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1. Introduction

In this work, we consider the following periodic boundary value problem (PBVP for short) in a
Banach space E

{Dzax(t) = f(t,x(1), D*x(t)), t € (0,1], 0 < a < 1, (D)

x(0) = x(1), D*x(0) = Dx(1),

where f(¢, x,y) is a continuous E-value function on [0, 1] X E X E, D* is the conformable fractional
derivative of order a, D** = DD is the conformable sequential fractional derivative.

Sequential fractional derivative for a sufficiently smooth function g(¢) due to Miller and Ross [1] is
defined as D°g(r) = DO D% ... D%g(t), here 5 = (6,,6,...,0;) is a multi-index. In general, the
operator £° can be Riemann-Liouville or Caputo or any other kind of differential operators. There is
a close connection between the sequential fractional derivatives and the non-sequential derivatives [2].
Many research papers have appeared recently concerning the existence of solutions for fractional
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differential equations involving Riemann-Liouville or Caputo sequential fractional derivatives by
techniques of nonlinear analysis such as fixed point theorems, coincidence degree continuation
theorems and nonlinear alternatives, see, for example, the papers [3—11] and the references therein.

In recent years, there has been a significant development in ordinary and partial differential
equations involving fractional derivatives due to their wide range of applications in varied fields of
science and engineering. Generally, for most of the fractional differential equations, it is difficult to
find exact solutions in closed forms. In most cases, only approximate solutions or numerical solutions
can be expected. Therefore, many iterative methods have been designed to be one of the suitable and
successful classes of numerical techniques for obtaining the solutions of numerous types of fractional
differential equations, see, for instance, [12—16] and the references therein. The monotone iterative
technique, combined with the method of upper and lower solutions, is an effective technique for
proving the existence of solutions for initial and boundary value problems of nonlinear differential
equations. The basic idea of this method is that by choosing upper and lower solutions as two initial
iterations, one can construct the monotone sequences for a corresponding linear equation and that
converge monotonically to the extremal solutions of the nonlinear equation. Not only does this
method give constructive proof for existence theorems but also the monotone behavior of iterative
sequences is useful in the treatment of numerical solutions of various initial and boundary value
problems. So many authors developed the upper and lower solutions method to investigate fractional
differential equations, see, for example, [17-23] and the references therein.

In [2], using the method of upper and lower solutions and its associated monotone iterative
technique, the authors considered the existence of minimal and maximal solutions and uniqueness of
solution of the following initial value problem for fractional differential equation involving
Riemann-Liouville sequential fractional derivative

D*y(t) = ft,y(1), D*¥(1)), t € (0,T], 0 < <1,
17 ()= = Yo, D X(t)i=0 = Y1,

where f(t, x,y) is continuous on [0, 1] X R X R.
The nonlinear impulsive fractional differential equation with periodic boundary conditions

D*u(t) = f(t,u, D%), t € (0, T\ {t1,... .1}, 0 <@ <1,
lim, o ' 7%u(t) = u(1), lim,o+ ' "2D%(t) = Du(1),
lim, (7 — )7 (u(t) = u(t)) = 1;(u(t))),

limy e (t = £)! (D () = Du(t)) = T;(u(t)),

is studied in [24], where D is the standard Riemann-Liouville fractional derivative and D** = D*D”
is the Riemann-Liouville sequential fractional derivative. [ jjj € CR,R),j = 1,2,....m. fis
continuous at every point (¢,u,v) € [0, 1] X R X R. The existence and uniqueness results of solutions
are obtained by the method of upper and lower solutions and its associated monotone iterative
technique.

A new simple well-behaved definition of the fractional derivative called conformable fractional
derivative has been presented very recently in [25]. This new definition is a natural extension of the
usual derivative, and it satisfies some similar properties to the integer order calculus such as derivative
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of the product of two functions, derivative of the quotient of two functions and the chain rule. In [26]
the author developed further the definitions and properties of conformable fractional derivative and
integral.

conformable fractional derivative: Given a function f : [0,00) — R, the conformable fractional
derivative of f of order a € (0, 1] is defined by

ft+e™) - f@t) .

&

> 0.

D" f(t) = lim

If there exists conformable fractional derivative of f of order @ € (0, 1] in some (0,a),a > 0, and
lim,_,o+ D f(¢) exists, then define D f(0) = lim,_,o+ D f(¢). Evidently, D f(t) = f'(¢) for a = 1.

conformable fractional integral: Given a function f : [0,00) — R, the conformable fractional
integral of f of order @ € (0, 1] is defined by

I°f(r) = f e f(dr.
0

The conformable sequential fractional derivative is proposed in [26]. Given a function f : [0, c0) —
R and «a € (0, 1], the conformable sequential fractional derivative of f of order n is expressed by

Df() =D"D ....Z) f(@®, t>0.
n—times

The physical and geometrical meaning of the conformable fractional derivative is interpreted in
[27]. Several applications of the definition have shown the significance of conformable fractional
derivative. For example, [28] discussed the potential conformable quantum mechanics, [29] discussed
the conformable Maxwell equations, and [30, 31] showed that the conformable fractional derivative
models present good agreements with experimental data. For recent results on the existence, stability
and oscillation of solutions for conformable fractional differential equations, we refer the reader to
[32—44].

The existence of solutions for periodic boundary value problem of impulsive conformable fractional
integro-differential equation

D) = f(t, x, Fx)(),( Sx)(@)), t€ J=[0,T]\{t;,....,t,}, 0<a <1,
x(0) = x(T), x(t)) — x(t) = Li(x(t), k =,2,...,m,

is studied in [33], where , D" denotes the conformable fractional derivative of order « starting from
t, f € C(J X R}, R), (Fx)(t) = fot I(t, $)x(s)ds, (Sx)(t) = fOT h(t, s)x(s)ds, | € C(D,R*),D = {(t,s) €
J?:t> s}, he C(J*RY), I, € C(R,R). By the method of upper and lower solutions in reversed order
coupled with the monotone iterative technique, some sufficient conditions for the existence of solutions
are established.

In [42], applying the upper and lower solutions method and the monotone iterative technique, the
authors investigated the existence of solutions to antiperiodic boundary value problem for impulsive
conformable fractional functional differential equation

W DUx(t) = f(t, x, x(w(@))), t€J =[0,T]\{t1,....tn}, 0 <a <1,
x(0) = =x(T), x(z;)) — x(t;) = Li(x(t)), k =,2,...,m,
x(t) = x(0), t € [-r,0],
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where f € C(J xR%,R), +D* denotes the conformable fractional derivative of order « starting from #,
weCUJNJ =[-rnTl,r>0,t—r<w@,teJand t, < w(t) <t,t€ (ty, trr1], I € CR,R).

However, to the best of our knowledge, the existence of minimal and maximal solutions and
uniqueness of solution for fractional PBVP (1.1) involving conformable sequential fractional
derivatives in ordered Banach spaces have not been considered up to now. Inspired by above works,
we apply the theory of noncompactness measure and the method of upper and lower solutions
coupled with the monotone iterative technique to construct two monotone iterative sequences, and
then prove that the sequences converge to the extremal periodic solutions of PBVP (1.1), respectively,
under some monotonicity conditions and noncompactness measure conditions of f. Also, we prove
minimal and maximal solutions are equal and thus we obtain the uniqueness of solution. Moreover,
we give the existence and uniqueness results of periodic solutions of the non-sequential fractional
differential equation.

2. Preliminaries

In this section, we introduce some notations, definitions and preliminary facts which are used
throughout this paper. Let J = [0, 1] and E be an ordered Banach space with the norm || - || and the
partial order “<”, whose positive cone P = {x € E, x > 6} is normal with normal constant L, where 6
denotes the zero element of E. Generally, C(J, E) denotes the ordered Banach space of all continuous
E-value functions on the interval J with the norm ||x||. = max,, |[|[x(¢)|| and the partial order “<”
deduced by the positive cone P, = {x : x € C(J, E), x(¢t) > 6}. P. is also normal with the same normal
constant L. Let Co(J,E) = {x: x € C(J,E), D*x € C(J, E)}, evidently, C,(J, E) also is a Banach space
with the norm ||x||, = max{||x]|., ||D"xl|.}. A function x € C,(J, E) is called a solution of PBVP (1.1) if
it satisfies the equation and the boundary conditions in (1.1).

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

Definition 2.1. ([45]) Let E be a Banach space and let Qx be the family of bounded subsets of E. The
Kuratowski measure of noncompactness is the map u : Qp — [0, co] defined by

u(B) =inf{e > 0: B C U.,B;, diam(B;) < €},here B € Q.

Property 2.2. The Kuratowski measure of noncompactness satisfies some properties (for more details
see [45]).

(1) u(B) = 0 © B is compact (B is relatively compact), where B denotes the closure of B.

(2) (A U B) = max{u(A), u(B)}.

(3) u(cB) = |c|u(B),c € R.

Denote the Kuratovski noncompactness measures of bounded sets in C(J, E) and C,(J, E) by u. and
U, respectively. Forany H ¢ C(J,E) and ¢t € J, set H(t) = {x(t) : x € H} C E. If H is bounded
in C(J,E), then H(t) is bounded in E, and u(H(t)) < u.(H). Furthermore, we have the following
well-known result.

Lemma 2.3. ([45]) Let H c C(J, E) be bounded and equicontinuous. Then u(H(¢)) is continuous on J
and p.(H) = max,e; u(H(1)).
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We can deduce the following useful result by Lemma 2.3.

Lemma 2.4. Let H c C,(J, E) be bounded and equicontinuous. Then
e, (H) = max{max u(H(1)), max u(D (1),
te te

where D*H(t) = {D*x(t)l x e H} C E,t € J.

Proof. Firstly, we prove that u. (H) < d =: max{max,e; u(H(t)), max,c; u(D*H(t))}. Noting that H C
C(J,E) and D*H c C(J, E) are bounded and equicontinuous, by Lemma 2.3, we know

H(H) = max u(H(1) < d, (D H) = n}gé}xu(D“H(t)) <d.

Therefore, there exist Vi, V,,...,V, ¢ Hand W\, W,,...,W,, c Hsuchthat H = | JI_, V; = U;":l W;
and
diam.V; <d + &, diam D"W;<d+e¢e, i=1,2,...,n,j=1,2,...,m, (2.1
where diam.(-) denotes the diameter of the bounded subset of C(J, E). At the same time, for any
x1, X € Vi, by (2.1) we obtain
[x1(8) = x2(0)|| < d + €. (2.2)

Similarly, for y;,y, € W;, we have
1Dy1(1) = Dyl < d + €. (2.3)

LetH;j={x:xeV,Dxe O*'W;},i=1,2,...,n,j=1,2,...,m. According to (2.1), (2.2) and (2.3),
we can get
diam.H;; < d + ¢, diam.D"H;; < d + &,

this means diam. H;; < d +¢&,i=1,2,...,n,j=1,2,...,m. Then it follows from H = | J; H;;

that . (H) < d.
On the other hand, for any & > 0, there exist H; ¢ H,i = 1,2,...,k such that H = Uf.‘zl H; and
diam.,(H;) < u.,(H) + €. Hence, for any ¢t € J and any x;,x, € H;, i = 1,2,...,k, we have

=1,2,,n
J=1.2,m

lx1 () — 2Nl < lx1 = x2lle < Mlx1 = x2lle, < pe,(H) + €. (2.4)

max.e; u(H({)) < p,(H) + €. Thus, max,e; u(H(t)) < u.,(H) since € > 0 is arbitrary. Similarly, it
follows that max;e; u(D*H(t)) < u.,(H). Consequently, the proof of Lemma 2.4 is completed. O

From the fact H(t) = Ule H(t) and (2.4), we have u(H(t)) < p.(H) + € for any t € J, so

The following lemma also will be used in the proof of our main results.

Lemma 2.5. ([46-48]) Let E be a Banach space, H = {x,} C L(J, E) be a countable set with ||x,(¢)|| <
p(t) for a.a. t € J and every x,, € H, where p(t) € L(J). Then u(H(t)) is Lebesgue integrable on J, and
H( [, xa(0)dt}) < 2 [, u(H (D).

Conformable calculus satisfies the following properties.

Property 2.6. ([25]) Let @ € (0, 1] and f, g be conformable differentiable of order @. Then
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(1) D*C = 0 for all constant functions f(¢) = C.

2) Daf +bg) = aD*(f) + bD*(g) for all a,b € R.

() DU(fg) = fD(g) + 8D ().

4) D1f(t) = f(¢r) for t > 0, where f is any continuous function in the domain of 7.

Property 2.7. By the definition of conformable fractional integral, it is easy to know 7f : C(J) —
C(J) fora € (0,1].

Remark 2.8. ([26, 39, 41]) The function exp(/l%) = e‘%, t > 0, is called fractional conformable

exponential function, where @« € (0,1] and 4 € R. The conformable derivative of fractional

. . . @ [
conformable exponential function is D' = Aete.

Lemma 2.9. ([35,39]) For 0 < @ < 1, the general solution of the fractional nonhomogeneous equation
D(t) — Ax(t) = o(2),t > 0,

is expressed by
xX(t) = e'F[C + I%(e T o ()],

where C is a constant. Further, the unique solution of the linear initial value problem

Dx(t) — Ax(t) = o(¢), t € (0, 1],
x(0) = xo,

has the following form
xX(t) = ' [xo + T%(e T o (1))

From Lemma 2.9 we can obtain the solution of linear boundary value problem.
Lemma 2.10. For o(¢) € C(J) and 0 < @ < 1, the unique solution x € C(J) of the linear boundary

value problem

Dx(t) — Ax(t) = o(t), t € (0,1], 1 £ 0,
x(0) - x(1) = d,

has the following form

del§ !
X0 = f G.(t, s)o(s)ds, (2.5)
—en 0
where
e%e/l%e'/l%sa’l A2 A a1
—§+eae @ s, s <1,
—_ —e
Gat,s) = egeaée—n% ga-1
—_ st
l—ea

The continuity of the solution x(¢) in Lemma 2.10 is guaranteed by Property 2.7.
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7516

Remark 2.11. It is easy to know from the expression of G,(z, s) that for 4 < 0,

4
( ety l)sa—l —— s<t,
l-ea 1-e

OSG,{(I,S)S{ ]

-1
— s, s>t

R~

l-ea

Thus fol Ga(t, )ds < ——.

a(l-e@)
Furthermore, from Lemma 2.10 we can deduce the solution of linear PBVP with sequential
derivative.

Lemma 2.12. For o(f) € C(J),0 < @ < 1 and M, N > 0 such that M? > 4N, the solution of the linear
PBVP

D¥x(t) + MD*x(f) + Nx(t) = o(¢), t € (0, 1], 2.6)
x(0) = x(1), D*x(0) = D*x(1), '
is | |
x(t) = f G, (1, s)(f G, (s, T)o(1)d7)ds, 2.7
0 0
where
—M — VM2 — 4N ~M + VM? - 4N
A = > <Ay = > < 0.
Proof. Let (D* — A;)x(t) = y(¢),t € (0, 1]. Then the problem (2.6) is equivalent to
{(@“ — A2)x(t) = y(1), 1 € (0, 1], 08)
x(0) = x(1),
and
y(0) = y(1).

By Lemma 2.10, we obtain that the problems (2.8) and (2.9) have the following representation of
solutions

1
x(1) = f G, (1, )y(s)ds, (2.10)
0
and )
(1) = f G, (2, s)o(s)ds, (2.11)
0
respectively. Substituting (2.11) into (2.10), we get (2.7). O

The following comparison result plays an important role in the proofs of our main results.

Lemma 2.13. Let M? > 4N, M,N > 0 and

(2.12)

D*x(t) + MDx(t) + Nx(t) > 0, t € (0, 1],
x(0) > x(1), D*x(0) > Dx(1).

Then x(¢) > O on J.
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Proof. Rewrite (2.12) as follows

2a @ =
{z) x() + MDx(1) + Nx(t) = (1) 2 0, 1 € (0, 1], (2.13)

x(0) = x(1) =k > 0,D(0) — Dx(1) =1 > 0.
Then the problem (2.13) is equivalent to
(D" = )x(1) = y(0),1 € (0, 1],
x(0) — x(1) = k,

and
(D" = )y = o(1),1 € (0, 1],
y(0) —y(1) =1 — k.

In view of 1, < 0,] — 1k > 0, o(¢t) > 0, 4; < 0 and (2.5), we can obtain y(¢) > 0. Furthermore,
A <0,k >0, y(t) > 0 and (2.5) ensure x(z) > 0 on J. |

3. Main results

Definition 3.1. Let v,w € C,(J, E). v is called a lower solution of PBVP (1.1) if it satisfies

D*(1) < f(t, (1), DW(D)), t € (0, 1], G.0)

v(0) < v(1), D*"v0) < Dv(1), '
and w is called an upper solution of PBVP (1.1) if it satisfies

D*w(r) > f(t, w(t), D*w(r)), t € (0,1], (32)

w(0) > w(l), D*w(0) > D*w(1). ’

In the following, we assume that v(#) < w(t), t € J. Define the ordered interval in space C(J, E)
v,w] ={x(t) € C(J,E),v(t) < x(t) < w(t), t € J}.

Denote D (1) = Dv(t) + L,(w(t) — v(t)) and D,(1) = D*w(t) — L,(w(t) — v(t)). We work with the
following conditions on the function f in (1.1).

(H1) There exist constants M, N > 0 with M? > 4N such that
ft,w, D) — f(t,v, D) > -M(D'W—-DV)—Nw-v), teJ,

where v,w € C,(J, E) are lower and upper solutions of (1.1).

(H2) There exist constants M, N > 0 with M? > 4N such that

f@, x2,y2) — ft, x1,y1) 2 =My —y1) = N(x2 — x1), t€J,

where v < x; < x; < wand D(t) < yi(t) < Dy(1), i =1,2.
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(H3) There exists a constant K > 0 such that

p(LF(t % y) + N3, (8) + My,(0}) < K(u({x, (0D + pu(lya(OD), 1€ J,

for any monotonic sequence {x,} C [v,w] and any sequence {y,} such that D(t) < y,(t) < D;(?).

Moreover,
8K(1 - 1y) 1

@ (I ed)1-e?)

< 1.

(H4) There exist constants M, N > 0 such that
f(t’ x2’y2) - f(t’ xlayl) < M(yz _)’1) + N(-xz - xl)’ te J»
where v < x; < x, < wand D(¢) < yi(t) < Dy(t), i = 1,2. Moreover,

8K(1 — 1) 1

<1,
P (1-e)(1-e?)

a

here K = max{L(M + M), L(N + N)} and L is the normal constant of cone P.

Remark 3.2. The condition (H1) and Lemma 2.10 guarantee that D“(w(t) — v(¢)) — L, (w(t) — v(¢)) >
0,t € J. In fact, let z(r) = D*(w(t) — v(t)) — A, (w(t) — v(1)), then by (3.1), (3.2) and (H1), for ¢ € (0, 1],

D2(t) — liz(t) = D**(w(t) — (1)) + MD(w(t) — v(1)) + N(w(t) — (1))
> (f(t,w, DW) — f(t,v, D)) + MD*(w(t) — v(t)) + N(w(t) — v(1)) = 6,

and z(0) — z(1) > 6. By (2.5) of Lemma 2.10, x(¢t) > 8 if d > 6 and o(t) > 6. Thus we obtain that
z(t) = 0, this implies D1(f) < D*v(t) < D,(t) and D (t) < D*w(t) < D, (1).

SetQ ={nev,wlNCyuJ,E): Di(t) < Dn(t) < D,y(t)}. Obviously, Q is well defined by Remark
3.2 when the condition (H1) holds. Now we are in the position to state our main results.

Theorem 3.3. Assume that f € C([0,1] X E X E), v and w are lower and upper solutions of BPVP
(1.1) and the conditions (H1), (H2) and (H3) are valid. Then there exist p(¢), g(¢) € C,(J, E) such that
p(t), g(t) are minimal and maximal solutions on the ordered interval [v, w] for BPVP (1.1), respectively,
that is, for any solution x(#) of BPVP (1.1) such that x € [v,w], we have v(¢) < p(?) < x(t) < g(t) <
w(t),t € J.

Proof. Let o(n)(t) = f(t,n(t), Dn(t)) + MD*n(t) + Nn(t). For any n € Q, consider the linear PBVP

D> x(t) + MDx(t) + Nx(t) = o(n)(?), t € (0, 1], (3.3)
x(0) = x(1), Dx(0) = Dx(1). '
By Lemma 2.12, (3.3) has exactly one solution x(#) given by
1 1
x(t) = fo G, (t, s)( fo G, (s, D)o (n)(D)dT)ds. (3.4)
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For any n € Q, define the operator 7" as Tn(t) = x(¢), then the fixed points of T are exactly the solutions
of PBVP (1.1). For clarity, we divide the proof into several steps.
Step 1: Firstly, T : Q — C,(J, E) is well defined. Indeed, for any n € Q, by (3.4),

1 1
0= [ Gues( [ Gunoamaras

(3.5)
= Aneh% + B,,e/h%Z"’eu‘_mzT + e’b%](’(e“‘_h)%f”e%‘ %U(n)(t)),
where
Ap+Ay
Ay =—-= (e T at)|_ (10
(1—ev)(1-ev) = =
/LZ
€ af (-0 ra —A '
+ . _6%2] (e 172 J%e™ M U(n)(t))tzl,
and
4
_ e« @ —A %
By = ("¢ M Hemo)|
Furthermore, Property 2.6, Property 2.7 and Remark 2.8 indicate for # > 0,
DTn(t) :An/lze/h% + Bn/lzehgfae(/“_h)% + /lze/lzgfa(e(’l‘_h)%f"e_’“ %o'(n)(t))
+ B,e" T+ e’“gfae_ﬂl%ya(n)(t) (3.6)

1 1 1
= f G, (t, s)( f G, (5. D)o ()(T)dr)ds + f G, (1, $)o(m)(s)ds.
0 0 0

The continuity of f together with Property 2.7 ensures that the right side of (3.6) is continuous on J.
Hence, (3.6) is also valid for ¢t = 0. By Property 2.7, (3.5) and (3.6) we have Tn(t) € C,(J, E).
Step 2: For any n € Q, {Tn} c C,(J, E) is bounded. In fact, from condition (H2) we can derive

ft,v, D)+ MDD + Nv < f(t,n,Dn) + MDn + Nn < f(t,w, DW) + MD*w + Nw.

In view of the normality of the cone P, there exists L > 0 such that ILf(t,n, D) + MD*n + Nn|| < L.
Since 4; < 4, < 0, by Remark 2.11, (3.5) and (3.6) we can find

L 1
ITn@®Il < — T 5
¥ (1-ev)l-ew)
and _ _
i ILIL 1 L 1
1D T < = Tt
@ (1-ea)l—-—ev) P]l—en

Hence, {Tn} c C,(J, E) is bounded.
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Step 3: For any n € Q, {Tn} c C,(J, E) is equicontinuous. Noticing that

T i el ol 12 s
ot f (L= T o f Sa—le(/ll—/lz)jds‘
0 0

tlll‘ 11 @ tzzy 11 e
< ‘eh? f sl g gg ot f s"_le(d‘_dz)?ds'
0 0
@ 5l @ g 15} a
2 _ _ il 2 _ _ st
e/lz = f 5@ le(/ll A2)% ds — e/lz p f s* 16(/11 A2) ds‘

0

5]

< 1 + ‘f s"_le“‘_’lz)%a’s‘ < !
1 a

(3.7)

1

0
@ =4 [ [;
i 2 i 2

ebw — e ebw — e 15—t

(0

b

1
+ —
a

@ 11 S

tl 5@ e

He’lzz f s"_le(ﬁl‘b)?( f 777l 7o-(n)(T)dT)ds
0 0

e

1D @ s ¥
et f | f M (o) )ds|
0 0

ftl Sa—le(/h—/lz)%( fs T“_le_/h %O'(I])(T)dT)dSH (3.8)
0 0

%) @ N o
f s"_le(ﬂl_h)ir(f T“‘le_AITO'(U)(T)dT)dsH
0

14l

@ @
1 A2
< A a 2%

e — e

[a
Lt

a

+ e

L w4 8 L a
< e et —eha + e |y -1y
a e

9

and

g rh 5 (" @
Jer® [ set Eampas - e? [T ot
0 0

f ” s“—‘e—*%cr(n)(s)dsH (3.9)

n

g s I(ZI
f s"_le_l‘70'(17)(s)ds“ +elie
0

1 ,(I l(l 1
a

2

we can arrive at from (3.5)—(3.9) that {Tn} c C,(J, E) is equicontinuous.
Step 4: Now we prove v(t) < Tv(t), w(t) > Tw(t). Set v; = Tv, then we have

D**vi(t) + MD (1) + Nvi (1) = f(1,v(1), DW(1))
+MD V(1) + Nv(1), t€(0,1], (3.10)
vi(0) = vi(1), D*i(0) = D (1).

Set z(¢) = vi(t) — v(¢), then by (3.1) and (3.10) we can know

D27(f) + MDz(t) + Nz(t) > 0, t € (0, 1],
z(0) > z(1), D*z(0) = Dz(1).

Thus, z(#) > 6 by Lemma 2.13 and this means v(t) < Tv(t). Similarly, w(¢) > Tw(t).
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Next, let 7y, € Q be such that n;(r) < n,(¢f). (H2) and (3.5) show that o(n;)(#) < o(2)(2),
Tni(t) < Tny(t). For each € Q, we get by the similar method to Remark 3.2 that D*(Tn(t) — v(t)) —
A (Tn(t) — v(t)) = 6,t € J. This implies

Di(t) < D(t) + ,(Tn() —v(t)) < D*Tn(t).
Similarly, D*(w(t) — Tn(t)) — L(w(t) — Tn(t)) > 6,t € J, and hence
DTn(t) < D*w(t) — L(w(t) — Tn(1)) < Da(1).

Therefore, T(Q2) ¢ Q and T is a monotone operator on [v,w]. Consequently, let v, = Tv,_1,w, =
Tw,.1(n=1,2,...), we obtain

V=g SviZ...Zf v, .S w . .S w S wy = w,

and
Di(t) DT, (1), D*Tw,(t) < Dy(1), t € J.

Step S: Let V ={v, : n = 1,2,...}. In the following, we will show that V is a relatively compact set
in C,(J, E). Note that u.(V) = u.(V U {v}) and u.(D*V) = u(D*V U {D%,}) by Property 2.2. In view
of Lemma 2.5, Property 2.2, condition (H3), Remark 2.11 and Lemma 2.3, it follows that

1

1
e fo G, (t, o (vy1)(s)ds}) < 2 fo G, (t, u({o(va-1)()}ds

1
<2K fo G, (1, ) (u{vuo1 () + p({D o1 ($))))d s (3.11)
2%

(V) + pe(D*V)).

4

¥ 1—ea

Furthermore,
1 1
u(vV@) = p({ fo G, (1, 5)( fo G, (5, D)o (v, 1 )(T)dT)ds})

1 1
<2 f G (1, S)u({ f G/l](s’T)O-(Vn—l)(T)dT})ds (3.12)
0 0

4K 1
< — T 7 Ue(V) + uc(DV)).
T (1-e=)(l-ew)

Hence, we obtain from Lemma 2.4

8K 1
p(V(D) € 25—, (V). (3.13)
T (Q-em)l-ev)

At the same time, by (3.6), (3.11), (3.12) and (3.13), we get

8K 1 4K 1
WODV(D)) < Ao~ —————tte, (V) + ————pte, (V)
@ (]~ eT)(1 - ) @]

8K(1 — 1) 1
< = - —pe, (V).
(1-ed)(1-e?)

(3.14)

a
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Combining Lemma 2.4, (3.13) and (3.14), we have

8K(1 -2 1
d-b) — e, (V).

He, (V) < > =
@ (1-e=)1-ev)

Therefore, u., (V) = 0 by (H3), then Property 2.2 shows {v,} is a relatively compact set of C,(J, E),
and thus there exists subsequence converging uniformly to p € C,(J, E). By the monotone property
of {v,} and the assumption (H2) of function f which implies {o(v,)} is monotone, we obtain that {v,}
converges uniformly to p € C,(J, E) and {o(v,)} converges to o(p). Similarly, we can show that {w,}
converges uniformly to g € C,(J, E) and {o(w,)} converges to o(g). Moreover, the limits p, g satisfy

V=V SV S ...V, S pSgSsw,...SwW SWwWyg =W,

and
Dy(1) < Dp(1), D*q(t) < Dy(1), t € J.

Step 6: Let n — oo in the relation

1 1
V(1) = Tv,_1(t) = f G, (t, s)(f G, (s, T)o(v,1)(T)dT)ds.
0 0

Applying the dominated convergence theorem, we have p satisfies the equation

1 1
p() = f G (1, S)(f Gy, (s, D)o (p)(T)dT)ds, t € J,
0 0

which implies that p(7) is an integral representation of the solution to the problem (3.3), and thus by
the definition of function o, p is a solution of PBVP (1.1). Similarly, we can prove that ¢ is a solution
of PBVP (1.1).

Finally, we prove p and g are extremal solutions of PBVP (1.1). Assume that X is a fixed point of
T in Q, then by the monotonicity of T proved in Step 4, it is easy to see that Tv < Tx < Tw, that is,

vi < x < w;. Furthermore, we have v, < x < w, forn = 1,2,.... Letn - cowe get p < x < gq.
Therefore, p and ¢ are the minimal and maximal solutions of PBVP (1.1) in [v, w], respectively.
This completes the proof of Theorem 3.3. O

Theorem 3.4. Assume that f € C([0,1] X E x E), v and w are lower and upper solutions of BPVP
(1.1) and the conditions (H1), (H2) and (H4) are valid. Then the BPVP (1.1) has a unique solution
x € [v,w].

Proof. First of all, we prove that (H2) and (H4) imply (H3). Let {x,} C [v, w] be increasing sequence
and {y,} be such that {y,} C [D;(¢), D,(t)], t € J. For m,n € N with m > n, in view of (H2) and (H4),
we have

6 < f(t» Xms ym) - f(l’ Xns yn) + M(ym(t) - yn(t)) + N(xm(t) - xn(t))

— — (3.15)
< (M + M)(ym(1) = yu (D) + (N + N)(x (1) = x,(2)).-
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By (3.15) and the normality of cone P, we can derive that

1F (s Xms Yn) = F & Xs V) + M) = (D)) + N(x(8) = X0(0)]
< LIM + M)yu(t) = ya() + (N + N)(x(0) = x,0)|
< LM + M)llyw(®) = yu(OIl + LN + N[5, () = %, (1)
< K(lym(®) = yaIl + 116(1) = X, (D)D)

(3.16)

From (3.16) and the definition of Kuratowski measure of noncompactness, it follows that

({2 %0 y) + N2, (1) + My, (D)) < K(pn(0)) + p(@ya(0D), 1€

If {x,} c [v,w] is a decreasing sequence and {y,} C [D;(), D,(?)], the above inequality is also valid.
Hence (H3) is satisfied. Therefore, Theorem 3.3 asserts that the PBVP (1.1) has minimal and maximal

solutions p and g between v and w. In the following we show that p = q.
Since by (H2) and (H4),

1 1
0<q=p0= [ Guto)( [ G0 0. D) = firp(e). 7 p(e)

+ M(D"q(r) = D" p(1) + N(g(r) = p(r))|dr)ds
(3.17)

1 1
< [ Gues( [ Gutsn[+ Mx0a - Do)
+ (N + N)(g(@) - p(0))]dr)ds,

(3.17) together with the normality of cone P ensures

1 1
lg(t) = p()l < f Ga(t, 5)( f G, (5, D| LM + M) D" g(x) — D" p(@)||
0 0
+ L(N + N)lig(x) - p(@)l|dr)ds (3.18)

1
) / 7 llg = plic,-
@ (1-e)(1-e?)

< [L(M + M) + L(N + N)]

Furthermore, if Dq(t) > D p(t), again by (H2) and (H4), we have
0 < Dq(1) — D p(t)
1 1
=1 fo Gt s) fo Gy (5. D) f(r.q(1). D q(1)) - f(x, p(1), D" p(7))

+ M(Dq(1) - Dp(1)) + N(g(7) — p(T))]dT)ds
1 (3.19)
+ fo G, (@, S)[f(S, q(s), Dq(s)) — f(s, p(s), D*p(s))

+ M(D"q(s) = D" p(s)) + N(q(s) - p(s))]ds

1
< fo G, (6, )| (M + MY(D q(s) = D" p(s)) + (N + N)(g(s) = p(s)) |ds.
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From (3.19) and the normality of cone P we get
1D%q(1) — D p(0)|

1
< fo G, (1, LM + MDD q() = D" p(s)l| + LN + Mllg(s) = poll[ds 350

— — I 1
< [L(M + M) + L(N + N)]E1 i llg = plic, -

On the other hand, if D%q(r) < D*p(t), also by (H2) and (H4) we get
6 < D"p(1) — Dq(1)
- | Gt 9 | G5, p(0), D p() — 540, D)
+ M(D" p(r) - D"g(r) + N(p(x) - g(r)|de)ds
al Gt O[5, p(5), DpS) ~ 1(5,4(5), D) (321)
+ MDD p(s) — Dq(s)) + N(p(s) — a(s)|ds
<u | Gt | Gt D|(F 4 MYDF pl) — D)
+ (N + N)(p(r) - q(1))|dr)ds.
From (3.21) and the normality of cone P we know
127 p(t) ~ D)

1 1
< |l fo G, (t. 5)( fo G, (5, T)| L(M + M)I|D" p(x) = D" q(7)]

_ (3.22)
+ L(N + N)llp(0) - q(0)ll|dr)ds
— — 1
< |LIIL(M + M) + L(N + N)]——— —Ilp = 4gllc,.
@ (1-e)(1 - e?)
Consequently, from (3.18), (3.20) and (3.22) we can conclude
2K(1 - A,) 1
lp = qllc, < ——5— —lip = 4llc,.
@ (1-er)(1-e?)
Thus, p = g by (H4), which means that there exists a unique solution of PBVP (1.1) in [v, w].
This completes the proof of Theorem 3.4. O

Remark 3.5. Using the methods of our main results Theorem 3.3 and Theorem 3.4, we can easy to
obtain the existence of solutions of the following PBVP for fractional differential equation

{Z)“x(t) = ft,x(®), t€(0,1], 0<a <1, (3.23)

x(0) = x(1).
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Let v,w € C(J, E). We say that the function v is a lower solution of problem (3.23) if

D(r) < f(t,v(1), t € (0,1],
v(0) < v(l).

Analogously, w is an upper solution for problem (3.23) if it verifies similar conditions for the
inequalities reversed.

(G1) There exists a constant N > O such that f(¢, x;) — f(¢,x1) = —N(x; — x1),t € J, where v < x; <
Xy < w.

(G2) There exists a constant K > 0 such that u({f(z, x,) + Nx,(1)}) < Ku({x,(t)}),t € J for any
monotonic sequence {x,} C [v, w]. Moreover, %1;;” < 1.

(G3) There exists a constant N > 0 such that_f(t, xz_)— f(t,x)) < N(xz —x1),t € J, where v < x1 <
x> < w. Moreover, %Kl%l < 1, where K = L(N + N) and L is the normal constant of cone P.

Theorem 3.6. Assume that f € C(J X E), v,w are lower and upper solutions of BPVP (3.23) and

v < w. The conditions (G1) and (G2) are valid. Then there exist p(¢), g(¢) € C(J, E) such that p(?), g(t)

are minimal and maximal solutions on the ordered interval [v, w] for BPVP (3.23), respectively, that is,

for any solution x(#) of BPVP (3.23) such that x € [v, w], we have v(r) < p(?) < x(t) < g(t) < w(t),t € J.

Theorem 3.7. Assume that f € C(J X E), v, w are lower and upper solutions of BPVP (3.23), v < w,
and the conditions (G1) and (G3) hold. Then the BPVP (3.23) has a unique solution x € [v, w].

4. An example

0,n=1,2,3,...}. Then P is a normal cone in E. Consider the PBVP of infinite system for differential
equations in E

Let E = {x:x=(x1,x2,...,Xp,...), X, — 0} with the norm |[|x|| = sup, |x,/]and P = {x € E : x,, >

D*x,(t) = g [(1 = x,(0)? — 251
+ DR G g (1) = D (8), 1 € (0, 1], 4.1)

%2(0) = x,(1), D*x,(0) = D x,(1).

Evidently, (4.1) can be regarded as a PBVP of the form (1.1) in E. In this situation,
X=X s Xy o), Y =012, s Yn»..)and f = (f1, fo,..., fu,...), iIn Which

22 -1, (n-DR2n+1)> .

syl Ry $in® X1 (1) = ya(0).

1
[(1 = x,(1))* -

Sent

Ju(t, x,y) =

Itisclear f € C(J X EXE,E). Letv = (0,0,...,0,...) and w = (1,%,...,%,...). Then v,w €
C,(J,E),v(t) £ w(t),t € J, and

Va(0) = vu(1) = D, (0) = D, (1) = 0, w,(0) = wy, (1) = l»‘Z)QWn(O) = Dw,(1) = 0.

n
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Moreover,
feo, oy = -2t o L
il VA, SV = G gt 2n2 7 8em2n2 T
and
1 1 2n* -1, (m-1Q2n+1)° . 1
(1, w(D), D w(t)) = 1--) - + 3
Jalt w(0), Dw(1)) 8e ! n) 2n? | 4n2ent T
1 1 2n* -1 1 2n-2 1 1
< Lja-1p- ¥ =——— <0
~ 8en 1 n) 2n? | e n? 8e 2n? <
Hence, v and w are lower and upper solutions of (4.1).
The conditions (H1) and (H2) are satisfied with M = 1,N = ;. Let us first verify the condition

(H2) . Noticing that 2, = -1, Di(r) = —%2 and D,(r) = W“’ , for v(t) < xV@) < xP@t) < w() and
Di() < y9(f) < Dy(1),i = 1,2, we have

1 1 . 1
0<xXP) <Xt < -, ——<HYWe<—,i=12 n=12.3,....
n 2n 2n
Therefore,

Fult, x2,3) = £, 5D,y 1) = @[a — xX2(0))* = (1 = xXP(0)*] - 620 - yP (1)
(n—-1DR2n+1)> 3,0

4n2ent [ 2n+1(t) Sln3 gn)+1(t)]
> ﬁ[( (2)(0) (1)(l)) ] (yl(12)(t) _ yfll)(t))

_ _$(2 — xz(ll)(t) _ x;Z)(t))(xg)(t) _ Xfll)(t)) _ (ng)(t) _ yﬁ,”(t))
2 —ﬁ(xf)(r) = 200) - 620 -y )

> —%(xf?(z) - x(0) - 0P @) =y 0).

This implies that (H2) is satisfied. Obviously, by the same method we can verify (H1).
Finally, we check condition (H3). Let the sequences {x" : x™ = (x(m) x(zm), o xX™ ) and
{y<’”) sy = (y(lm),y(zm), .y, .. )} be given such that {x®} c [v,w] is monotonous and -5 <
W) < on=1,2,3,.. . Let 2"(1) = fu(t, x™,y™) + Nx{" () + My\""(£). In view of
14n-3 n-1 1

N M
(m) _

N <= + + +—+—,telJ, nm=1,2,3,...,
2" () 8 2n? 4n? 2n n  2n nm

it follows that {zﬁlm)(t)} is bounded, so we can choose a subsequence {m;} C {m} such that z(m’) (1) = z,(t)

asi »>oo,n=1,2,3,...and

14n-3 n-1 1 N M
+ +—+—+—,1telJ, n=123,.
S8 222 T a T2 w T "

Hence, z(t) = (z1(?), 22(t), z3(¢), . . .) € E for any ¢ € J, and it is easy to see that

|zn ()] <

(2, X, 0y + NX™(6) + My™(2) — z(£)|| = sup [2"(t) — z,(t)] — 0, i — oo.
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Consequently, we conclude that condition (H3) is satisfied for K = 0. Therefore, Theorem 3.3 ensures
that PBVP (4.1) has extremal solutions in [v,w], which can be obtained by taking limits from the
iterative sequences {v™ : v = (V" W0 v ) and (™ s w = W wd L wl L),
here

v =y, w® = w,

1 1
V(1) = f G, (t. 5)| f G, (5. 0| £ur V" V@), DV V(1) + MOV (2) + NV (1) |deds
0 0

1 1
- [(aasf [ 66
0 0

- 202 -1, (m-D@2n+173  , .-
((1 - V,(1 1)(T))2 - 2n2 ) + 4l’l2€nT 5 ’ v(2n+:

[Se’” (1) + iv;m_l)(T)]d‘r}ds,

and

1 1
win(r) = f G (t, 9)f f G, (5. D) fulr. W D (@), DWD(1) + MD W D7) + Nwl" V(1) |dr)ds
0 0

1 1
= f G_%(t, S){f G_%(S’T)
0 0

" 2P -1y (m—-DR2n+1)° | m—
(T =W P @) = o) + g o sin’ Wi

[8e’" (1) + %w;’"—”(‘z’)]dr}ds.

5. Conclusions

This paper explores periodic solutions of some nonlinear fractional differential equations. The
problem discussed involves sequential conformable fractional derivative. Under suitable monotonicity
conditions and noncompactness measure conditions, the existence and uniqueness of solutions are
derived from monotone iterative technique and upper and lower solutions method. Further, it is
analyzed that the similar methods are well suited for investigating the existence and uniqueness of
periodic solutions of the non-sequential fractional differential equation. In particular, for @ = 1, the
classical results corresponding to ordinary differential equations of integer order are yielded. An
example is given to illustrate an application of our theoretical work. To the best of our knowledge, the
results obtained throughout this article are not recorded in any published literature. It is worth to be
pointed out that the techniques applied in the main results of this paper can be used to investigate
initial value problems or the differential equations with Riemann-Liouville sequential fractional
derivatives.
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