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1. Introduction

The well-known book, A survey of binary systems, was written by Bruck [1], and he discussed the

theory of groupoids, loops and quasigroups, and several algebraic structures. Boruvka [2] discussed
the theory of decompositions of sets and its application to binary systems. Nebesky [3] introduced
the notion of a travel groupoid by adding two axioms to a groupoid, and he described an algebraic
interpretation of the graph theory. Recently, several researchers investigated groupoids, and obtained
some interesting results [4—8]. Kim et al. [8] introduced the notions of “below”, “above” and “between”
in groupoids, and applied these notions to semigroups and Bin(X). The locally finiteness and Moebius
functions were discussed in partially ordered sets and combinatorics [9, 10]. For general reference on
partially ordered sets, we refer to [11].

In this paper, we apply the notions of “below” and “above” to the theory of groupoids, and discuss
the notion of the locally finiteness and convolution products in groupoids.
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2. Preliminaries

Let (X, %) be a groupoid, i.e., X is a non-empty set and “+” is a binary operation defined on X [12],
and let x, y,z € X. An element x is said to be below y, denoted by xBy, if x * y = y; an element x is said
to be above y, denoted by xay, if x *y = x.

Example 1. [8] Let D = (V, E) be a digraph and let (V, %) be its associated groupoid, i.e., * is a binary
operation on V defined by

cay D x if x> y¢E,
= y otherwise

Let D = (V, E) be a digraph with the following graph:

AN

Then its associated groupoid (V, *) has the following table:

* 1 2 3 4
{1 1 3 1
212 2 2 4
313 2 3 3
414 4 4 4

It is easy to see that there are no elements x,y € V such that both xay and xSy hold simultaneously.
Note that the relations @ and 8 need not be transitive. In fact, 1 — 3,3 —» 2in E,butnot 1 — 2in E
imply that 183,352, but not 152. Similarly, 1a4,4a3, but not 1a3.

Proposition 1. [8] Let (X, x) be a groupoid. Then for any x,y,z € X,

(i) if xBy, xay, then x = y;
(11) if (X, %) is commutative, i.e., x x y =y * X, then xfy < yax;

(ii1) if xBy, yax, then x xy =y * x = .

Let (X, =) be a groupoid and let x, y € X. Define a binary relation “<”on X by x <y < xfy, yax.
Then it is easy to see that < is anti-symmetric.

Proposition 2. [8] If a, 8 are transitive, then < is transitive.

Let (X, *) be a groupoid and let x,y € X. We define an interval (or a segment) as follows:
[x.y]:={geX|x<q, g <y}

Note that the interval (segment) [x, y] in groupoids is different from the intervals in (linear) ordered
sets.
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3. Locally finiteness

Given a groupoid (X, *), the interval [x,y], x,y € X, consists of all elements ¢ € X such that
x < g <y. Since x < yif and only if xBy, yax if and only if x * y = y = y * x, we may put the interval
[x, y] as follows:

[x,y]={geX|xxg=q=q*x, gxy=y=y=*q}

Proposition 3. Let (X, ) be a groupoid and let x € X. Then x x x = x if and only if x € [x, x] if and
only if [x, x] = {x}.

Proof. Straightforward. O
Proposition 3 shows that x * x # x if and only if x ¢ [x, x].

Example 2. Consider a set X := {0, a, b, ¢} with the following table:

*=|0 a b ¢
0/0 0 0 O
ala a b a
b|b b b b
clc ¢c ¢ b

It is easy to see that a,b € [a,b],a € [a,al,b € [b,b],0 € [0,0],[b,c] = [a,c] = [0,b] = 0. Since
cxc=b#c,wehave[c,c]=0andc ¢ [c,c].

A groupoid (X, =) is said to be an idempotent if x * x = x for all x € X.

In Example 2, (X, %) is not an idempotent groupoid, since ¢ = ¢ = b # ¢, but X; := {0,a, b} is an
idempotent subgroupoid under “x”.

A groupoid (X, ) is said to be locally finite if for all x,y € X, the interval [x,y] is finite. The set
of all intervals on (X, *) is denoted by /(X, *), and the set of all finite intervals on (X, %) is denoted
by 14(X,*). Hence a groupoid (X, %) is locally finite if and only if /(X, ) = I/(X,*). The set of all
non-empty locally finite intervals on a groupoid (X, *) is denoted by I}) (X, ).

Example 3. Let X be the set of all non-negative integers and let “+” be the usual addition on integers.
Given x,y € X, we have

{geX|x<q<y}
lgeX|x+qg=q+x=q, gty=y+q=y}

[x, y]

If x # 0, then [x,y] = 0, and if x = 0O, then [x,y] = [0,y] = {0} for all y € X. Hence (X, +) is locally
finite.

Example 4. Let X be the set of all rational numbers and let x * y := %(x + y) for all x,y € X.
Assume that x,y € X such that [x,y] # 0. Then there exists an element ¢ € [x,y]. It follows that
Xxq=qrx=q,qxy=y*q=yie,;(x+q) =3(q+x =g 3(q+y) =30 +¢) =y, proving that
x =g,y = q. Hence [x, y] = {x}. Hence (X, *) is locally finite.

Example S. (a). Let X be the set of all integers. Define x * y := max{x, y} on X. Assume x,y € X such
that [x,y] # 0. Then there exists g € X suchthat xx g = g*x = g,g*y =y * g = y. It follows that
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max{x, g} = g,max{q,y} =y, 1.e., x < g <y where < is the usual order relation on the integers. Hence
if y > x, then [[x,y]| = y — x + 1. Otherwise, [x, y] = 0. Thus (X, *) is locally finite.

(b). Let X be the set of all rational numbers and let x * y := max{x,y} forall x,y e X. f x < g <y
where < is the usual order relation, then [x, y] is not finite unless x = y, i.e., [x,y] = {x} = {y}. Hence
(X, *) is not locally finite and I}’(X, x) = {{x}]|x € X}.

Proposition 4. Let (X, *) be a leftoid for f, i.e., x xy = f(x), Vx,y € X, where f : X — X is a map.
Then (X, %) is locally finite.

Proof. Given x,y € X, if [x,y] # 0, then we have

gelxyl & x<qg<y
& X*g=g*xX=¢, q*y=y*xq=y
e f=f@=q9 fl@=f=y
® fW=q=f@=fO)=y
e [xyl={y}
This proves the proposition. O

Corollary 1. Let (X, *) be a rightoid for f, i.e., x xy = f(y), Vx,y € X, where f : X — X is a map.
Then (X, %) is locally finite.

Proof. The proof is similar to Proposition 4. |
4. Convolution products

A groupoid (X, *) is said to have a transitive interval property if [x,y], [y, z] € Iy(X, %), then [x,z] €

I4(X, ). Every locally finite groupoid (X, *) has the transitive interval property, but the converse does
not hold in general.
Example 6. Let (X, <) be a poset where X = {x}® Y ®{z} is an ordinal sum of two chains {x}, {z} and an
anti-chain Y :={y,|n = 1,2,3, --- }. If we define x = y := max{x, y} for all x,y € X, then [x, y;] = {x, y;},
i,z ={yi 2} (0 = 1,2,3,---), and [x, z] = X. Clearly, [x, ], [yi, 2] € I(X, *), but [x, z] ¢ 14(X, *).

Assume that (X, *) € Bin(X) and 0 € I¢(X, ). We define a convolution product “©” on I¢(X, *) by

, [x,z], ify=Y,
[x,y]o [y, z] = , Y y,
0, ify #y'.

Let K be a field (usually a complex field C). We define a map f : I(X, *) — K by

Lx.y] k, if [x,y] € Iff(X, %),
’ 0, otherwise.

for some k € K \ {0}, i.e., [x,y] = @ or [x,y] ¢ I]’:(X, x) implies f([x,y]) = 0, and f([x,y]) = k for
some k € K \ {0} otherwise. We call such a function f an interval value function. Define a convolution
product “®” of interval value functions f and g by

(FeRnyD = > flx ez ).

z€[x,y]
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Note that if f([x,z])g([z,¥]) # O, then f([x,z]) # 0 # g([z,y]) and hence [x,z] # O # [z,V], i.e.,
[x, 2], [z, ¥] € If(X, %).

Define amap ¢ : I(X, *) — K by

[ v] I, ifx=y, x*xx=x,
x,y] — i
Y 0, otherwise.

Such a map ¢ is said to be a Riemann function on a groupoid (X, *).

Remark. The condition x * x = x is necessary to define the Riemann function on a groupoid (X, %). As
in Example 2, we see that [c,c] = 0 and ¢ ¢ [c, c]. If [x, x] # 0, then there exists y € [x, x]. It follows
that x <y < x,andhence x*xy =y =y=*x,x*y = x = y* x. This shows that x = y and x % x = x.
Clearly, if x * x = x, by Proposition 3, we have x € [x, x] and hence [x, x] # 0.

By Proposition 3, the map ¢ is the characteristic function of U, where U := {x € X | x * x = x}.

Proposition S. If f : I(X, *) — K is an interval value function, then

flxyD, ifyel,

0, otherwise,

(f®o)([x,y]) = {

and

f(lx.yD, if xel,

0, otherwise.

0 f)lxy) = {

Proof. Given [x,y] € I(X, %), we have

(FeIxyD = ), flxdlzy)

z€[x,y]

= > fmabedzyh+ Y flx sz

z€[x,ylNU z¢[x,y]NU

= f([x,yDé([y,yD
= f([x,yD

if y € U. Otherwise, (f ® 6)([x,y]) = 0. Similarly,

@®NIxy) = D 8xzDf(z )

z€[x,y]

= ), xaDfzyD+ Y, 6% Df(z0)

z€[x,y]NU z¢[x,y]NU

= o([x, yDf([y. D
= f([x,y])

if x € U. Otherwise, (f ® 6)([x, y]) = 0. O
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Note that if U = 0, then ¢ is the zero map on I(X, *). In fact, for any x,y € X, if x # y, then
o([x,y]) = 0. If x = y,since U = 0, x * x # x and hence 6([x,y]) = d([x,x]) = 0. In this case,
f®oi=0®f =0.

Theorem 1. If (X, *) is a locally finite groupoid, then 6 ® 6 = 9.
Proof. Given [x,y] € I(X, %), we have

@®o)[xy) = ). 8(lx, 2Dz )

z€[x,y]
= ) xadzyh+ D 6(x Doz D
zelx,yINU 2¢[xyINU
o([x,y]), if xeT,
- {0, otherwise
= o([x, ¥,
proving the theorem. O

A map g : I(X,*) — K is called an inverse of a mapping f : I(X, *) — K if, for all [x, y] € I(X, %),
(f ® &)([x, y]) = 6([x, ¥]), 1., Xoepuyy S ([x, 2Dg([z, ¥]) = 6([x, yD).
We define amap ¢ : I(X, *) — K by

Lxy] 1, if[x,y] e IJIZ(X, %),
’ 0, otherwise.

We call such a map ¢ a zeta function. It follows that, for all [x, y] € I(X, %),

PIRL(ERSC(E))

z€lx.y]

z € X |[x.2] [z.y] € I7(X, %)}l.

(f®O)([x, y])

Next, we introduce the Moebius function p, on a groupoid (X, *) as follows: if x = y, then we define

1, if [x,x] € IZ(X, %),
m(Lx, x]) = .
0, otherwise.
Furthermore, if x # y, then we define
ey = - > mxa) (1)
z€[x,y]
y#£2

[x,z]elf(x,*)

or u;([x,y]) := 0 if no such z exists.

Theorem 2. Let (X, *) be a locally finite groupoid. If (X, *) is an idempotent groupoid, then
H1®=0.
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Proof. Since (X, %) is idempotent, by Proposition 3, [x, x] # @ and hence {([x, x]) = 1 for all x € X.
Given x,y € X, we consider the case x # y. If [x,y] # 0, then

PIWTIER)(ERT)

(1 ® O)([x,¥])

z€[x,y]

D (e DIz YD + ([ YDE (L, ¥D

z€[x,y]
ZEy

D (2D D + il yD)

z€[x,y]
Z¢y

D i DZs yD) + (v

z€[x,y]
£y
{([z.yD#0

DL (i) + i ((xy0)

z€[x,y]
Z#y

[zy1elf (X.)

=i ([x, y]) + pi ([x, y])

0.

If [x, y] = 0, then there is no z € [x, y], and hence thereisno [z,y] € I Jf (X, =). It follows that £([z, y]) # 1.

This shows that

(11 ® O)([x, D)

> mnlx, 2Dz, yD)

z€[x,y]

0.

Consider the case x = y. By Proposition 3, we have [x, x] = {x}. It follows that

(1 ® O)([x, x])

This proves the theorem.

PIWTH(ER IS (ERY)

z€[x,x]

M1 ([x, xDZ([x, x])
1.

Furthermore, we redefine the Moebius function as follows: when x # y,

plxyD == > ()

z€[x,y]

Z#EX

[z.ylelf (X.%)

or t>([x,y]) := 0 if no such z exists. We obtain an exact analog of Theorem 2 as below:

Theorem 2'. Let (X, %) be a locally finite groupoid. If (X, *) is an idempotent groupoid, then

AIMS Mathematics
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Proof. The proof is similar to Theorem 2. m|

Note that if two definitions (1) and (2) of the Moebius function u for the case x # y are the same,
1.e., 4y = (= p), thenweobtain u @ =@ u = 9.

Example 7. Let X := {a, b, 1,2} be a set with the following table:

*|la b 1 2
all b 1 b
bja 2 a 2
1/1 b 1 b
2la 2 a 2
It is easy to compute that the non-empty intervals are [1, 1] = {1}, [2,2] = {2}, [a, 1] = {1}, [b, 2] = {2}.

Hence u([1, 11) = u(12,2]) = 1, u([a, 11) = p([b, 2]) = 0. It follows that (u®?)([1, 1]) = (u®)([2,2]) =
L (u®H(la,al) = (@ (b, b]) = 0 and (u ® {)([a, 1]) = p(la, 1DZ([1,1D) =0- 1 =0.

5. Conclusion

In the usual setting of number theory, the Moebius function will have its ordinary meaning and
properties. We have used the rather strong version of the relation x < y on the groupoid (X, *) and
constructed all our functions u, { and 6 which were used in the theory of combinatorics and partially
ordered sets. There is nothing in the way of following this same pattern with respect to 5 and a-
betweenness for intervals instead of the intervals [x,y] over groupoids (X, *). Clearly there remains
much to be done for a more complete theory. Nevertheless, the outline of a “theory of order” on
groupoids (X, %) are discernible.

6. Future research

In sequel we will develop the idea of Moebius functions for arbitrary d/BCK-algebras and we
demonstrate the existence of a general Moebius inversion process. If (X, ,0) is a locally finte d-
algebra, and if 6, u and ¢ are the Riemann, Moebius and zeta functions respectively, then we show that
(L ©®6) ® ¢ = 5. Moreover, we will define a notion of a dual Moebius function u¢, and show that
(@l o) =04.
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