tα1
α − eλ1

tα2
α

∣∣∣∣ +
L
α

e−
λ1
α

∣∣∣∣tα1 − tα2
∣∣∣∣,

(3.9)

we can arrive at from (3.5)–(3.9) that {Tη} ⊂ Cα(J, E) is equicontinuous.
Step 4: Now we prove v(t) ≤ Tv(t), w(t) ≥ Tw(t). Set v1 = Tv, then we have

D2αv1(t) + MDαv1(t) + Nv1(t) = f (t, v(t),Dαv(t))
+MDαv(t) + Nv(t), t ∈ (0, 1],

v1(0) = v1(1), Dαv1(0) = Dαv1(1).

(3.10)

Set z(t) = v1(t) − v(t), then by (3.1) and (3.10) we can knowD2αz(t) + MDαz(t) + Nz(t) ≥ θ, t ∈ (0, 1],
z(0) ≥ z(1), Dαz(0) ≥ Dαz(1).

Thus, z(t) ≥ θ by Lemma 2.13 and this means v(t) ≤ Tv(t). Similarly, w(t) ≥ Tw(t).
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Next, let η1, η2 ∈ Ω be such that η1(t) ≤ η2(t). (H2) and (3.5) show that σ(η1)(t) ≤ σ(η2)(t),
Tη1(t) ≤ Tη2(t). For each η ∈ Ω, we get by the similar method to Remark 3.2 that Dα(Tη(t) − v(t)) −
λ2(Tη(t) − v(t)) ≥ θ, t ∈ J. This implies

D1(t) ≤ Dαv(t) + λ2(Tη(t) − v(t)) ≤ DαTη(t).

Similarly,Dα(w(t) − Tη(t)) − λ2(w(t) − Tη(t)) ≥ θ, t ∈ J, and hence

DαTη(t) ≤ Dαw(t) − λ2(w(t) − Tη(t)) ≤ D2(t).

Therefore, T (Ω) ⊂ Ω and T is a monotone operator on [v,w]. Consequently, let vn = Tvn−1,wn =

Twn−1(n = 1, 2, . . .), we obtain

v = v0 ≤ v1 ≤ . . . ≤ vn ≤ . . . ≤ wn . . . ≤ w1 ≤ w0 = w,

and
D1(t) ≤ DαTvn(t),DαTwn(t) ≤ D2(t), t ∈ J.

Step 5: Let V = {vn : n = 1, 2, . . .}. In the following, we will show that V is a relatively compact set
in Cα(J, E). Note that µc(V) = µc(V ∪ {v0}) and µc(DαV) = µc(DαV ∪ {Dαv0}) by Property 2.2. In view
of Lemma 2.5, Property 2.2, condition (H3), Remark 2.11 and Lemma 2.3, it follows that

µ
({ ∫ 1

0
Gλ1(t, s)σ(vn−1)(s)ds

})
≤ 2

∫ 1

0
Gλ1(t, s)µ

(
{σ(vn−1)(s)}

)
ds

≤ 2K
∫ 1

0
Gλ1(t, s)

(
µ({vn−1(s)}) + µ({Dαvn−1(s)})

)
ds

≤
2K
α

1

1 − e
λ1
α

(µc(V) + µc(DαV)).

(3.11)

Furthermore,

µ(V(t)) = µ
({ ∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)σ(vn−1)(τ)dτ

)
ds

})
≤ 2

∫ 1

0
Gλ2(t, s)µ

({ ∫ 1

0
Gλ1(s, τ)σ(vn−1)(τ)dτ

})
ds

≤
4K
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )

(µc(V) + µc(DαV)).

(3.12)

Hence, we obtain from Lemma 2.4

µ(V(t)) ≤
8K
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
µcα(V). (3.13)

At the same time, by (3.6), (3.11), (3.12) and (3.13), we get

µ(DαV(t)) ≤ |λ2|
8K
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
µcα(V) +

4K
α

1

1 − e
λ1
α

µcα(V)

≤
8K(1 − λ2)

α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
µcα(V).

(3.14)
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Combining Lemma 2.4, (3.13) and (3.14), we have

µcα(V) ≤
8K(1 − λ2)

α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
µcα(V).

Therefore, µcα(V) = 0 by (H3), then Property 2.2 shows {vn} is a relatively compact set of Cα(J, E),
and thus there exists subsequence converging uniformly to p ∈ Cα(J, E). By the monotone property
of {vn} and the assumption (H2) of function f which implies {σ(vn)} is monotone, we obtain that {vn}

converges uniformly to p ∈ Cα(J, E) and {σ(vn)} converges to σ(p). Similarly, we can show that {wn}

converges uniformly to q ∈ Cα(J, E) and {σ(wn)} converges to σ(q). Moreover, the limits p, q satisfy

v = v0 ≤ v1 ≤ . . . ≤ vn ≤ p ≤ q ≤ wn . . . ≤ w1 ≤ w0 = w,

and
D1(t) ≤ Dαp(t),Dαq(t) ≤ D2(t), t ∈ J.

Step 6: Let n→ ∞ in the relation

vn(t) = Tvn−1(t) =

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)σ(vn−1)(τ)dτ

)
ds.

Applying the dominated convergence theorem, we have p satisfies the equation

p(t) =

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)σ(p)(τ)dτ

)
ds, t ∈ J,

which implies that p(t) is an integral representation of the solution to the problem (3.3), and thus by
the definition of function σ, p is a solution of PBVP (1.1). Similarly, we can prove that q is a solution
of PBVP (1.1).

Finally, we prove p and q are extremal solutions of PBVP (1.1). Assume that x is a fixed point of
T in Ω, then by the monotonicity of T proved in Step 4, it is easy to see that Tv ≤ T x ≤ Tw, that is,
v1 ≤ x ≤ w1. Furthermore, we have vn ≤ x ≤ wn for n = 1, 2, . . .. Let n → ∞ we get p ≤ x ≤ q.
Therefore, p and q are the minimal and maximal solutions of PBVP (1.1) in [v,w], respectively.

This completes the proof of Theorem 3.3. �

Theorem 3.4. Assume that f ∈ C([0, 1] × E × E), v and w are lower and upper solutions of BPVP
(1.1) and the conditions (H1), (H2) and (H4) are valid. Then the BPVP (1.1) has a unique solution
x ∈ [v,w].

Proof. First of all, we prove that (H2) and (H4) imply (H3). Let {xn} ⊂ [v,w] be increasing sequence
and {yn} be such that {yn} ⊂ [D1(t),D2(t)], t ∈ J. For m, n ∈ N with m > n, in view of (H2) and (H4),
we have

θ ≤ f (t, xm, ym) − f (t, xn, yn) + M(ym(t) − yn(t)) + N(xm(t) − xn(t))

≤ (M + M)(ym(t) − yn(t)) + (N + N)(xm(t) − xn(t)).
(3.15)
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By (3.15) and the normality of cone P, we can derive that

‖ f (t, xm, ym) − f (t, xn, yn) + M(ym(t) − yn(t)) + N(xm(t) − xn(t))‖

≤ L‖(M + M)(ym(t) − yn(t)) + (N + N)(xm(t) − xn(t))‖

≤ L(M + M)‖ym(t) − yn(t)‖ + L(N + N)‖xm(t) − xn(t)‖

≤ K(‖ym(t) − yn(t)‖ + ‖xm(t) − xn(t)‖).

(3.16)

From (3.16) and the definition of Kuratowski measure of noncompactness, it follows that

µ
(
{ f (t, xn, yn) + Nxn(t) + Myn(t)}

)
≤ K

(
µ({xn(t)}) + µ({yn(t)})

)
, t ∈ J.

If {xn} ⊂ [v,w] is a decreasing sequence and {yn} ⊂ [D1(t),D2(t)], the above inequality is also valid.
Hence (H3) is satisfied. Therefore, Theorem 3.3 asserts that the PBVP (1.1) has minimal and maximal
solutions p and q between v and w. In the following we show that p = q.

Since by (H2) and (H4),

θ ≤ q(t) − p(t) =

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)

[
f (τ, q(τ),Dαq(τ)) − f (τ, p(τ),Dαp(τ))

+ M(Dαq(τ) −Dαp(τ)) + N(q(τ) − p(τ))
]
dτ

)
ds

≤

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)

[
(M + M)(Dαq(τ) −Dαp(τ))

+ (N + N)(q(τ) − p(τ))
]
dτ

)
ds,

(3.17)

(3.17) together with the normality of cone P ensures

‖q(t) − p(t)‖ ≤
∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)

[
L(M + M)‖Dαq(τ) −Dαp(τ)‖

+ L(N + N)‖q(τ) − p(τ)‖
]
dτ

)
ds

≤ [L(M + M) + L(N + N)]
1
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
‖q − p‖Cα

.

(3.18)

Furthermore, ifDαq(t) ≥ Dαp(t), again by (H2) and (H4), we have

θ ≤ Dαq(t) −Dαp(t)

= λ2

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)

[
f (τ, q(τ),Dαq(τ)) − f (τ, p(τ),Dαp(τ))

+ M(Dαq(τ) −Dαp(τ)) + N(q(τ) − p(τ))
]
dτ

)
ds

+

∫ 1

0
Gλ1(t, s)

[
f (s, q(s),Dαq(s)) − f (s, p(s),Dαp(s))

+ M(Dαq(s) −Dαp(s)) + N(q(s) − p(s))
]
ds

≤

∫ 1

0
Gλ1(t, s)

[
(M + M)(Dαq(s) −Dαp(s)) + (N + N)(q(s) − p(s))

]
ds.

(3.19)
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From (3.19) and the normality of cone P we get

‖Dαq(t) −Dαp(t)‖

≤

∫ 1

0
Gλ1(t, s)

[
L(M + M)‖Dαq(s) −Dαp(s)‖ + L(N + N)‖q(s) − p(s)‖

]
ds

≤ [L(M + M) + L(N + N)]
1
α

1

1 − e
λ1
α

‖q − p‖Cα
.

(3.20)

On the other hand, ifDαq(t) ≤ Dαp(t), also by (H2) and (H4) we get

θ ≤ Dαp(t) −Dαq(t)

= λ2

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)

[
f (τ, p(τ),Dαp(τ)) − f (τ, q(τ),Dαq(τ))

+ M(Dαp(τ) −Dαq(τ)) + N(p(τ) − q(τ))
]
dτ

)
ds

+

∫ 1

0
Gλ1(t, s)

[
f (s, p(s),Dαp(s)) − f (s, q(s),Dαq(s))

+ M(Dαp(s) −Dαq(s)) + N(p(s) − q(s))
]
ds

≤ λ2

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)

[
(M + M)(Dαp(τ) −Dαq(τ))

+ (N + N)(p(τ) − q(τ))
]
dτ

)
ds.

(3.21)

From (3.21) and the normality of cone P we know

‖Dαp(t) −Dαq(t)‖

≤ |λ2|

∫ 1

0
Gλ2(t, s)

( ∫ 1

0
Gλ1(s, τ)

[
L(M + M)‖Dαp(τ) −Dαq(τ)‖

+ L(N + N)‖p(τ) − q(τ)‖
]
dτ

)
ds

≤ |λ2|[L(M + M) + L(N + N)]
1
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
‖p − q‖Cα

.

(3.22)

Consequently, from (3.18), (3.20) and (3.22) we can conclude

‖p − q‖Cα
≤

2K(1 − λ2)
α2

1

(1 − e
λ1
α )(1 − e

λ2
α )
‖p − q‖Cα

.

Thus, p = q by (H4), which means that there exists a unique solution of PBVP (1.1) in [v,w].
This completes the proof of Theorem 3.4. �

Remark 3.5. Using the methods of our main results Theorem 3.3 and Theorem 3.4, we can easy to
obtain the existence of solutions of the following PBVP for fractional differential equationDαx(t) = f (t, x(t)), t ∈ (0, 1], 0 < α ≤ 1,

x(0) = x(1).
(3.23)
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Let v,w ∈ C(J, E). We say that the function v is a lower solution of problem (3.23) ifDαv(t) ≤ f (t, v(t)), t ∈ (0, 1],
v(0) ≤ v(1).

Analogously, w is an upper solution for problem (3.23) if it verifies similar conditions for the
inequalities reversed.

(G1) There exists a constant N > 0 such that f (t, x2) − f (t, x1) ≥ −N(x2 − x1), t ∈ J, where v ≤ x1 ≤

x2 ≤ w.

(G2) There exists a constant K ≥ 0 such that µ({ f (t, xn) + Nxn(t)}) ≤ Kµ({xn(t)}), t ∈ J for any
monotonic sequence {xn} ⊂ [v,w]. Moreover, 2K

α
1

1−e
−N
α
< 1.

(G3) There exists a constant N > 0 such that f (t, x2) − f (t, x1) ≤ N(x2 − x1), t ∈ J, where v ≤ x1 ≤

x2 ≤ w. Moreover, 2K
α

1
1−e

−N
α
< 1, where K = L(N + N) and L is the normal constant of cone P.

Theorem 3.6. Assume that f ∈ C(J × E), v,w are lower and upper solutions of BPVP (3.23) and
v ≤ w. The conditions (G1) and (G2) are valid. Then there exist p(t), q(t) ∈ C(J, E) such that p(t), q(t)
are minimal and maximal solutions on the ordered interval [v,w] for BPVP (3.23), respectively, that is,
for any solution x(t) of BPVP (3.23) such that x ∈ [v,w], we have v(t) ≤ p(t) ≤ x(t) ≤ q(t) ≤ w(t), t ∈ J.

Theorem 3.7. Assume that f ∈ C(J × E), v,w are lower and upper solutions of BPVP (3.23), v ≤ w,
and the conditions (G1) and (G3) hold. Then the BPVP (3.23) has a unique solution x ∈ [v,w].

4. An example

Let E = {x : x = (x1, x2, . . . , xn, . . .), xn → 0} with the norm ‖x‖ = supn |xn| and P = {x ∈ E : xn ≥

0, n = 1, 2, 3, . . .}. Then P is a normal cone in E. Consider the PBVP of infinite system for differential
equations in E 

D2αxn(t) = 1
8ent

[
(1 − xn(t))2 − 2n2−1

2n2

]
+

(n−1)(2n+1)3

4n2ent sin3 x2n+1(t) −Dαxn(t), t ∈ (0, 1],
xn(0) = xn(1), Dαxn(0) = Dαxn(1).

(4.1)

Evidently, (4.1) can be regarded as a PBVP of the form (1.1) in E. In this situation,
x = (x1, x2, . . . , xn, . . .), y = (y1, y2, . . . , yn, . . .) and f = ( f1, f2, . . . , fn, . . .), in which

fn(t, x, y) =
1

8ent

[
(1 − xn(t))2 −

2n2 − 1
2n2

]
+

(n − 1)(2n + 1)3

4n2ent sin3 x2n+1(t) − yn(t).

It is clear f ∈ C(J × E × E, E). Let v = (0, 0, . . . , 0, . . .) and w = (1, 1
2 , . . . ,

1
n , . . .). Then v,w ∈

Cα(J, E), v(t) ≤ w(t), t ∈ J, and

vn(0) = vn(1) = Dαvn(0) = Dαvn(1) = 0,wn(0) = wn(1) =
1
n
,Dαwn(0) = Dαwn(1) = 0.
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Moreover,

fn(t, v(t),Dαv(t)) =
1

8ent (1 −
2n2 − 1

2n2 ) =
1

8ent

1
2n2 > 0,

and

fn(t,w(t),Dαw(t)) =
1

8ent

[
(1 −

1
n

)2 −
2n2 − 1

2n2

]
+

(n − 1)(2n + 1)3

4n2ent sin3 1
2n + 1

≤
1

8ent

[
(1 −

1
n

)2 −
2n2 − 1

2n2

]
+

1
8ent

2n − 2
n2 = −

1
8ent

1
2n2 < 0.

Hence, v and w are lower and upper solutions of (4.1).
The conditions (H1) and (H2) are satisfied with M = 1,N = 1

4 . Let us first verify the condition
(H2) . Noticing that λ2 = −1

2 ,D1(t) = −
w(t)

2 and D2(t) =
w(t)

2 , for v(t) ≤ x(1)(t) ≤ x(2)(t) ≤ w(t) and
D1(t) ≤ y(i)(t) ≤ D2(t), i = 1, 2, we have

0 ≤ x(1)
n (t) ≤ x(2)

n (t) ≤
1
n
, −

1
2n
≤ y(i)

n (t) ≤
1

2n
, i = 1, 2, n = 1, 2, 3, . . . .

Therefore,

fn(t, x(2), y(2)) − fn(t, x(1), y(1)) =
1

8ent [(1 − x(2)
n (t))2 − (1 − x(1)

n (t))2] − (y(2)
n (t) − y(1)

n (t))

+
(n − 1)(2n + 1)3

4n2ent [sin3 x(2)
2n+1(t) − sin3 x(1)

2n+1(t)]

≥
1

8ent [(1 − x(2)
n (t))2 − (1 − x(1)

n (t))2] − (y(2)
n (t) − y(1)

n (t))

= −
1

8ent (2 − x(1)
n (t) − x(2)

n (t))(x(2)
n (t) − x(1)

n (t)) − (y(2)
n (t) − y(1)

n (t))

≥ −
1

4ent (x(2)
n (t) − x(1)

n (t)) − (y(2)
n (t) − y(1)

n (t))

≥ −
1
4

(x(2)
n (t) − x(1)

n (t)) − (y(2)
n (t) − y(1)

n (t)).

This implies that (H2) is satisfied. Obviously, by the same method we can verify (H1).
Finally, we check condition (H3). Let the sequences {x(m) : x(m) = (x(m)

1 , x(m)
2 , . . . , x(m)

n , . . .)} and
{y(m) : y(m) = (y(m)

1 , y(m)
2 , . . . , y(m)

n , . . .)} be given such that {x(m)} ⊂ [v,w] is monotonous and − 1
2n ≤

y(m)
n (t) ≤ 1

2n , n = 1, 2, 3, . . .. Let z(m)
n (t) = fn(t, x(m), y(m)) + Nx(m)

n (t) + My(m)
n (t). In view of

|z(m)
n (t)| ≤

1
8

4n − 3
2n2 +

n − 1
4n2 +

1
2n

+
N
n

+
M
2n
, t ∈ J, n,m = 1, 2, 3, . . . ,

it follows that {z(m)
n (t)} is bounded, so we can choose a subsequence {mi} ⊂ {m} such that z(mi)

n (t)→ zn(t)
as i→ ∞, n = 1, 2, 3, . . . and

|zn(t)| ≤
1
8

4n − 3
2n2 +

n − 1
4n2 +

1
2n

+
N
n

+
M
2n
, t ∈ J, n = 1, 2, 3, . . . .

Hence, z(t) = (z1(t), z2(t), z3(t), . . .) ∈ E for any t ∈ J, and it is easy to see that

‖ f (t, x(mi), y(mi)) + Nx(mi)(t) + My(mi)(t) − z(t)‖ = sup
n
|z(mi)

n (t) − zn(t)| → 0, i→ ∞.
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Consequently, we conclude that condition (H3) is satisfied for K = 0. Therefore, Theorem 3.3 ensures
that PBVP (4.1) has extremal solutions in [v,w], which can be obtained by taking limits from the
iterative sequences {v(m) : v(m) = (v(m)

1 , v(m)
2 , . . . , v(m)

n , . . .)} and {w(m) : w(m) = (w(m)
1 ,w(m)

2 , . . . ,w(m)
n , . . .)},

here

v(0) = v, w(0) = w,

v(m)
n (t) =

∫ 1

0
Gλ2(t, s)

{ ∫ 1

0
Gλ1(s, τ)

[
fn(τ, v(m−1)(τ),Dαv(m−1)(τ)) + MDαv(m−1)

n (τ) + Nv(m−1)
n (τ)

]
dτ

}
ds

=

∫ 1

0
G− 1

2
(t, s)

{ ∫ 1

0
G− 1

2
(s, τ)[ 1

8enτ

(
(1 − v(m−1)

n (τ))2 −
2n2 − 1

2n2

)
+

(n − 1)(2n + 1)3

4n2enτ sin3 v(m−1)
2n+1 (τ) +

1
4

v(m−1)
n (τ)

]
dτ

}
ds,

and

w(m)
n (t) =

∫ 1

0
Gλ2(t, s)

{ ∫ 1

0
Gλ1(s, τ)

[
fn(τ,w(m−1)(τ),Dαw(m−1)(τ)) + MDαw(m−1)

n (τ) + Nw(m−1)
n (τ)

]
dτ

}
ds

=

∫ 1

0
G− 1

2
(t, s)

{ ∫ 1

0
G− 1

2
(s, τ)[ 1

8enτ

(
(1 − w(m−1)

n (τ))2 −
2n2 − 1

2n2

)
+

(n − 1)(2n + 1)3

4n2enτ sin3 w(m−1)
2n+1 (τ) +

1
4

w(m−1)
n (τ)

]
dτ

}
ds.

5. Conclusions

This paper explores periodic solutions of some nonlinear fractional differential equations. The
problem discussed involves sequential conformable fractional derivative. Under suitable monotonicity
conditions and noncompactness measure conditions, the existence and uniqueness of solutions are
derived from monotone iterative technique and upper and lower solutions method. Further, it is
analyzed that the similar methods are well suited for investigating the existence and uniqueness of
periodic solutions of the non-sequential fractional differential equation. In particular, for α = 1, the
classical results corresponding to ordinary differential equations of integer order are yielded. An
example is given to illustrate an application of our theoretical work. To the best of our knowledge, the
results obtained throughout this article are not recorded in any published literature. It is worth to be
pointed out that the techniques applied in the main results of this paper can be used to investigate
initial value problems or the differential equations with Riemann-Liouville sequential fractional
derivatives.
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