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Abstract: In this paper, we study the long-time asymptotic behavior of the solution of the Cauchy
problem for the generalized Sasa-Satsuma equation. Starting with the 3 X 3 Lax pair related to the
generalized Sasa-Satsuma equation, we construct a Rieman-Hilbert problem, by which the solution of
the generalized Sasa-Satsuma equation is converted into the solution of the corresponding Rieman-
Hilbert problem. Using the nonlinear steepest decent method for the Riemann-Hilbert problem, we
obtain the leading-order asymptotics of the solution of the Cauchy problem for the generalized Sasa-
Satsuma equation through several transformations of the Riemann-Hilbert problem and with the aid of
the parabolic cylinder function.
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1. Introduction

The Sasa-Satsuma equation
Up + Uyr + Oluluy + 3u(ul?), = 0, (1.1)

so-called high-order nonlinear Schrodinger equation [1], is relevant to several physical phenomena,
for example, in optical fibers [2, 3], in deep water waves [4] and generally in dispersive nonlinear
media [5]. Because this equation describes these important nonlinear phenomena, it has received
considerable attention and extensive research. The Sasa-Satsuma equation has been discussed by
means of various approaches such as the inverse scattering transform [1], the Riemann-Hilbert
method [6], the Hirota bilinear method [7], the Darboux transformation [8], and others [9, 10, 11].
The initial-boundary value problem for the Sasa-Satsuma equation on a finite interval was studied by
the Fokas method [12], which is also effective for the initial-boundary value problems on the half-line
[35, 36, 37]. In Ref. [13], finite genus solutions of the coupled Sasa-Satsuma hierarchy are obtained
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in the basis of the theory of trigonal curves, the Baker-Akhiezer function and the meromorphic
functions [14, 15, 16]. In Ref. [17], the super Sasa-Satsuma hierarchy associated with the 3 X 3 matrix
spectral problem was proposed, and its bi-Hamiltonian structures were derived with the aid of the
super trace identity.

The nonlinear steepest descent method [18], also called Deift-Zhou method, for oscillatory
Riemann-Hilbert problems is a powerful tool to study the long-time asymptotic behavior of the
solution for the soliton equation, by which the long-time asymptotic behaviors for a number of
integrable nonlinear evolution equations associated with 2 X 2 matrix spectral problems have been
obtained, for example, the mKdV equation, the KdV equation, the sine-Gordon equation, the
modified nonlinear Schrédinger equation, the Camassa-Holm equation, the derivative nonlinear
Schrédinger equation and so on [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. However, there is little
literature on the long-time asymptotic behavior of solutions for integrable nonlinear evolution
equations associated with 3 X 3 matrix spectral problems [31, 32, 33]. Usually, it is difficult and
complicated for the 3 X 3 case. Recently, the nonlinear steepest descent method was successfully
generalized to derive the long-time asymptotics of the initial value problems for the coupled nonlinear
Schrédinger equation and the Sasa-Satsuma equation with the complex potentials [33, 34]. The main
differences between the 2 X 2 and 3 X 3 cases is that the former corresponds to a scalar
Riemann-Hilbert problem, while the latter corresponds to a matrix Riemann-Hilbert problem. In
general, the solution of the matrix Riemann-Hilbert problem can not be given in explicit form, but the
scalar Riemann-Hilbert problem can be solved by the Plemelj formula.

The main aim of this paper is to study the long-time asymptotics of the Cauchy problem for the
generalized Sasa-Satsuma equation [38] via nonlinear steepest decent method,

1.2
u(x, O) = Mo(X), ( )

{u, + Uy — 6alulPu, — 6buPu, — 3au(|ul?), — 3b*u*(u?), = 0,
where a is a real constant, b is a complex constant that satisfies a*> # |b|?, the asterisk “ * ~” denotes the
complex conjugate. It is easy to see that the generalized Sasa-Satsuma equation (1.2) can be reduced
to the Sasa-Satsuma equation (1.1) when a = —1 and b = 0. Suppose that the initial value u(x) lies in
Schwartz space .7 (R) = {f(x) € C*(R) : sup, [x*® f(x)| < o0, ¥a, B € N}. The vector function y(k)
is determined by the initial data in (2.15) and (2.19), and y(k) satisfies the conditions (P;) and (P,),
where

¥ (k*)Byy(k) + %(W(k*)%y(k))z <1,
(P1) : ¥ (k) Byy(k) + ay' (k" )osy(k) < 2,
2y (k)Biy(k) + (0P + 1By (k) < 4,

1 0 a b
0'3:(0 1 ), Bl:(b a ), (13)

(P,): When det B; > 0 and a > 0, (2a—|B;y(k)|*) and (2a — det B, |y(k)|*)/(1 —y' (k)B,y(k)) are positive
and bounded; otherwise, (|B,y(k)|* — 2a) and (det B|y(k)|> — 2a)/(1 — v (k)B,y(k)) are positive and
bounded.

The main result of this paper is as following:

with
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Theorem 1.1. Let u(x,t) be the solution of the Cauchy problem for the generalized Sasa-Satsuma
equation (1.2) with the initial value uy € . (R). Suppose that the vector function y(k) is defined in
(2.19), the hypotheses (P1) and (P,) hold. Then, for x < 0 and \/-% < C,

u(x, 1) = uy(x, 1) + O (cko)t™ log?). (1.4)
where C is a fixed constant, and
v : ‘
J(x,1) = — —ko)|ei@rargyi(=ko)) —ko)|e (@ rargv2(=ko)) ,
1y, 1) \/ T B (~hi(=ko)le [ya(—ko)le )

by 1
- |- - —f
kO - 12t9 14 0 log(l Y (kO)BIY(kO))a

1 (o
¢ = v10g(196tk3) — 16tk + arg ['(—iv) + — f loglé + kol d(1 — y'(&)B1y(£)) — g,
T

—ko

c(+) is rapidly decreasing, 1'(-) is the Gamma function, 'y, and vy, are the first and the second row of
v(k), respectively.

Remark 1.1. The two conditions (Py) and (P,) satisfied by y(k) are necessary. The condition (Py)
guarantees the existence and the uniqueness of the solutions of the basic Riemann-Hilbert problem
(2.16) and the Riemann-Hilbert problem (3.1). The boundedness of the function 6(k) defined in
subsection 3.1 relies on the condition (P5).

Remark 1.2. In the case of a = —1 and b = 0, the generalized Sasa-Satsuma equation (1.2) can
be reduced to the Sasa-Satsuma equation. Then it is obvious that the condition (P) is true, and the
condition (P;) is reduced to the case that |y(k)| is bounded. Therefore, the conditions (P;) and (P;)
in this case are equivalent to the condition related to the reflection coefficient in [34], that is, |y(k)| is
bounded for the Sasa-Satsuma equation.

The outline of this paper is as follows. In section 2, we derive a Riemann-Hilbert problem from the
scattering relation. The solution of the generalized Sasa-Satsuma equation is changed into the solution
of the Riemann-Hilbert problem. In section 3, we deal with the Riemann-Hilbert problem via nonlinear
steepest decent method, from which the long-time asymptotics in Theorem 1.1 is obtained at the end.

2. Basic Riemann-Hilbert problem

We begin with the 3 x 3 Lax pair of the generalized Sasa-Satsuma equation

Y. = (ko + Uy, (2.1a)
U = @Giko + V), (2.1b)

where i is a matrix function and k is the spectral parameter, o = diag(1, 1, -1),

0 0 u
U= 0 0 u (2.2)
au*+bu au+but 0
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V = 4K*U + 2ik(U? + U)o + [U,, U] — Uy, + 2U°. (2.3)

We introduce a new eigenfunction y through u = e *74k'0t where ¢ = diag(e, e, e'). Then (2.1a)
and (2.1b) become
My = tk[o, u] + Up, (2.4a)
pe = 4k’ [om, 1] + Vi, (2.4b)

where [, -] is the commutator, [0, u] = ou — po. From (2.4a), the matrix Jost solution u. satisfy the
Volterra integral equations

X

pa(ks x, 1) =1 + f e TTOUE, Dus (ks €, e 700 dE. 2.5)

+00

Set . represent the first two columns of ., and u.g denote the third column, i.e., g = (Usp, Hr).
Furthermore, we can infer that u,z and u_; are analytic in the lower complex k-plane C_, u,; and u_g
are analytic in the the upper complex k-plane C,. Then we can introduce sectionally analytic function
P(k) and P,(k) by

Py(k) = (u-L(k), por(K)), ke C.,
Pa(k) = (iL(k), u-r(k)), k€ C..

One can find that U is traceless from (2.2), so detu. are independent of x. Besides, dety,. = 1
according to the evolution of detu, at x = +oco. Because all the u,e®+4%'7" gatisfy the differential
equations (2.1a) and (2.1b), they are linear related. So there exists a scattering matrix s(k) that satisfies

U = M+eiko’x+4ik3(rts(k)e—ika'x—4ik3a't’ det S(k) =1. (26)

In this paper, we denote a 3 X 3 matrix A by the block form

Ay Ap )
A= :
( Ay Ax

where A} is a 2 x 2 matrix and A,, is scalar. Let ¢ = (u, u*)” and we can rewrite U of (2.2) as

[ 022 ¢
U_(QTBl 0)

where “{” is the Hermitian conjugate. In addition, there are two symmetry properties for U,

B'U'(k"B = -U(k), tU*(=k")t = U(k), (2.7)
_ B, 0 | T1 0 _ 01
B‘(o —1)’ T‘(o 1)’ (’1‘(1 0)’ 8

where B and 7 are represented as block forms. Hence, the Jost solutions . and the scattering matrix
s(k) also have the corresponding symmetry properties

Bl (k)B = ' (k), Tl (—k)T = pa(k); (2.9)
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B 's"(k)B = s71(k), 75" (=k")T = s(k).
We write s(k) as block form (s;;)2x> and from the symmetry properties (2.10) we have
sn(k) = detls], (k)],  By'sh, (k") = adjls11 (k)]s12(k),

where adjX denote the adjoint of matrix X. Then we can write s(k) as

sk) = ( s11(k) s12(k) )’

sty (kadjls], (k)1By - detls] (k)]

where
o181, (k"o = s11(k),  o1857,(=k") = s12(k).

From the evaluation of (2.6) at t = 0, one infers
s(k) = lim e ™ u_(k; x,0)e™,
xX—+00

which implies that
sik) =1+ [ g€ Oppa(k: €, 0) d,
stk = [ e 2 q(E, 0)u_n(k; £, 0) dE.

Theorem 2.1. Let M(k; x,t) be analytic for k € C\R and satisfy the Riemann-Hilbert problem

M. (k;x, 1) = M_(k; x,1)J(k; x,1), k€R,
Mk; x,t) — 1, k — oo,

where

M. (k;x,t) = lirgl+ Mk Fie; x, 1),

I —y(kyy"(k*)B, —e *"y(k)
eZitG,yT(k*)Bl 1

X
0(k; x,1) = —;k -4, y(k) = 71 (k)s12(k),

J(k; x, 1) = (

v(k) lies in Schwartz space and satisfies
oy (=k%) = y(k).
Then the solution of this Riemann-Hilbert problem exists and is unique, the function

q(x, 1) = (u(x, 0),u"(x, 1))" = =2i Lim (k(M(k; x, 1))12)

and u(x, t) is the solution of the generalized Sasa-Satsuma equation.

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)
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Proof. The matrix (J(k; x, 1) + J'(k; x, 1))/2 is positive definite because of the condition (P,) that y(k)
satisfies, then the solution of the Riemann-Hilbert problem (2.16) is existent and unique according to
the Vanishing Lemma [39]. We define M(k; x, t) by

(-2 (K, por(l) detla’ (k1) ke C,
(psr(k)a(k), u_gr(k)), keC,.

Considering the scattering relation (2.6) and the construction of M(k; x, t), we can obtain the jump
condition and the corresponding Riemann-Hilbert problem (2.16) after tedious but straightforward
algebraic manipulations. Substituting the large k asymptotic expansion of M(k; x, t) into (2.4a) and
compare the coefficients of 0(%), we can get (2.21). |

M(k; x, 1) = { (2.22)

3. Long-time asymptotic behavior

In this section, we compute the Riemann-Hilbert problem (2.16) by the nonlinear steepest decent
method and study the long-time asymptotic behavior of the solution. We make the following basic
notations. (i) For any matrix M define |M| = (trM™M )% and for any matrix function A(-) define [|A()[|, =
IIA(IIl,,- (i1) For two quantities A and B define A < B if there exists a constant C > 0 such that |A| < CB.
If C depends on the parameter o we shall say that A <, B. (ii1) For any oriented contour X, we say that
the left side is + and the right side is —.

3.1. The first transformation: reorientation

First of all, it is noteworthy that there are two stationary points +ky, where +ky = + \/% satisfied
g—,‘z ey = 0. The jump matrix J(k; x, t) have a lower-upper triangular factorization and a upper-lower
triangular factorization. We can introduce an appropriate Rieman-Hilbert problem to unify these two
forms of factorizations. In this process, we have to reorient the contour of the Riemann-Hilbert
problem.

The two factorizations of the jump matrix J are

I —e 2y(k) I 0
0 1 Xy (kB 1)

J = 76—21}9
[ ! 0 ]( 1=y (k)B, 0 ]( I S J
eZiIH T(k*)B . ~ .
eBa® | 0 (1 =y &)BryE)™ ) 0 |

We introduce a 2 X 2 matrix function 6(k) to make the two factorization unified, and §(k) satisfies the
following Riemann-Hilbert problem

6.(ky = 6_(k)UI —y(kyy"(k")By), k € (=ko, ko),
= 0_(k), k € (=00, —kg) U (kq, +00), (3.1
ok) — 1, k — oo,

which implies a scalar Riemann-Hilbert problem

detd.(k) = detS_(k)(1 -y (k)Byy(k)), k€ (ko ko),
= deto_(k), k € (o0, —ko) U (kg, +00), 3.2)
detok) — 1, k — oo.
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The jump matrix I —y(k)y'(k*)B, of Riemann-Hilbert problem (3.1) is positive definite, so the solution
0(k) exists and is unique. The scalar Riemann-Hilbert problem (3.2) can be solved by the Plemelj
formula,

k—ko\ ™"
det (k) = (Fki) e ® (3.3)

where

1
y = ~3- log(1 = ¥ (ko) B1y(ko)),
T

L (1 =yIEByE)) dé
xk) = —— lo . )
27 J 4, 1=y (ky)Bry(ko) ] & —k
Then we have by uniqueness that
8(k) = B{'' (k") 'By,  6(k) = 0,6 (=k")or. (3.4)
Substituting (3.4) to (3.1), we have
61(k")B16,(k) = B, — Byy(k)y'(k")B, (3.5)
which means that
tr[87 (k") B8, (k)] = 2a — |Byy (k). (3.6)

Actually, the condition (P,) satisfied by y(k) guarantee the boundedness of d..(k) and we give a brief
proof below. When det B; > 0, we find that the Hermitian matrix B; can be decomposition. In other
words, there exists a triangular matrix S that satisfies B; = a$ S. So tr[cﬂB]&r] = a|SJ,[>. When
det B; < 0 and |a| > 0, the matrix B, has a decomposition B; = STDS, where S is a triangular matrix
and D is a diagonal matrix and the diagonal elements have opposite signs. In the case of @ > 0, B, can

be decomposed as below,
-1 -1
[ —a b adetB; 0 —a 0
B“(o 1)( 0 a)(b 1)' S

We denote S0..(k) by (G;j)3xz and ¢; = 2a — |B1y(k)|? is negative, then
adet Bl(|G11|2 + |Gzl|2) +a(|Gpl* +1Gxnl?) = ci. (3.8)

Noticing that det B; < 0, we find a negative constant ¢, that satisfies ¢; < adetBi(cz — 1)/(1 —
det B c3), where c; is a constant and 0 < ¢3 < 1, which impies

156, P < <L < 1. (3.9)
C2

The case that a < 0 is similar. In particular, when a = 0, then |b| > 0, it is easy to see that B, is not
definite. For |[Reb| > 0, we have the decomposition

b L T U E
_ | WP PR - bR+ bP+D?
Bl—[llbg*) LR ) (beb O )(Ilb L ) _ (3.10)
bR+ bR+ b+b* bR +b2 bR +b2
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For |Reb| = 0, we have

i 1=\l . i i\t
_ § 7 —lb/2 0 —z 5
me(e) (707 an )l 2) o
So we get the boundedness of |0, (k)|. The others have the same analysis,
6L (k)B15_(k) = (B —y(k)y (k)™ as k€ (—ko, ko), (3.12)
6.0 =16 =2, as ke (=e0,—ko) U (ko, +00), (3.13)
1 =y " (k")Byy(k), ke (=ko, ko),
det 5, (k)| = y'(k)Byy(k) (—ko, ko) (3.14)
17 k € (—OO, _kO) U (kO’ +OO),
+7 k € _k 9k ’
det5_(k)| = { 1= @BE (=ko. ko) (3.15)
19 k € (—OO, _ko) U (k05 +OO)'

Hence, by the maximum principle, we have
|6(k)| < const < oo, |detd(k)| < const < oo, (3.16)

for all k£ € C. We define the functions

(k) _’Y(k)’ ke (—OO, _kO) ) (k()’ +OO)9 (3 17)
p(k) = k) .
=Byt <€ TRk
S(k 0
Alk) = (0) (det 5(k))"! (-18)

Figure 1. The reoriented contour on R.

We reverse the orientation for k €  (—o0,ky) U (kg,+o0) as in Figure 1, and
MA(k; x,t) = M(k; x, t)A~' (k) satisfies the Riemann-Hilbert problem on the reoriented contour

{Mf(k; x,0) = MAk; x, 008k x 1), kR, (3.19)

M (k; x,1) — 1, k — oo,

where the jump matrix J2(k; x, t) has a decomposition

1 0 =2it
JA(k, X, l') — (b_)—lb+ — [ eZiZH(k)pT(k*)Bl5:1(k) . ]( (I) —e 95+(k)pl(k)[det 5+(k)] ) ) (320)
deto_(k)
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3.2. Extend to the augmented contour

For the convenience of discussion, we define
L = {ky+ akoe_% c—co < a < V2 U {—ko+ akoe_"?i c—co < a < V2,
L, = {ko + akoe‘% T—e<a< \/5} U {—ko + akoe_"?i T—e<a< \/5}.
Theorem 3.1. The vector function p(k) has a decomposition
p(k) = hy(k) + ho(k) + R(k), k €R,

where R(k) is a piecewise-rational function and hy(k) has a analytic continuation to L. Besides, they
admit the following estimates

2O p (k)| € ————, keR, 3.21
“20p (k) €« ————, ke, 3.22
e OR(K)) < 71K, ke L, (3.23)

for an arbitrary positive integer . Considering the Schwartz conjugate
Pk = RIGK") + hi(k") + hi(K),
we can obtain the same estimate for 2™ ®pl (k*), 2O p} (k*) and " R (k") on R U L*.
Proof. It follows from Proposition 4.2 in [18]. O
A direct calculation shows that b.. of (3.20) can be decomposed further
by = bbY = (I + wl)(Izxs + W)

_ [ e —e?"[dets, (k)16 (k)h (k) )( 163%) —e‘z”e[det5+(k)]5+(k)[hz(k)+R(/<)])
0 1 0 1 ’

b_ = b°b* = (s — W) (I3x3 — W)

Do 0 Dyo 0
= _ez”ehf(k*)Bléjl(k) | _ez’w[h;(k*) + RT(k")]B,6-" (k) Ll
dets_(k) dets_(k)

Figure 2. The contour X.
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Define the oriented contour £ by X = L U L* as in Figure 2. Let

MA(k, X, 1), ke Q UQ,,
Mﬁ(k; x,1) = s MA(k; x, t)(bﬁ)‘l, ke Q;UQ,UQs, (3.24)
MA(k; x, H)(b%)™, ke QgUQ; U Q.

Lemma 3.1. M*(k; x, ) is the solution of the Riemann-Hilbert problem

M (k; x, 1) = M* (k; x, OJ*(k; x, 1), k€, (3.5)
Mk, x, 1) — 1, k — oo, '
where the jump matrix J*(k; x, 1) satisfies
'y, kel
Plx,n=@)"'0 =)', kel (3.26)

®°)'p%, keR.

Proof. We can construct the Riemann-Hilbert problem (3.25) based on the Riemann-Hilbert problem
(3.19) and the decomposition of b,. In the meantime, the asymptotics of M*(k; x, 1) is derived from
the convergence of b, as k — oo. For fixed x and ¢, we pay attention to the domain Q3. Noticing the
boundedness of 6(k) and det 6(k) in (3.16), we arrive at

le~>"[deto(k)][ha(k) + RU)IS(K)] < le > Cha(k)| + le >R (k).

Consider the definition of R(k) in this domain,

| 2o pilk — ko)l < 1

—2it6
R(K)| < ,
RO =i Sk

—2it6
h k S 17 . 9>
R CC s
where m is a positive integer and y; is the coefficient of the Taylor series around k,. Combining with
the boundedness of %, (k) in Theorem 3.1, we obtain that M*(k; x, 1) — I when k € Q3 and k — co. The
others are similar to this domain. O

The above Riemann-Hilbert problem (3.25) can be solved as follows. Set

wi = i(bi -0, o= wi + ot

bt f§ d¢
2
Zf—ki 2_7'('1" feg (2) (327)

denote the Cauchy operator, where C, f (C_f) denotes the left (right) boundary value for the oriented
contour X in Figure 2. Define the operator C; : Z*(2) + LX) —» £*(2) by

(Ce k) =

Couf = Co(fo) + C_(fuh) (3.28)

for the 3 x 3 matrix function f.
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Lemma 3.2 (Beals-Coifman). If yf(k; x,1) € L*(Z) + LX) is the solution of the singular integral
equation

uﬁ =1+ Cﬁ)ﬁuﬁ.
Then ; .
M X, DWAEs X, 1) dE
Mt kyx,t)=1 —
kxn=1+ fz ik i
is the solution of the Riemann-Hilbert problem (3.25).
Proof. See [18], P. 322 and [40]. O

Theorem 3.2. The expression of the solution q(x,t) can be written as

1
q(x,1) = (u(x, ), u"(x, 1) = ;( f (1= C™'1) @) df) : (3.29)
z

12

Proof. From (2.21), (3.24) and Lemma 3.2, the solution g(x,?) of the generalized Sasa-Satsuma
equation is expressed by

q(x,1) = lim ~2i [k(M*(k; x, D)1z |

1
= (f,u’*(f; X, DWh(E) d§)
T D 12

1
== (f((l — C) ' DO (&) d§) . 0
T\Jx 1

2

3.3. Contour truncation

0 \
) po

Figure 3. The contour ¥’

Set 2" = Z\(RU L. U L) oriented as in Figure 3. We will convert the Riemann-Hilbert problem on
the contour X to a Riemann-Hilbert problem on the contour £’ and estimate the errors between the two
Riemann-Hilbert problems. Let w* = w°® + @’ = w® + w” + w° + &', where w® = W[ is supported on
R and is composed of terms of type h;(k) and hi(k*); w” is supported on L U L* and is composed of
contribution to w* from terms of type h,(k) and h;(k*); w° 1s supported on L. U L? and is composed of
contribution to w* from terms of type R(k) and R (k*).

Lemma 3.3. For arbitrary positive integer I, as t — oo,
-
lwll 21 ®)n22@)n gy S s (3.30)
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b -l

lw’ll. 21 woryne2orng=wory St (3.31)
—-16€%k>

w21 orn2aoneg=w.or S € ¢ o, (3.32)
3y—1 3\—4

'l g2 < (thg)™3,  lw'llerg S (thy) ™2 (3.33)

Proof. The proof of estimates (3.30), (3.31), (3.32) follows from Theorem 3.1. Afterwards, we
consider the definition of R(k) on the contour {k = ky + a/koe%l —o0 <@ < €},

IR < (1+[kP)~.
Resorting to Re(if) > 8a’k; and the boundedness of §(k) and det 5(k) in (3.16), we can obtain
e [det S(IRUISK)| < ™5™ (1 + k)"
Then we obtain (3.33) by simple computations. O
Lemma 3.4. Ast — oo, (1 = Cy)™! 1 L*2) —» LX) exists and is uniformly bounded:
(1= Co) 'l s 1.
Furthermore, ||(1 — C0) 225y < 1.

Proof. It follows from Proposition 2.23 and Corollary 2.25 in [18]. O

Lemma 3.5. As t — oo,
f (1 - Cop) ' D@ () dé = f (1 = Co) ' D@ (&) dé + O((thk) ™). (3.34)
> >

Proof. A simple computation shows that

(1= C) ' Dot =((1 - Co) ') o' + 0 + ((1 = Cu) ' (CurD)) o

3.35
+((1 = Co) N (Cor ) + ((1 = Cu) ' Cue(1 = C)) (C D). (339

After a series of tedious computations and utilizing the consequence of Lemma 3.4, we arrive at

lwll g1z < llw'llgiw) + ||wb||$1(LuL*) + w2 oy S (tkS)",

1((1 = Co) ™ (CurD) 1) < N1 = Co) Ml I Cur | sl 2y
< ol pllofllyae s @)™,

1((1 = CH(CurD) fllz1s) < (1 = Co DIz ICu 2l | 22y
S o'l mllofilzae < @),

1((1 = Cu) ' Cur(1 = C ) (CDefll 1y,

<1 = Cw')_l||$2(2)||(1 - Cwn)_l||$2(2)||wa|Ls,ﬂZ(Z)||Cwﬁl||$2(2)||wﬁ||$2(z)

2 N
< Nl g lofIPyas, < (k)™ 2.

Then the proof is accomplished as long as we substitute the estimates above into (3.35). O
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Notice that w’(k) = 0 when k € X\Y', let C,/| 42y, denote the restriction of C,, to & 2(x"). For
simplicity, we write C,/| #2z) as C,s. Then

fz((l - C) ' D)W () dé = E,((1 ~ Cy) ' D)W (€) dE.

Lemma 3.6. As t — oo,
1
q(x,1) = (u(x, 0, u*(x, 1))’ = - ( fz (1= Cuw)'DEOW' &) df) + O((tk)™). (3.36)
’ 12

Proof. From (3.29) and (3.34), we can obtain the result directly. O

Let L’ = L\L. and ' = (1 — C,,)"'I. Then

"(k; x, Do’ (k; x, 1) d
M’(k;x,t):1+f“(’x Jwr( x)—g,
7 E—k 2ni

solves the Riemann-Hilbert problem

M (k; x,t) = M (k; x,0)J' (k; x,1), keX,
M'(k; x,t) — 1, k — oo,

where
J = )7, = (- o)+ o),
W =W, + o,

b :( I —e?®[det 5(k)]o(k)R(k)

L 0 | ), b =1, onl,

I 0
b.=1, b :{ 2R (k*)B6~ (k) 1}, on (L')".
det 5(k)

3.4. Noninteraction of disconnected contour components

Let the contour X' = ¥/, U X% and o), = o/, + wf},, where

, w,(k), ke, , 0, ke,
W () =4 = YWk =4 A (3.37)
0, k e X, w,(k), keX.
Define the operators C,,, and C,;: L*(X) + Z*(X') — £*(¥') as in definition (3.28).
Lemma 3.7.
1
ICuy, Cull 257y = IICur, Cull 2250y Sy (1),
_3
ICu, Cas Il zyo 2222 1C s, Co L po2r1s 257 Sy (1) 77
Proof. See Lemma 3.5 in [18]. O
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Lemma 3.8. Ast — oo,

f (1 = Co) ' DEW @) dé = f (1= Cop ) 1)y (&) dé
% T,

c(ko) (3.38)
v [ @-cyrn@ey© s o),
Zp
Proof. From identity
(1 - Cw;‘ - Cw%)(l + Cw;‘(l - Cw;‘)_l + ijg(l - Cw%)_l)
=1- ngcwl’q(l - ng)_l - Cwl’chjg(l - Cu)b)_l’
we have
(1-Cu)' =14 Cu (1 =Cu)™ + Cy (1 = Cy)!
+ [1 + Cw;‘(l - Cw;‘)_l + Cw;g(l - Cw%)_l][l - Cw;gcw;‘(l - Cw;‘)_]
- ngcwb(l - ijg)_l]_l[cwbcw;‘(l - Cw%)_l + ngcwé(l - Cw%)_l]-
Based on Lemma (3.7) and Lemma (3.4) , we arrive at (3.38). O

For the sake of convenience, we write the restriction Ca,:q | 22z, @S Cw;{, similar for Cw/B. From the
consequences of Lemma 3.6 and Lemma 3.8, as t — oo, we have

T

gx.1) = - ( f (1 - Cop ) DO, E) d‘f)
D 12

0t ko) (3.39)
_ , c
- ( f (1= Cu) ' DEW(E) —) +O0(—2).
s/ T
B 12
3.5. Rescaling and further reduction of the Riemann-Hilbert problems
Extend the contours X', and X, to the contours

S = {k = —ko + koae*T : @ € R}, (3.40)

Sy = [k = ko + koae* ¥ 1@ € R}, (3.41)
respectively. We introduce &', and @} on ﬁ;‘ and ﬁ%, respectively, by

" (k), keX), Lo (k), keX,
wlA+ — wAi( ) AA d\)lB+ — wBi( ) AB (3.42)
- |0, keX\X,, - |0, k € Xp\X7.
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() TER

Za(Zp)

= Eh) TLED

Figure 4. The contour X4(Xp).

Let X, and Xz denote the contours {k = koaei"?i : a € R} oriented inward as in ¥, ﬁ;‘, and outward
as in X7, X7, respectively. Define the scaling operators

Ny : L E) — L),

flk) — (Naf)k) = f( £ ko), G439
A48tk
Ng : L&) - L (Zp),
flk) — (N f)k) = f( £y ko), G494
A48tk

and set
Wy = NA(I);p wp = NB(’/:)%

A simple change-of-variable arguments shows that
Ci, = N;'Cy,Na, Cay, = Ng'Cu,Na,

where the operator C,,, (C,,) is a bounded map from £%(2,) (£*(Zp)) into L*(Z4) (L*(Zp)). On
the part .
Ly = {k = ako48tkoe ¥ : —€ < o < +oo]

of X4, we have
or = or. = 0 (Nasp(k)
A — A+ — O O })

B B 0 0
@A = O =\ (Wasy)(k) 0)°

on L} we have

where _
"R (k)B,67 (k)

s1(k) = —e 2B det 5(k)]6(k)R(K),  s2(k) = R
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Lemma 3.9. Ast — oo, and k € L,, then
|(Na8) )| s 17, (3.45)

where 5(k) = e 2O [5(k)R(k) — (detd(k))R(K)].

Proof. Tt follows from (3.1) and (3.2) that § satisfies the following Riemann-Hilbert problem:

- - b ~2itf _
{5+(k)—6_(k)(1 Y (K)By (k) + e f(k), k€ (~ko, ko), (3.46)

5(k) — 0, k — oo.

where f(k) = 6_(k)[y'(k")Byy(k)I — y(k)y'(k*)B,]R(k). The solution for the above Riemann-Hilbert
problem can be expressed by

ko —2it0(&)
S =xk [ L T@ &

b X+(©E — k) 2mi’

_ 1 [ log(1 = &P
X(k) = exp{Z_ML ng}

Observing that

(' () By — y(k)yy (k)B1)R(k) = (v (k") Byy(k)I — y(k)y' (k")B))(R(k) — p(k))
= adj[ B, ladjly(k)y' (k")(hi (k) + ha(k)),

we obtain f(k) = O((k* — k3)). Similar to the Lemma 3.1, f(k) can be decomposed into two parts:
fk) = fi(k) + fo(k), and

. 1
_2i18(k)
e N < ———, 3.47
O ey (3.47)
. 1
~2itb(k)
e < ————, L,, 3.48
W] s , (3.48)

where f,(k) has an analytic continuation to L,, [ is a positive integer and / > 2,
Uil 1
L,:{k:k0+k0ae_34 :0<a< \/5(1—2—1‘)}
ko i 1
Utk==—k+koae? :0<a< \5(1—27) :

(see Figure 5).

L,

Figure 5. The contour L,.
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As k € L,, we obtain

o) —ko o~ 2it0(&) f(f) E
ViR Sk X + ko — o) 2ni

o g, ~2it6(¢)
— MO de
ko

(Nad)(k) =X(

+ X( - s
VASIKs XoOE + ko — or) 27
ko .
k T—k() =2it6(&) d
X o) f CMOpO &
VB e Xe@E k- ) 2ni
=l + 5L+ L.

Il < f /) —dé s,
& & +ko - Wl

ko e—2it9(§) ( ) 2t k
L] < f | /i®)| d¢ < f_lk£(2ko -~ 70) st
0

k
0ot 1€+ ko — e

As a consequence of Cauchy’s Theorem, we can evaluate I3 along the contour L, instead of the interval

% _ ko, ko) and obtain |I5] < r*!. Therefore, (3.45) holds.
t

Corollary 3.1. Ast — oo, and k € L}, then
(NudYB| s 77, 100, ke,

where §(k) = 2™ ORT(k*)B,[67" (k) — (detd(k))~'I].

Let JA" = (I —wyo_)"'(I + wy,), where

iv _ﬁ (_k)
0 ~O R Sl || kest,
0 0
WA0 = Wp0,. = i
A AV + 0 (62)2(—]{)21.‘/@_%7(_](0) 3
’ . , keZXy,

3

8% = (1961k3) % i ex(-ho

( 0 ] ke X?
) - €
0N\=2(_ =2, Yl (ko)Bi J A
WA0 = Wpo_ = ( (6A) - . 1—y¥(—ko)B1y(—ko) 0

0 0

o kext,
—(00)2(—k) 27 Y (—ko)B; O A

It follows from (3.78) in [18] that
logt

lws — waoll 21z n22@ong=E Ske ——=-
\Jiky

AIMS Mathematics Volume 5, Issue 6,
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(3.50)
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(3.52)
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There are similar consequences for k € Xp. Let JB = (I —wp_)"'(I + wp,), where

(80)%k27e ™S (ko) )
O b

0
0
_ 27 -2iv — yko)
0 (6%) k=e> 1-yT (ko) B1y(ko) ] kext
O s B’

kexz,

0
8% = (1961k3) e ki er(ho)
0 0 fesl
. i o D) € )
~(@) 2Ky (k)By 0 ’

0 0 [ e
(60)—2k2ive—# ¥ (ko)B1 ’ € &g
B 1—yT (ko) B1y(ko)
Theorem 3.3. As t — oo,

q(x, 1) =(u(x, ), u"(x, )"

1 (1= Cop) 1) Owao(@ de
12

" V8K \Us,

1 _ c(ko)log t
1- ! 0 —.
i 7 48tk (\L‘B (( CwBO) I) (@) dé:)lz ¥ O( t )

Proof. Notice that
(1= Cu) N ws =((1 = Co ) ) wao + (1 = Co) ') (Wi = wy0)
+ (1= Cyy) ' (Cuy = Co (1 = Coy N wyo.

Utilizing the triangle inequality and the boundedness in (3.53), we have

1
f (1= Co)™1) ©wa@ dt = f (1 =Cu)') <§>on<§>d§+0(£)'
A Ta Vi

According to (3.5) and a simple change-of-variable argument, we have

fz (a=Co) 1) @wy@) df)

12

L (N3'(1 = Co)T) ©w) @) df]

A 12

fi (@ = Co ') (€ + ko) VABtR) (Nw)) (€ + ko) V/481ko) dg]

A 12

Nl— N|— 3|~

_ 1 _ -1
== m( fz A ((1-cu) 1)<§>wA<§>d§)lz

: ) c(ko)log1t
= 1_ ] ) c(ko) log 1 |
7 VASIK; (fz ((1 = Cop)™'T) ©)ewa (f)d§)12+0( : )

There are similar computations for the other case. Together with (3.39), one can obtain (3.57).

(3.54)

(3.55)

(3.56)

(3.57)

O
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For k € C\X,, set

(1 =Co ) ') (Ewa(&)
MYk x,t) =1+ f ( 1) 9@ (3.58)
A f — k 27”
Then M (k; x, t) is the solution of the Riemann-Hilbert problem
MY (ks x,1) = MY (s x, 00 I (ks x, 1), k € 24, (3.50)
Mk x, 1) > 1, k — oo. '
In particular
0 My
MY (k) =1+ 71 +0(k™), k— oo, (3.60)
then i
A0 _ -1
M = - fz A (1= Co ) ') @@ 3~ (3.61)
There is a analogous Riemann-Hilbert problem on Zg,
MZ (ki x,1) = MP'(k; x,00J% (ks x, 1), k € S, .62
M (k; x,1) - 1, k — oo, '
where JBO(k; x, 1) is defined in (3.54) and (3.56). In the meantime, we have
BO
MP (k) =1+ 71 +0(k?), k— co. (3.63)

Next, we consider the relation between M{*O and Mfo. From the expression (3.50), (3.52), (3.54) and
(3.56), we have the symmetry relation

TV (k) = T(J¥ (—k)'T.
By the uniqueness of the Riemann-Hilbert problem,
M* (k) = T(MP' (k"))
Combining with the expansion (3.60) and (3.63), one can verify that
M = ey, (M) = o (M.
Therefore, from (3.57) and (3.61), we have

q(x, 1) =(u(x, 1), u*(x, )"

—2i 0 0 c(ko) logt
= MY+ MP) +ol——=—
VA8tko (M + M7), ( t

. . O -

AIMS Mathematics Volume 5, Issue 6, 7413-7437.
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3.6. Solving the model problem

In this subsection, we compute (Mfo) 12 explicitly. It is important to set
W(k) = HUO(=k)"e™ 57, H(k) = (63" M" (R)(63)"" (3.65)
Then it follows from (3.59) that
W, (k) = Y_(kv(ko), v = €3 (=)™ (65) I (k)87 (k)T eI (3.66)
The jump matrix is the constant one on the four rays X}, X3, £3, 1, so

d¥,. (k) _ d¥_(k)
dk —  dk

v(—kp). (3.67)

Then it follows that (d¥/dk + iko"¥)¥~! has no jump discontinuity along any of the four rays. Besides,
from the relation between W(k) and H(k), we have

d¥(k dH(k )
dl(c D1 (k) = ( )H k) — H(k)O'H‘l(k) + %H(k)a-H‘l(k)
iko i
=0(k™") ~ = + 56 [0 M1
It follows by the Liouville’s Theorem that
d‘I’(k)
T EO'\P(]C) BY(k), (3.68)
where
_100 Ay ON—0 _ 0 B
B= 2(6,4) [O"M1 ](6,4) _(,321 0 )
Moreover,
0 . —
(M} )12 = =i(63)Bra. (3.69)
Set

W(k) = ( Wik) Yiak) )

o (k) Wn(k)

From (3.68) and its differential, we obtain

2 . 2
w + (% L L —ﬁzlﬁlz)ﬁzl\yu(k) -0
1 (dﬁm‘}’n(k)
B21B12 dk
d>W¥y, (k) ( ik

e T\73 —_,321ﬁ12)‘{’22(k)—

Wy (k) =

—,321‘1’11(k))

— 5 ¥ (k)

dk 2

Y
Bar¥ia(k) = (d (k) ik )
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As is well known, the Weber’s equation

d*g(0)
a2 (Q ’

has the solution

8(0) = c1Dy({) + c2D,(=0),

where D,(-) denotes the standard parabolic-cylinder function, and c;, ¢, are constants. The parabolic-

cylinder function satisfies [41]

D,({)
di, +£D,(0) - 0Dy 1) =
T(o+ 1)e™  T(o+ e F ‘
Dy(x0) = %D—g—l(ilﬁ + %D—Q—l(¢l§)'
As ¢ — oo, from [42], we have
e (1+ 0, larg¢] < 3
D) = % (1+ 0 ) - nf;eg”’w—@ (1+0@?). E<agl<

fee 5 (1+0) - r(i N1+ 0CY), —Z <argl < -E

-0)

where I'(-) is the Gamma function. Set o = 3,182,

Bar¥11(k) = ¢ D, (k) + caD, (e k).
Wo(k) = 3Dy (e¥'k) + caD_y (e ¥k),

where ay, a,, a3, ay are constants. As argk € (-, =) U (&, 1) and k — oo, we arrive at
—iv a2 iv _ik2
Yi(k)(=k)y e+ =1, Wnk)(-k)"e+ —1,
then

Bor¥11(k) = Brie D, (6_%]6) s v=PBup,
Wy(k) = e¥D_, (e Fk).

Consequently,

Wy1(k) = Bue¥ e ¥ Dy (67 k),
PuWia(k) = 0T e ID o (eTk).

For argk € ——” ,—%) and k — oo, we have

YLk e S 1, Wnk)(—k)e T = 1,

(3.70)

(3.71)

(3.72)

(3.73)
(3.74)
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then

BoiPri(k) = ﬁzle_%l)@ (e%[k) ,
Wo(k) = e¥D_, (e ¥k).

Consequently,

Wyi(K) = Bare” ¥ e Dy (k).
B i2(k) = Qe%e_%il)—g—l (e%k).

Along the ray argk = -3,

1 0
Y. (k) = lI’_(k)( i (—ko)B; 1 ) (3.75)
Notice the (2, 1) entry of the Riemann-Hilbert problem,
n(v=i) _ 3mi
Brie ¥ Dyi(e” k)

n(3i-3v)

=Bare” T D, i(etk) — e¥D_y(e T kyy'(~ko)B.
It follows from (3.71) that

i (=0 + De? s I'(—o+ e 2
D_(e*k)=—=—""—D, (e k) + ————
¢ V2 ¢ V2

Then we separate the coefficients of the two independent functions and obtain

D,_1(e%k).

_m oI(=0+1) "
Bor =e T e? ———y'(~ko)B. (3.76)
V2r
Noting that B~'(JA"(k*))’B = (J*"(k))™", we have B, = —B;'B},, which means that
_ wi wl(—0+1)  _w o I(=iv)
Bi2 = —B{'Bly(-ko)e* €T ——— = ¢y ¥(=ko). 3.77)
1 1 1 \/E \/ﬂ

Finally, we can obtain (1.4) from (3.64), (3.69) and (3.77).
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